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 A B S T R A C T

In this paper we study quasilinear elliptic Kirchhoff equations driven by a non-homogeneous 
operator with unbalanced growth and right-hand sides that consist of sub-linear, possibly 
singular, and super-linear reaction terms. Under very general assumptions we prove the 
existence of at least two solutions for such problems by using the fibering method along with 
an appropriate splitting of the associated Nehari manifold. In contrast to other works our 
treatment is very general, with much easier and shorter proofs as it was done in the literature 
before. Furthermore, the results presented in this paper cover a large class of second-order 
differential operators like the 𝑝-Laplacian, the (𝑝, 𝑞)-Laplacian, the double phase operator, and 
the logarithmic double phase operator.

. Introduction

Given a bounded domain 𝛺 ⊆ R𝑁 , 𝑁 ≥ 2, with Lipschitz boundary 𝜕𝛺, this paper deals with general Kirchhoff problems involving 
ingular and super-linear reaction terms of the form

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−𝑚
(

∫𝛺
(𝑥, |∇𝑢|) d𝑥

)

(𝑢) = 𝜆𝑓 (𝑢) + 𝑔(𝑢) in 𝛺,

𝑢 > 0 in 𝛺,
𝑢 = 0 on 𝜕𝛺,

(P𝜆)

here 𝜆 > 0 is a parameter, 𝑓, 𝑔∶ (0,+∞) → (0,+∞) are continuously differentiable functions, 𝑚∶ [0,+∞) → [0,+∞) is the so-called 
irchhoff function,  ∶𝛺 × [0,+∞) → [0,+∞) is a generalized 𝑁-function, while ∶𝑊 1,

0 (𝛺) → 𝑊 1,
0 (𝛺)∗ is an operator (possibly 

on-homogeneous and with unbalanced growth) satisfying certain structure conditions. To be more precise, we suppose the following 
ssumptions on the data of problem (P𝜆):
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(H) (H𝑚) The function 𝑚∶ [0,+∞) → [0,+∞) is continuously differentiable, non-decreasing, and 𝑚(𝑠) > 0 for all 𝑠 > 0. In 
particular,

𝜂 ∶= sup
𝑠>0

𝑠𝑚′(𝑠)
𝑚(𝑠)

≥ 0.

(H) The function  ∶𝛺 × [0,+∞) → [0,+∞) is a generalized 𝑁-function such that (𝑥, ⋅) ∈ 𝐶2(0,+∞) for a.a.  𝑥 ∈ 𝛺 and

(i) 𝑝 ∶= inf
(𝑥,𝑠)∈𝛺×(0,+∞)

𝑠𝜕𝑠(𝑥, 𝑠)
(𝑥, 𝑠)

> 1;

(ii) 𝑞 ∶= sup
(𝑥,𝑠)∈𝛺×(0,+∞)

𝑠𝜕𝑠(𝑥, 𝑠)
(𝑥, 𝑠)

< 𝑝∗;

(iii) 𝑙− ∶= inf
(𝑥,𝑠)∈𝛺×(0,+∞)

𝑠𝜕2𝑠𝑠(𝑥, 𝑠)
𝜕𝑠(𝑥, 𝑠)

> 0;

(iv) 𝑙+ ∶= sup
(𝑥,𝑠)∈𝛺×(0,+∞)

𝑠𝜕2𝑠𝑠(𝑥, 𝑠)
𝜕𝑠(𝑥, 𝑠)

< +∞,

with the Sobolev conjugate 𝑝∗ of 𝑝. Moreover, ∶𝑊 1,
0 (𝛺) → 𝑊 1,

0 (𝛺)∗ is defined as 

(𝑢) ∶= div
(

𝜕𝑠𝐻(𝑥, |∇𝑢|) ∇𝑢
|∇𝑢|

)

. (1.1)

In addition, we suppose that 
𝑊 1, (𝛺) ↪ 𝐿 (𝛺) compactly. (1.2)

(H𝑓 ) The function 𝑓 ∶ (0,+∞) → (0,+∞) is continuously differentiable and satisfies
lim inf
𝑠→0+

𝑓 (𝑠) ∈ (0,+∞],

𝛾− ∶= − sup
𝑠>0

𝑠𝑓 ′(𝑠)
𝑓 (𝑠)

> 1 − 𝑝,

𝛾+ ∶= − inf
𝑠>0

𝑠𝑓 ′(𝑠)
𝑓 (𝑠)

< 1.

(H𝑔) The function 𝑔∶ (0,+∞) → (0,+∞) is continuously differentiable and satisfies

𝑟− ∶= 1 + inf
𝑠>0

𝑠𝑔′(𝑠)
𝑔(𝑠)

> 1,

𝑟+ ∶= 1 + sup
𝑠>0

𝑠𝑔′(𝑠)
𝑔(𝑠)

< 𝑝∗.

(H𝐶 ) The following condition holds true:
𝑞𝜂 + 𝑙+ < 𝑟− − 1,

where 𝑞, 𝑙+ are defined in (H), 𝜂 is given in (H𝑚), and 𝑟− comes from (H𝑔).

The following conclusions can be made from hypotheses (H):

• the condition 0 < 𝑙− ≤ 𝑙+ < +∞ in (H) makes  a uniformly elliptic operator;
• (H𝑓 ) ensures that 𝑓 is sub-linear, possibly singular;
• (H𝑔) guarantees that 𝑔 is sub-critical;
• (H𝐶 ) is a super-linearity condition on 𝑔.
First, we mention that hypotheses (H) include the standard Kirchhoff function 𝑚(𝑠) = 𝑎+𝑏𝑠𝜂 with 𝑎, 𝑏 ∈ R2⧵{(0, 0)}, that means we 

allow degenerate Kirchhoff problems which create the most interesting models in applications. The following operators are included 
in hypotheses (H), whereby we suppose in all cases that 1 < 𝑝 < 𝑁 , 𝑝 < 𝑞, and 0 ≤ 𝜇(⋅) ∈ 𝐿∞(𝛺), while we assume 𝑞 < 𝑝∗ ∶= 𝑁𝑝

𝑁−𝑝
for (i) and 𝑞 + 𝜅 < 𝑝∗ for (ii)–(iii), where 𝜅 ∶= 𝑒

𝑒+𝑡0
∈ (0, 1) and 𝑡0 > 0 is the unique solution of 𝑡 = 𝑒 log(𝑒 + 𝑡):

(i) Double phase operator:
div

(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

generated by the generalized 𝑁-function 
(𝑥, 𝑠) = 𝑠𝑝 + 𝜇(𝑥)𝑠𝑞 for all (𝑥, 𝑠) ∈ 𝛺 × [0,∞), (1.3)

see Crespo-Blanco–Gasiński–Harjulehto–Winkert [1];
2 
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(ii) Logarithmic double phase operator: 

div
(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)
[

log(𝑒 + |∇𝑢|) +
|∇𝑢|

𝑞(𝑒 + |∇𝑢|)

]

|∇𝑢|𝑞−2∇𝑢
)

(1.4)

generated by the generalized 𝑁-function 
(𝑥, 𝑠) = 𝑠𝑝 + 𝜇(𝑥)𝑠𝑞 log(𝑒 + 𝑠) for all (𝑥, 𝑠) ∈ 𝛺 × [0,∞), (1.5)

where 𝑒 is the Euler number, see Arora–Crespo-Blanco–Winkert [2];
(iii) Double phase operator with logarithmic perturbation: 

div
(

(

|∇𝑢|𝑝−2∇𝑢 + 𝜇(𝑥)|∇𝑢|𝑞−2∇𝑢
)

[

log(𝑒 + |∇𝑢|) +
|∇𝑢|

𝑞(𝑒 + |∇𝑢|)

])

, (1.6)

generated by the generalized 𝑁-function 
(𝑥, 𝑠) = [𝑠𝑝 + 𝜇(𝑥)𝑠𝑞] log(𝑒 + 𝑠) for all (𝑥, 𝑠) ∈ 𝛺 × [0,∞), (1.7)

where 𝑒 is the Euler number, see Lu–Vetro–Zeng [3].

We point out that, in the examples above, we do not need that 0 ≤ 𝜇(⋅) ∈ 𝐶0,1(𝛺) and 
𝑞
𝑝
< 1 + 1

𝑁
, (1.8)

as required quite often in the double phase setting. Note that (1.2) holds for (1.3), (1.5), and (1.7), see [1, Proposition 2.18], [2, 
Proposition 3.9], and [3, Proposition 2.24], respectively, without supposing (1.8). Sufficient conditions for the compact embedding 
in (1.2) to be true can be found in the book by Harjulehto–Hästö [4, see Chapter 6.3] or the recent paper by Cianchi–Diening [5, 
Theorem 3.7]. Concerning the nonlinearities on the right-hand side of (P𝜆), the choices 𝑓 (𝑠) = 𝑠−𝛾 and 𝑔(𝑠) = 𝑠𝑟−1 are allowed for 
0 < 𝛾 < 1 < 𝑞 < 𝑟 < 𝑝∗.

Our main result is the following theorem.

Theorem 1.1.  Let (H) be satisfied. Then there exists 𝛬 > 0 such that, for any 𝜆 ∈ (0, 𝛬), problem (P𝜆) admits two weak solutions with 
opposite energy sign.

The proof of Theorem  1.1 is based on the fibering method along with the corresponding Nehari manifold related to problem 
(P𝜆). Indeed, even though the energy functional 𝐽 ∶𝑊 1,

0 (𝛺) → R associated with (P𝜆) is not 𝐶1 (due to the presence of the singular 
term 𝑓 ), one can define the Nehari manifold to (P𝜆) as

 = {𝑢 ∈ 𝑊 1,
0 (𝛺) ⧵ {0}∶𝜓 ′

𝑢(1) = 0},

where 𝜓𝑢 ∶ (0,+∞) → R is the fibering map defined for any 𝑢 ∈ 𝑊 1,
0 (𝛺) ⧵ {0} by

𝜓𝑢(𝑡) ∶= 𝐽 (𝑡𝑢) for all 𝑡 > 0.

The idea is then to split the Nehari manifold into three disjoint parts minimizing 𝐽 over two of them to get the required solutions 
with different energy sign. This method is not new, but it is the first time that it is applied to a very general setting and so no 
concrete, long calculations are needed. Indeed, we do not only cover the results obtained by Papageorgiou–Repovš–Vetro [6] 
((𝑞, 𝑝)-Laplacian), Papageorgiou–Winkert [7] (weighted 𝑝-Laplacian), Liu–Dai–Papageorgiou–Winkert [8] (double phase operator) 
or Arora–Fiscella–Mukherjee–Winkert [9] (Kirchhoff double phase operator), but we also have much easier and shorter proofs as 
in those papers and we also cover new operators within our setting, like the logarithmic double phase operators given in (1.4) and 
(1.6).

In general, the use of the fibering method along with the Nehari manifold is a very powerful tool and has been further 
developed by the works of Drábek–Pohozaev [10] and Sun–Wu–Long [11]. Subsequently, several authors have applied this method 
to various problems of singular type and non-singular type. We refer to works by Alves–Santos–Silva [12] (singular-superlinear 
Schrödinger equations with indefinite-sign potential), Arora–Fiscella–Mukherjee–Winkert [13] (critical double phase Kirchhoff 
problems with singular nonlinearity), Chen–Kuo–Wu [14] (Kirchhoff Laplace equations), Fiscella–Mishra [15] (fractional singular 
Kirchhoff problems), Kumar–Rădulescu–Sreenadh [16] (singular problems with unbalanced growth and critical exponent), Liu–
Winkert [17] (double phase problems in R𝑁 ), Mukherjee–Sreenadh [18] (fractional 𝑝-Laplace problems), Tang–Cheng [19] (ground 
state solutions of Nehari–Pohozaev type for Kirchhoff-type problems with general potentials), Wang–Zhao–Zhao [20] (critical 
Laplace equations with singular term), see also the references therein. For a survey concerning singular problems, we address the 
reader to the overview article by Guarnotta–Livrea–Marano [21]. It should be mentioned that, in contrast to the results available 
in the literature (see the list above and also Candito–Guarnotta–Perera [22] and Candito–Guarnotta–Livrea [23]), our method does 
not require the use of Hardy-Sobolev’s inequality.

The paper is organized as follows. In Section 2 we introduce our function space and recall some basic facts about generalized 
𝑁-functions and related Musielak–Orlicz Sobolev spaces. Further, we prove some auxiliary results and give the precise definition of 
the Nehari manifold to problem (P𝜆) including its splitting into three disjoint parts. Section 3 discusses some basic estimates which 
are needed in the sequel while Section 4 gives a detailed study of the Nehari manifold and its properties. Finally, in Section 5, we 
are able to prove Theorem  1.1.
3 
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2. Preliminaries

In this section we recall some basic definitions about 𝑁-functions, Musielak–Orlicz Sobolev spaces and its properties. These 
results are mainly taken from the monographs by Chlebicka–Gwiazda–Świerczewska-Gwiazda–Wróblewska-Kamińska [24], Diening–
Harjulehto–Hästö–Růžička [25], Harjulehto–Hästö [4], Musielak [26], and Papageorgiou–Winkert [27]. We start with some 
definitions.

Definition 2.1. 
(i) A continuous and convex function 𝜑∶ [0,∞) → [0,∞) is said to be a 𝛷-function if 𝜑(0) = 0 and 𝜑(𝑡) > 0 for all 𝑡 > 0.
(ii) A function 𝜑∶𝛺 × [0,∞) → [0,∞) is said to be a generalized 𝛷-function if 𝜑(⋅, 𝑡) is measurable for all 𝑡 ≥ 0 and 𝜑(𝑥, ⋅) is a 

𝛷-function for a.a.  𝑥 ∈ 𝛺. We denote the set of all generalized 𝛷-functions on 𝛺 by 𝛷(𝛺).
(iii) A function 𝜑 ∈ 𝛷(𝛺) is locally integrable if 𝜑(⋅, 𝑡) ∈ 𝐿1(𝛺) for all 𝑡 > 0.
(iv) A function 𝜑 ∈ 𝛷(𝛺) satisfies the 𝛥2-condition if there exist a positive constant 𝐶 and a nonnegative function ℎ ∈ 𝐿1(𝛺) such 

that

𝜑(𝑥, 2𝑡) ≤ 𝐶𝜑(𝑥, 𝑡) + ℎ(𝑥)

for a.a.  𝑥 ∈ 𝛺 and for all 𝑡 ∈ [0,∞).
(v) Given 𝜑,𝜓 ∈ 𝛷(𝛺), we say that 𝜑 is weaker than 𝜓 , denoted by 𝜑 ≺ 𝜓 , if there exist two positive constants 𝐶1, 𝐶2 and a 

nonnegative function ℎ ∈ 𝐿1(𝛺) such that

𝜑(𝑥, 𝑡) ≤ 𝐶1𝜓(𝑥, 𝐶2𝑡) + ℎ(𝑥)

for a.a.  𝑥 ∈ 𝛺 and for all 𝑡 ∈ [0,∞).

For 𝜑 ∈ 𝛷(𝛺) we denote by 𝜌𝜑 the corresponding modular given by

𝜌𝜑(𝑢) ∶= ∫𝛺
𝜑 (𝑥, |𝑢|) d𝑥.

Let 𝑀(𝛺) be the set of all measurable functions 𝑢∶𝛺 → R. Then, the Musielak–Orlicz space 𝐿𝜑(𝛺) is defined by

𝐿𝜑(𝛺) ∶=
{

𝑢 ∈𝑀(𝛺)∶ there exists 𝛼 > 0 such that 𝜌𝜑(𝛼𝑢) < +∞
}

equipped with the norm

‖𝑢‖𝜑 ∶= inf
{

𝛼 > 0∶ 𝜌𝜑
( 𝑢
𝛼

)

≤ 1
}

.

The next proposition is taken from Musielak [26, Theorem 7.7 and Theorem 8.5].

Proposition 2.2. 
(i) Let 𝜑 ∈ 𝛷(𝛺). Then (𝐿𝜑(𝛺), ‖ ⋅ ‖𝜑

) is a Banach space.
(ii) Let 𝜑,𝜓 ∈ 𝛷(𝛺) be locally integrable with 𝜑 ≺ 𝜓 . Then

𝐿𝜓 (𝛺) ↪ 𝐿𝜑(𝛺).

The following proposition can be found in the books by Musielak [26, Theorem 8.13] and Diening–Harjulehto–Hästö–Růžička [25,
Lemma 2.1.14].

Proposition 2.3.  Let 𝜑 ∈ 𝛷(𝛺).

(i) If 𝜑 satisfy the 𝛥2-condition, then

𝐿𝜑(𝛺) =
{

𝑢 ∈𝑀(𝛺)∶ 𝜌𝜑(𝑢) < +∞
}

.

(ii) Furthermore, if 𝑢 ∈ 𝐿𝜑(𝛺), then 𝜌𝜑(𝑢) < 1 (resp.  = 1; >1) if and only if ‖𝑢‖𝜑 < 1 (resp.  = 1; >1).
Now we can state the definition of a 𝑁-function.

Definition 2.4.  A function 𝜑∶ [0,∞) → [0,∞) is called 𝑁-function if it is a 𝛷-function such that

lim
𝑡→0+

𝜑(𝑡)
𝑡

= 0 and lim
𝑡→∞

𝜑(𝑡)
𝑡

= ∞.

We call a function 𝜑∶𝛺×[0,∞) → [0,∞) a generalized 𝑁-function if 𝜑(⋅, 𝑡) is measurable for all 𝑡 ∈ [0,∞) and 𝜑(𝑥, ⋅) is a 𝑁-function 
for a.a.  𝑥 ∈ 𝛺. We denote the class of all generalized 𝑁-functions by 𝑁(𝛺).
4 
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Now, let 𝜑 ∈ 𝛷(𝛺). The corresponding Sobolev space 𝑊 1,𝜑(𝛺) is defined by
𝑊 1,𝜑(𝛺) ∶= {𝑢 ∈ 𝐿𝜑(𝛺)∶ |∇𝑢| ∈ 𝐿𝜑(𝛺)}

equipped with the norm
‖𝑢‖1,𝜑 = ‖𝑢‖𝜑 + ‖∇𝑢‖𝜑

where ‖∇𝑢‖𝜑 = ‖ |∇𝑢| ‖𝜑. If 𝜑 ∈ 𝑁(𝛺) is locally integrable, we denote by 𝑊 1,𝜑
0 (𝛺) the completion of 𝐶∞

0 (𝛺) in 𝑊 1,𝜑(𝛺).
The next theorem gives a criterion when the Sobolev spaces are Banach spaces and also reflexive. This result can be found in 

Musielak [26, Theorem 10.2] and Fan [28, Proposition 1.7 and 1.8].

Theorem 2.5.  Let 𝜑 ∈ 𝑁(𝛺) be locally integrable such that
inf
𝑥∈𝛺

𝜑(𝑥, 1) > 0.

Then the spaces 𝑊 1,𝜑(𝛺) and 𝑊 1,𝜑
0 (𝛺) are separable Banach spaces. Moreover, they are reflexive if 𝐿𝜑(𝛺) is reflexive.

Let us now consider the generalized 𝑁-function  satisfying hypotheses (H). First note, that from Lemma 2.3.16 in Chlebicka–
Gwiazda–Świerczewska-Gwiazda–Wróblewska-Kamińska [24], we know that  satisfies the 𝛥2-condition and so, by Proposition  2.3, 
the space 𝐿 (𝛺) can be given by

𝐿 (𝛺) =
{

𝑢 ∈𝑀(𝛺)∶ 𝜌 (𝑢) < +∞
}

with the associated modular 𝜌 (⋅). Also, Corollary 3.5.5 in [24] guarantees that 𝐿 (𝛺) is reflexive and so, by Theorem  2.5, the 
spaces 𝑊 1, (𝛺) and 𝑊 1,

0 (𝛺) are separable and reflexive. Note that (1.2) implies the validity of the Poincaré inequality, i.e., 

‖𝑢‖ ≤ 𝐶‖∇𝑢‖ for all 𝑢 ∈ 𝑊 1,
0 (𝛺). (2.1)

We refer to the proof of Proposition 2.18 in [1] which can be done for any generalized 𝑁-function in the same way. Using (2.1), 
we can equip the space 𝑊 1,

0 (𝛺) with the equivalent norm

‖𝑢‖ = ‖∇𝑢‖ for all 𝑢 ∈ 𝑊 1,
0 (𝛺).

Note that the requirement to suppose (1.2) is very general. Indeed, in Harjulehto–Hästö [4, see Chapter 6.3] or Cianchi–Diening [5, 
Theorem 3.7] one can find sufficient conditions for (1.2) to hold and one key assumption is condition (A1), which says the following:

∙ A generalized 𝑁-function 𝜑∶𝛺 × [0,∞) → [0,∞) satisfies (A1) if there exists 𝛽 ∈ (0, 1) such that
𝛽𝜑−1(𝑥, 𝑡) ≤ 𝜑−1(𝑦, 𝑡)

for every 𝑡 ∈ [1, 1
|𝐵| ], for a. a.  𝑥, 𝑦 ∈ 𝐵 ∩𝛺 and for every ball 𝐵 with |𝐵| ≤ 1.

We avoided to suppose conditions like (A1) because the embedding (1.2) is more general than assumption (A1). In fact, in [1–3] 
the validity of (1.2) for the logarithmic double phase operator, the double phase operator, and the double phase operator with 
logarithmic perturbation have been proved without condition (A1). For (A1) to be true for these operators we have to require that 
0 ≤ 𝜇(⋅) ∈ 𝐶0,1(𝛺) and 

𝑞
𝑝
< 1 + 1

𝑁
, (2.2)

see [2, Theorem 3.12], [1, Theorem 2.23], and [3, Proposition 2.27]. However, the compactness of (1.2) still holds when 0 ≤ 𝜇(⋅) ∈
𝐿∞(𝛺) without supposing (2.2), see [2, Proposition 3.9], [1, Proposition 2.18], and [3, Proposition 2.24].

Next, we introduce the following functions, useful to compare generalized 𝑁-functions with suitable power functions. To this 
end, for given −∞ < 𝛼 ≤ 𝛽 < +∞, we define 

𝑊 𝛽
𝛼(𝑡) ∶= min{𝑡𝛼 , 𝑡𝛽} and 𝑊

𝛽
𝛼(𝑡) ∶= max{𝑡𝛼 , 𝑡𝛽}. (2.3)

The next proposition summarizes the information carried by the so-called ‘indices’, i.e., the quantities appearing in (2.5) below. 
Although the result is well-known for 𝑁-functions, for the sake of completeness we will sketch its proof in a more general case, 
where no convexity of functions is required.

Proposition 2.6.  Let 𝐾 ∶ [0,+∞) → [0,+∞) be of class 𝐶2, strictly increasing, and such that 𝐾(0) = 0. Set 𝑘 ∶= 𝐾 ′ and suppose 
lim
𝑠→0+

𝑠𝑘(𝑠) = 0, (2.4)

as well as 

−∞ < 𝑖𝑘 ∶= inf
𝑠𝑘′(𝑠) ≤ sup

𝑠𝑘′(𝑠)
=∶ 𝑠𝑘 < +∞. (2.5)
𝑠>0 𝑘(𝑠) 𝑠>0 𝑘(𝑠)

5 
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Then 

𝑖𝑘 + 1 ≤ inf
𝑠>0

𝑠𝑘(𝑠)
𝐾(𝑠)

≤ sup
𝑠>0

𝑠𝑘(𝑠)
𝐾(𝑠)

≤ 𝑠𝑘 + 1. (2.6)

Moreover, 
𝑘(1)𝑊 𝑠𝑘

𝑖𝑘
(𝑠) ≤ 𝑘(𝑠) ≤ 𝑘(1)𝑊

𝑠𝑘
𝑖𝑘
(𝑠) (2.7)

and 
𝐾(1)𝑊 𝑠𝑘+1

𝑖𝑘+1
(𝑠) ≤ 𝐾(𝑠) ≤ 𝐾(1)𝑊

𝑠𝑘+1
𝑖𝑘+1

(𝑠) (2.8)

for all 𝑠 > 0.

Proof.  By (2.5) we have 

𝑖𝑘𝑘(𝑡) ≤ 𝑡𝑘′(𝑡) ≤ 𝑠𝑘𝑘(𝑡) for all 𝑡 > 0. (2.9)

Integrating by parts, along with 𝐾(0) = 0 and (2.4), yields 

𝑖𝑘𝐾(𝑠) ≤ 𝑠𝑘(𝑠) −𝐾(𝑠) ≤ 𝑠𝑘𝐾(𝑠) for all 𝑠 > 0, (2.10)

ensuring (2.6).
Taking any 𝑠 ≥ 1 and integrating (2.9) in [1, 𝑠] we infer

𝑖𝑘 ∫

𝑠

1

d𝑡
𝑡

≤ ∫

𝑠

1

𝑘′(𝑡)
𝑘(𝑡)

d𝑡 ≤ 𝑠𝑘 ∫

𝑠

1

d𝑡
𝑡
.

Recalling that 𝑘 > 0 because of the monotonicity of 𝐾, we deduce

log 𝑠𝑖𝑘 ≤ log
𝑘(𝑠)
𝑘(1)

≤ log 𝑠𝑠𝑘 ,

which implies (2.7) for 𝑠 ≥ 1. Now suppose 𝑠 ∈ (0, 1). Integrating (2.9) in [𝑠, 1] leads to

𝑖𝑘 ∫

1

𝑠

d𝑡
𝑡

≤ ∫

1

𝑠

𝑘′(𝑡)
𝑘(𝑡)

d𝑡 ≤ 𝑠𝑘 ∫

1

𝑠

d𝑡
𝑡
.

Thus, 

log 𝑠−𝑖𝑘 ≤ log
𝑘(1)
𝑘(𝑠)

≤ log 𝑠−𝑠𝑘 , (2.11)

which gives (2.7) for 𝑠 ∈ (0, 1). The proof of (2.8) is analogous, taking (2.10) into account. □

Remark 2.7.  It is worth noticing that (2.4) is automatically satisfied when 𝑖𝑘 > −1, due to (2.11). This is the case of the 𝑁-function 
𝐾 ∶= (𝑥, ⋅) (since (H)(iii) forces 𝑖𝑘 > 0) and of the singular term 𝑘 ∶= 𝑓 (see (H𝑓 )).

Adapting standard arguments for 𝑁-functions (see, e.g., Fukagai–Ito–Narukawa [29, Lemma 2.1]), it is readily seen that the 
following result holds true.

Proposition 2.8.  Let 𝛷 be a generalized 𝑁-function of class 𝐶1. Suppose that

𝑎 ∶= inf
(𝑥,𝑠)∈𝛺×(0,+∞)

𝑠𝜕𝑠𝛷(𝑥, 𝑠)
𝛷(𝑥, 𝑠)

> 1, 𝑏 ∶= sup
(𝑥,𝑠)∈𝛺×(0,+∞)

𝑠𝜕𝑠𝛷(𝑥, 𝑠)
𝛷(𝑥, 𝑠)

< +∞.

Then

𝑊 𝑏
𝑎(‖𝑢‖𝛷) ≤ ∫𝛺

𝛷(𝑥, |𝑢|) d𝑥 ≤ 𝑊
𝑏
𝑎(‖𝑢‖𝛷) for all 𝑢 ∈ 𝐿𝛷(𝛺).

Next, we are going to prove the properties of the operator.

Lemma 2.9.  Let (H) be satisfied. Then ∶𝑊 1,
0 (𝛺) → 𝑊 1,

0 (𝛺)∗ defined in (1.1) is a strictly monotone operator and fulfills the 
(S+)-property.

Proof.  The result is a consequence of Proposition 3.12 by Crespo-Blanco [30]. The only nontrivial condition to verify is
lim
𝑠→+∞

𝜕2𝑠𝑠(𝑥, 𝑐 + 𝑠)(𝑐 − 𝑠)2 = +∞ for all 𝑐 > 0.

To this aim, it suffices to prove that 
lim 𝑠2𝜕2 (𝑥, 𝑠) = +∞, (2.12)

𝑠→+∞ 𝑠𝑠
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since the change of variable 𝜏 = 𝑠 + 𝑐 yields

lim
𝑠→+∞

𝜕2𝑠𝑠(𝑥, 𝑐 + 𝑠)(𝑐 − 𝑠)2 = lim
𝜏→+∞

𝜏2𝜕2𝑠𝑠(𝑥, 𝜏)
( 𝜏 − 2𝑐

𝜏

)2
for all 𝑐 > 0.

Proposition  2.6 (applied with 𝑘 = 𝜕𝑠(𝑥, ⋅)), (H)(i), (H)(iii), and (2.8) entail

lim
𝑠→+∞

𝑠2𝜕2𝑠𝑠(𝑥, 𝑠) = lim
𝑠→+∞

𝑠𝜕2𝑠𝑠(𝑥, 𝑠)
𝜕𝑠(𝑥, 𝑠)

𝑠𝜕𝑠(𝑥, 𝑠) ≥ 𝑙−𝜕𝑠(𝑥, 1) lim
𝑠→+∞

𝑠𝑙−+1 = +∞,

ensuring (2.12). □

Next, we will make use of this simple real-analysis result.

Proposition 2.10.  Let 𝜑∶ (0,+∞) → R be a differentiable function such that
(i) lim sup

𝑡→0+
𝜑(𝑡) < 0 and lim sup

𝑡→+∞
𝜑(𝑡) < 0;

(ii) max
𝑡∈(0,+∞)

𝜑(𝑡) > 0;

(iii) each zero of 𝜑 is non-degenerate, i.e., 𝜑(𝑡) = 0 implies 𝜑′(𝑡) ≠ 0.

Then there exist 0 < 𝑡1 < 𝑡2 such that 𝜑(𝑡1) = 𝜑(𝑡2) = 0 and 𝜑′(𝑡1) > 0 > 𝜑′(𝑡2).

Proof.  Set
𝑡1 = inf{𝑡 > 0∶𝜑(𝑡) > 0} and 𝑡2 = sup{𝑡 > 0∶𝜑(𝑡) > 0}.

The sets are non-empty by hypothesis and since 𝜑 is continuous, we have 𝑡1 < 𝑡2. We will only reason for 𝑡1, the argument for 𝑡2 is 
analogous. By assumption we have 𝑡1 > 0, and by continuity of 𝜑 we infer 𝜑(𝑡1) ≥ 0. If 𝜑(𝑡1) > 0, then there exists 𝛿 > 0 such that 
𝜑(𝑡1 − 𝛿) > 0, contradicting the minimality of 𝑡1. Thus 𝜑(𝑡1) = 0 and so 𝜑′(𝑡1) ≠ 0 by the non-degeneracy hypothesis. Suppose by 
contradiction that 𝜑′(𝑡1) < 0. Then there exists 𝛿 > 0 such that 𝜑(𝑡1 − 𝛿) > 0, again in contradiction with the minimality of 𝑡1. Hence 
𝜑′(𝑡1) > 0. □

In order to define an energy functional associated with (P𝜆), we consider the following odd extensions of 𝑓 and 𝑔:

𝑓 (𝑠) ∶=

⎧

⎪

⎨

⎪

⎩

𝑓 (𝑠) if 𝑠 > 0,
0 if 𝑠 = 0,
−𝑓 (−𝑠) if 𝑠 < 0,

𝑔̃(𝑠) ∶=

⎧

⎪

⎨

⎪

⎩

𝑔(𝑠) if 𝑠 > 0,
0 if 𝑠 = 0,
−𝑔(−𝑠) if 𝑠 < 0.

For simplification, we still call this extensions as 𝑓 and 𝑔, respectively. We also introduce the functions 𝐹 ,𝐺∶R → R defined as

𝐹 (𝑠) ∶= ∫

𝑠

0
𝑓 (𝑡) d𝑡, 𝐺(𝑠) ∶= ∫

𝑠

0
𝑔(𝑡) d𝑡 for all 𝑠 ∈ R.

We set

𝑀(𝑠) = ∫

𝑠

0
𝑚(𝑡) d𝑡 for all 𝑠 ∈ R

and 

𝜃 ∶= sup
𝑠>0

𝑠𝑚(𝑠)
𝑀(𝑠)

, (2.13)

as well as

𝜙(𝜉) ∶= ∫𝛺
(𝑥, |𝜉|) d𝑥 for all 𝜉 ∈ 𝐿 (𝛺;R𝑁 ).

The energy functional 𝐽 ∶𝑊 1,
0 (𝛺) → R associated with (P𝜆) is

𝐽 (𝑢) ∶=𝑀(𝜙(∇𝑢)) − 𝜆∫𝛺
𝐹 (𝑢) d𝑥 − ∫𝛺

𝐺(𝑢) d𝑥 for all 𝑢 ∈ 𝑊 1,
0 (𝛺).

Due to the symmetries chosen in the construction of 𝐹  and 𝐺, we have 𝐽 (𝑢) = 𝐽 (|𝑢|) for all 𝑢 ∈ 𝑊 1,
0 (𝛺). Moreover, due to (H), 𝐽

turns out to be weakly sequentially lower semi-continuous.
For any 𝑢 ∈ 𝑊 1,

0 (𝛺) we define the fibering map 𝜓𝑢 ∶ (0,+∞) → R as

𝜓𝑢(𝑡) ∶= 𝐽 (𝑡𝑢) =𝑀(𝜙(𝑡∇𝑢)) − 𝜆∫𝛺
𝐹 (𝑡𝑢) d𝑥 − ∫𝛺

𝐺(𝑡𝑢) d𝑥 for all 𝑡 > 0.

Note that 𝐹  is even and 𝐹 (0) = 0, so

𝐹 (𝑡𝑢) d𝑥 = 𝐹 (𝑡𝑢) d𝑥 + 𝐹 (−𝑡𝑢) d𝑥
∫𝛺 ∫𝛺∩{𝑢>0} ∫𝛺∩{𝑢<0}
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for all 𝑡 > 0 and 𝑢 ∈ 𝑊 1,
0 (𝛺). Thus, exploiting (H𝑓 ), Proposition  2.6, and Lebesgue’s dominated converge theorem, besides recalling 

𝑓 (0) = 0, one has

𝜕𝑡

[

∫𝛺
𝐹 (𝑡𝑢) d𝑥

]

= ∫𝛺
𝑓 (𝑡𝑢)𝑢 d𝑥 for all 𝑡 > 0.

Taking into account the fact that 𝑠 ↦ 𝑓 (𝑠)𝑠 is even and vanishes at the origin, one can reason as above to obtain

𝜕2𝑡𝑡

[

∫𝛺
𝐹 (𝑡𝑢) d𝑥

]

= ∫𝛺
𝑓 ′(𝑡𝑢)𝑢2 d𝑥 for all 𝑡 > 0,

where we set 𝑓 ′(0) ∶= 0. Analogous arguments hold for 𝐺.
Accordingly,

𝜓 ′
𝑢(𝑡) = ⟨𝐽 ′(𝑡𝑢), 𝑢⟩𝑊 1,

0 (𝛺) = 𝑚(𝜙(𝑡∇𝑢))⟨𝜙′(𝑡∇𝑢),∇𝑢⟩𝐿 (𝛺;R𝑁 ) − 𝜆∫𝛺
𝑓 (𝑡𝑢)𝑢 d𝑥 − ∫𝛺

𝑔(𝑡𝑢)𝑢 d𝑥

and

𝜓 ′′
𝑢 (𝑡) = 𝑚′(𝜙(𝑡∇𝑢))⟨𝜙′(𝑡∇𝑢),∇𝑢⟩2

𝐿 (𝛺;R𝑁 ) + 𝑚(𝜙(𝑡∇𝑢))𝜙
′′(𝑡∇𝑢)(∇𝑢,∇𝑢) − 𝜆∫𝛺

𝑓 ′(𝑡𝑢)𝑢2 d𝑥 − ∫𝛺
𝑔′(𝑡𝑢)𝑢2 d𝑥,

where 𝜙′′(𝜉)(⋅, ⋅) represents the bilinear form on 𝐿 (𝛺;R𝑁 ) ×𝐿 (𝛺;R𝑁 ) induced by 𝜙′′(𝜉). Owing to (H), 𝜙′′(𝜉) is positive definite 
for all 𝜉 ∈ 𝐿 (𝛺;R𝑁 ). Notice that 

𝜓𝑢(𝑡) = 𝜓𝑡𝑢(1), 𝑡𝜓 ′
𝑢(𝑡) = 𝜓 ′

𝑡𝑢(1), and 𝑡2𝜓 ′′
𝑢 (𝑡) = 𝜓 ′′

𝑡𝑢(1) (2.14)

for all 𝑡 ∈ (0,+∞).

Remark 2.11.  Using hypotheses (H), Proposition  2.6, and Lebesgue’s dominated converge theorem, it is readily seen that the maps 
(𝑡, 𝑢) ↦ 𝜓𝑢(𝑡), (𝑡, 𝑢) ↦ 𝜓 ′

𝑢(𝑡), and (𝑡, 𝑢) ↦ 𝜓 ′′
𝑢 (𝑡) are continuous in (0,+∞) ×𝑊 1,

0 (𝛺).

The Nehari manifold   associated with 𝐽 is
 = {𝑢 ∈ 𝑊 1,

0 (𝛺) ⧵ {0}∶𝜓 ′
𝑢(1) = 0},

which can be divided in the following sets:
+ ∶= {𝑢 ∈  ∶𝜓 ′′

𝑢 (1) > 0},

 0 ∶= {𝑢 ∈  ∶𝜓 ′′
𝑢 (1) = 0},

− ∶= {𝑢 ∈  ∶𝜓 ′′
𝑢 (1) < 0}.

Due to the symmetry of 𝐽 , both 𝑢 ↦ 𝜓 ′
𝑢(1) and 𝑢 ↦ 𝜓 ′′

𝑢 (1) are even. Thus, if 𝑢 ∈   then |𝑢| ∈  , and the same holds for +, −, 
and  0. For any 𝑢 ∈ 𝑊 1,

0 (𝛺) ⧵ {0} we define
𝐸+
𝑢 ∶= {𝑡 ∈ (0,+∞)∶ 𝑡𝑢 ∈ +},

𝐸0
𝑢 ∶= {𝑡 ∈ (0,+∞)∶ 𝑡𝑢 ∈  0},

𝐸−
𝑢 ∶= {𝑡 ∈ (0,+∞)∶ 𝑡𝑢 ∈ −}.

We will say that 𝐸+
𝑢 < 𝐸

−
𝑢  if 𝑡+ < 𝑡− for all 𝑡± ∈ 𝐸±

𝑢 . Furthermore, for all 𝜉 ∈ 𝐿 (𝛺;R𝑁 ), we set
𝐴(𝜉) ∶= 𝑚(𝜙(𝜉))⟨𝜙′(𝜉), 𝜉⟩𝐿 (𝛺;R𝑁 ),

𝐵(𝜉) ∶= 𝑚′(𝜙(𝜉))⟨𝜙′(𝜉), 𝜉⟩2
𝐿 (𝛺;R𝑁 ) + 𝑚(𝜙(𝜉))𝜙

′′(𝜉)(𝜉, 𝜉),

which represent the principal parts of 𝜓 ′
𝑢(1) and 𝜓 ′′

𝑢 (1), respectively.
To simplify matters, we will omit the subscripts in the duality brackets when the context is clear. As usual, the generic constants 

𝑐, 𝐶 > 0 may change their value at each place.

3. Basic estimates

In this section we will discuss some basic estimates which are needed in the sequel. We start with the following lemma.

Lemma 3.1.  Suppose (H𝑚) and (H) to be satisfied. Then, for all 𝜉 ∈ 𝐿 (𝛺;R𝑁 ), the following hold:
(a1) 𝑝𝑀(𝜙(𝜉)) ≤ 𝐴(𝜉) ≤ 𝑞𝜃𝑀(𝜙(𝜉));

(a2) 𝑙−𝐴(𝜉) ≤ 𝐵(𝜉) ≤ (𝑞𝜂 + 𝑙+)𝐴(𝜉);

(a3) 𝑀(1)𝑊 𝑞𝜃
𝑝 (‖𝜉‖ ) ≤𝑀(𝜙(𝜉)) ≤𝑀(1)𝑊

𝑞𝜃
𝑝 (‖𝜉‖ ),

where 𝑊 𝑞𝜃 ,𝑊
𝑞𝜃 are as in (2.3), while 𝜃 is defined in (2.13).
𝑝 𝑝
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Proof.  We fix 𝜉 ∈ 𝐿 (𝛺;R𝑁 ). Reasoning as in the proof of (2.6), the monotonicity of 𝑚 gives 

inf
𝑠>0

𝑠𝑚(𝑠)
𝑀(𝑠)

≥ 1. (3.1)

Proposition  2.6, (H), and (2.13) yield 

𝑚(𝜙(𝜉))⟨𝜙′(𝜉), 𝜉⟩ = 𝑚(𝜙(𝜉))∫𝛺
𝜕𝑠(𝑥, |𝜉|)|𝜉| d𝑥 ≤ 𝑞𝑚(𝜙(𝜉))𝜙(𝜉) ≤ 𝑞𝜃𝑀(𝜙(𝜉)). (3.2)

Hence, using (H) and (3.1), 
𝑚(𝜙(𝜉))⟨𝜙′(𝜉), 𝜉⟩ ≥ 𝑝𝑚(𝜙(𝜉))𝜙(𝜉) ≥ 𝑝𝑀(𝜙(𝜉)). (3.3)

Putting together (3.2) and (3.3) yields (a1).
Reasoning as above, from (H) and (H𝑚) we infer 

𝑚′(𝜙(𝜉))⟨𝜙′(𝜉), 𝜉⟩ ≤ 𝑞𝑚′(𝜙(𝜉))𝜙(𝜉) ≤ 𝑞𝜂𝑚(𝜙(𝜉)), (3.4)

and 
𝜙′′(𝜉)(𝜉, 𝜉) = ∫𝛺

𝜕2𝑠𝑠(𝑥, |𝜉|)|𝜉|2 d𝑥 ≤ 𝑙+ ∫𝛺
𝜕𝑠(𝑥, |𝜉|)|𝜉| d𝑥 = 𝑙+⟨𝜙

′(𝜉), 𝜉⟩. (3.5)

Summing (3.4) multiplied by ⟨𝜙′(𝜉), 𝜉⟩ with (3.5) multiplied by 𝑚(𝜙(𝜉)) yields
𝐵(𝜉) ≤ (𝑞𝜂 + 𝑙+)𝐴(𝜉).

On the other hand, arguing as in (3.5),
𝐵(𝜉) ≥ 𝑚(𝜙(𝜉))𝜙′′(𝜉)(𝜉, 𝜉) ≥ 𝑙−𝑚(𝜙(𝜉))⟨𝜙′(𝜉), 𝜉⟩ = 𝑙−𝐴(𝜉),

which concludes the proof of (a2).
Let us show (a3). According to Proposition  2.8 and (H) we have 

𝑊 𝑞
𝑝(‖𝜉‖ ) ≤ 𝜙(𝜉) ≤ 𝑊

𝑞
𝑝(‖𝜉‖ ), (3.6)

while Proposition  2.6, (H𝑚), and (3.1) ensure 

𝑀(1)𝑊 𝜃
1(𝑠) ≤𝑀(𝑠) ≤𝑀(1)𝑊

𝜃
1(𝑠) for all 𝑠 > 0. (3.7)

Thus, (3.6) and (3.7) together lead to

𝑀(𝜙(𝜉)) ≤𝑀(1)𝑊
𝜃
1(𝜙(𝜉)) ≤𝑀(1)𝑊

𝜃
1(𝑊

𝑞
𝑝(‖𝜉‖ )) =𝑀(1)𝑊

𝑞𝜃
𝑝 (‖𝜉‖ )

and

𝑀(𝜙(𝜉)) ≥𝑀(1)𝑊 𝜃
1(𝜙(𝜉)) ≥𝑀(1)𝑊 𝜃

1(𝑊
𝑞
𝑝(‖𝜉‖ )) =𝑀(1)𝑊 𝑞𝜃

𝑝 (‖𝜉‖ ),

which gives (a3). □

Note that the estimates contained in Lemma  3.1 will allow us to have controls of type

𝐵(𝜉) ≃ 𝐴(𝜉) ≃𝑀(𝜙(𝜉)), 𝑊 𝑞𝜃
𝑝 (‖𝜉‖ ) ≲ 𝑀(𝜙(𝜉)) ≲ 𝑊

𝑞𝜃
𝑝 (‖𝜉‖ ),

with 𝑊 𝑞𝜃
𝑝 ,𝑊

𝑞𝜃
𝑝  as in (2.3).

Lemma 3.2.  Under the hypotheses (H), for all 𝑢 ∈ 𝑊 1,
0 (𝛺) one has

(b1) ∫𝛺
𝐹 (𝑢) d𝑥 ≤ 𝐶𝑊

1−𝛾−
1−𝛾+

(‖∇𝑢‖ ),

(b2) 𝑐𝑊
𝑟+
𝑟− (‖𝑢‖ ) ≤ ∫𝛺

𝐺(𝑢) d𝑥 ≤ 𝐶𝑊
𝑟+
𝑟−
(‖∇𝑢‖ ),

for some 𝑐, 𝐶 > 0 independent of 𝑢.

Proof.  Fix any 𝑢 ∈ 𝑊 1,
0 (𝛺). Exploiting Proposition  2.6 and (H𝑓 ) we have

𝑖𝐹 ∶= inf
𝑠>0

𝑠𝑓 (𝑠)
𝐹 (𝑠)

≥ 1 − 𝛾+ > 0, 𝑠𝐹 ∶= sup
𝑠>0

𝑠𝑓 (𝑠)
𝐹 (𝑠)

≤ 1 − 𝛾− < 𝑝.

Thus, using Proposition  2.6 again, besides Hölder’s inequality and 𝑊 1,
0 (𝛺) ↪ 𝐿 (𝛺) ↪ 𝐿𝑝(𝛺) (see (H) and Proposition  2.2), we 

get

𝐹 (𝑢) d𝑥 ≤ 𝐶
(

𝑢𝑠𝐹 d𝑥 + 𝑢𝑖𝐹 d𝑥
)

≤ 𝐶(‖𝑢‖𝑠𝐹𝑝 + ‖𝑢‖𝑖𝐹𝑝 ) ≤ 𝐶(‖∇𝑢‖𝑠𝐹 + ‖∇𝑢‖𝑖𝐹 ) ≤ 𝐶𝑊
𝑠𝐹
𝑖 (‖∇𝑢‖ ) ≤ 𝐶𝑊

1−𝛾−
1−𝛾 (‖∇𝑢‖ ),
∫𝛺 ∫{𝑢≥1} ∫{𝑢<1} 𝐹 +
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for a suitable 𝐶 > 0 changing at each place. Hence (b1) is established.
In order to show (b2), observe that Proposition  2.6 and (H𝑔) entail

𝑖𝐺 ∶= inf
𝑠>0

𝑠𝑔(𝑠)
𝐺(𝑠)

≥ 𝑟− > 1, 𝑠𝐺 ∶= sup
𝑠>0

𝑠𝑔(𝑠)
𝐺(𝑠)

≤ 𝑟+ < 𝑝
∗.

In particular, 𝐺 is a generalized 𝑁-function satisfying the hypotheses of Proposition  2.8. Moreover, owing to (3.1), one has 𝜃 ≥ 1. 
Then (H𝐶 ) and Proposition  2.6 yield 

𝑟− > 𝑞𝜂 + 𝑙+ + 1 ≥ 𝑞(𝜂 + 1) ≥ 𝑞𝜃 ≥ 𝑞 ≥ 𝑝. (3.8)

Since 𝑝 ≤ 𝑞 < 𝑟− ≤ 𝑟+ < 𝑝∗, by Sobolev’s embedding and Proposition  2.2 one has 𝑊 1,
0 (𝛺) ↪ 𝑊 1,𝑝

0 (𝛺) ↪ 𝐿𝑝∗ (𝛺) ↪ 𝐿𝐺(𝛺) ↪ 𝐿 (𝛺). 
Thus, Proposition  2.8 ensures

∫𝛺
𝐺(𝑢) d𝑥 ≤ 𝑊

𝑟+
𝑟−
(‖𝑢‖𝐺) ≤ 𝐶𝑊

𝑟+
𝑟−
(‖∇𝑢‖ ).

Analogously,

∫𝛺
𝐺(𝑢) d𝑥 ≥ 𝑊 𝑟+

𝑟− (‖𝑢‖𝐺) ≥ 𝑐𝑊 𝑟+
𝑟− (‖𝑢‖ ).

establishing (b2). □

4. Analysis of the Nehari manifold

In this section we study the Nehari manifold and its properties.

Lemma 4.1.  Let hypotheses (H) be satisfied. Then 𝐽 |  is coercive.

Proof.  Let {𝑢𝑛}𝑛∈N ⊆  be such that ‖𝑢𝑛‖ → ∞. By definition of   we have 

∫𝛺
𝑔(𝑢𝑛)𝑢𝑛 d𝑥 = 𝑚(𝜙(∇𝑢𝑛))⟨𝜙′(∇𝑢𝑛),∇𝑢𝑛⟩ − 𝜆∫𝛺

𝑓 (𝑢𝑛)𝑢𝑛 d𝑥 (4.1)

for all 𝑛 ∈ N. Thus Proposition  2.6, (H𝑔), (4.1), and Lemmas  3.1 as well as 3.2 imply that, whenever ‖∇𝑢𝑛‖ is sufficiently large,

𝐽 (𝑢𝑛) =𝑀(𝜙(∇𝑢𝑛)) − 𝜆∫𝛺
𝐹 (𝑢𝑛) d𝑥 − ∫𝛺

(

𝑔(𝑢𝑛)𝑢𝑛
𝐺(𝑢𝑛)

)−1
𝑔(𝑢𝑛)𝑢𝑛 d𝑥

≥𝑀(𝜙(∇𝑢𝑛)) − 𝜆∫𝛺
𝐹 (𝑢𝑛) d𝑥 −

1
𝑟− ∫𝛺

𝑔(𝑢𝑛)𝑢𝑛 d𝑥

=𝑀(𝜙(∇𝑢𝑛)) −
1
𝑟−
𝑚(𝜙(∇𝑢𝑛))⟨𝜙′(∇𝑢𝑛),∇𝑢𝑛⟩ − 𝜆

[

∫𝛺
𝐹 (𝑢𝑛) d𝑥 −

1
𝑟− ∫𝛺

𝑓 (𝑢𝑛)𝑢𝑛 d𝑥
]

≥
(

1 −
𝑞𝜃
𝑟−

)

𝑀(𝜙(∇𝑢𝑛)) − 𝜆∫𝛺
𝐹 (𝑢𝑛) d𝑥 ≥ 𝑐‖∇𝑢𝑛‖

𝑝
 − 𝜆𝐶‖∇𝑢𝑛‖

1−𝛾−
 ,

with 𝑐, 𝐶 > 0, where we also used that 𝑟− > 𝑞𝜃, owing to (3.8). Recalling 1 − 𝛾− < 𝑝 yields 𝐽 (𝑢𝑛) → +∞. □

Lemma 4.2.  Let hypotheses (H) be satisfied. Then there exist 𝐷1 = 𝐷1(𝜆) > 0 and 𝐷2 > 0 such that 

‖𝑢+‖ ≤ 𝐷1 and ‖𝑢−‖ ≥ 𝐷2 (4.2)

for all 𝑢+ ∈ + ∪ 0 and for all 𝑢− ∈ − ∪ 0. Moreover, 
lim
𝜆→0+

𝐷1(𝜆) = 0, (4.3)

so there exists 𝛬1 > 0 such that 𝐷1 < 𝐷2 and  0 = ∅ for any 𝜆 ∈ (0, 𝛬1).

Proof.  We take 𝑢+ ∈ + ∪ 0 and 𝑢− ∈ − ∪ 0. Then, by the definitions of  , ±, and  0, one has 

𝐴(∇𝑢±) = 𝜆∫𝛺
𝑓 (𝑢±)𝑢± d𝑥 + ∫𝛺

𝑔(𝑢±)𝑢± d𝑥, (4.4)

as well as 

𝐵(∇𝑢+) ≥ 𝜆∫𝛺
𝑓 ′(𝑢+)(𝑢+)2 d𝑥 + ∫𝛺

𝑔′(𝑢+)(𝑢+)2 d𝑥 (4.5)

and 

𝐵(∇𝑢−) ≤ 𝜆∫ 𝑓 ′(𝑢−)(𝑢−)2 d𝑥 + ∫ 𝑔′(𝑢−)(𝑢−)2 d𝑥. (4.6)

𝛺 𝛺
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Let us reason for 𝑢+. According to (H𝑔), along with (4.4) and (4.5), we get

(𝑟− − 1)𝐴(∇𝑢+) − 𝐵(∇𝑢+) ≤ 𝜆∫𝛺
𝑓 (𝑢+)𝑢+

(

𝑟− − 1 −
𝑓 ′(𝑢+)𝑢+

𝑓 (𝑢+)

)

d𝑥 + ∫𝛺
𝑔(𝑢+)𝑢+

(

𝑟− − 1 −
𝑔′(𝑢+)𝑢+

𝑔(𝑢+)

)

d𝑥

≤ 𝜆∫𝛺
𝑓 (𝑢+)𝑢+

(

𝑟− − 1 −
𝑓 ′(𝑢+)𝑢+

𝑓 (𝑢+)

)

d𝑥.

Thus, owing to Lemma  3.1, (H𝑓 ), (3.8), Proposition  2.6, and Lemma  3.2, we have

𝑐𝑊 𝑞𝜃
𝑝 (‖∇𝑢+‖ ) ≤ (𝑟− − 1 − 𝑞𝜂 − 𝑙+)𝐴(∇𝑢+) ≤ (𝑟− − 1)𝐴(∇𝑢+) − 𝐵(∇𝑢+) ≤ 𝜆∫𝛺

𝑓 (𝑢+)𝑢+
(

𝑟− − 1 −
𝑓 ′(𝑢+)𝑢+

𝑓 (𝑢+)

)

d𝑥

≤ 𝜆(𝑟− − 1 + 𝛾+)∫𝛺
𝑓 (𝑢+)𝑢+ d𝑥 ≤ 𝜆(𝑟− − 1 + 𝛾+)(1 − 𝛾−)∫𝛺

𝐹 (𝑢+) d𝑥 ≤ 𝜆𝐶𝑊
1−𝛾−
1−𝛾+

(‖∇𝑢+‖ ),

for suitable 𝑐, 𝐶 > 0. Since 1 − 𝛾− < 𝑝, {∇𝑢+} is bounded in 𝐿 (𝛺), whence {𝑢+} is bounded in 𝑊 1, (𝛺). Moreover, ‖𝑢+‖ → 0 as 
𝜆→ 0, ensuring (4.3).

Now we focus on 𝑢−, reasoning as above. Hypothesis (H𝑓 ), besides (4.4) and (4.6), yields

𝛾−𝐴(∇𝑢−) + 𝐵(∇𝑢−) ≤ 𝜆∫𝛺
𝑓 (𝑢−)𝑢−

(

𝛾− +
𝑓 ′(𝑢−)𝑢−

𝑓 (𝑢−)

)

d𝑥 + ∫𝛺
𝑔(𝑢−)𝑢−

(

𝛾− +
𝑔′(𝑢−)𝑢−

𝑔(𝑢−)

)

d𝑥

≤ ∫𝛺
𝑔(𝑢−)𝑢−

(

𝛾− +
𝑔′(𝑢−)𝑢−

𝑔(𝑢−)

)

d𝑥.

Exploiting Lemma  3.1, (H𝑔), (3.8), Proposition  2.6, and Lemma  3.2, we deduce

𝑐𝑊 𝑞𝜃
𝑝 (‖∇𝑢−‖ ) ≤ 𝛾−𝐴(∇𝑢−) ≤ 𝛾−𝐴(∇𝑢−) + 𝐵(∇𝑢−) ≤ ∫𝛺

𝑔(𝑢−)𝑢−
(

𝛾− +
𝑔′(𝑢−)𝑢−

𝑔(𝑢−)

)

d𝑥

≤ (𝑟+ − 1 + 𝛾−)∫𝛺
𝑔(𝑢−)𝑢− d𝑥 ≤ (𝑟+ − 1 + 𝛾−)𝑟+ ∫𝛺

𝐺(𝑢−) d𝑥 ≤ 𝐶𝑊
𝑟+
𝑟−
(‖∇𝑢−‖ ).

Since 𝑞𝜃 < 𝑟− by (3.8), there exists a positive lower bound for ‖∇𝑢−‖ , namely ‖𝑢−‖. Hence, (4.2) is established.
To conclude, observe that (4.3) provides 𝛬1 > 0 such that 𝐷1 < 𝐷2 for all 𝜆 ∈ (0, 𝛬1), with 𝐷1, 𝐷2 as in (4.2). Let 𝜆 ∈ (0, 𝛬1). If, 

by contradiction, there exists 𝑢 ∈  0, then applying (4.2) with 𝑢+ = 𝑢− = 𝑢 entails ‖𝑢‖ < 𝐷1 < 𝐷2 < ‖𝑢‖, which is a contradiction. 
Accordingly,  0 = ∅ for all 𝜆 ∈ (0, 𝛬1). □

Lemma 4.3.  Let hypotheses (H) be satisfied. Then there exists 𝛬2 > 0 such that for all 𝜆 ∈ (0, 𝛬2) the following statement holds true: for 
any 𝑢 ∈ 𝑊 1,

0 (𝛺) ⧵ {0} there exist unique 0 < 𝑡+𝑢 < 𝑡−𝑢  such that 𝑡+𝑢 𝑢 ∈ + and 𝑡−𝑢 𝑢 ∈ −.

Proof.  Fix any 𝑢 ∈ 𝑊 1,
0 (𝛺)⧵{0}. We are going to apply Proposition  2.10 to the function 𝜓 ′

𝑢. To this end, using Lebesgue’s dominated 
convergence theorem and Fatou’s lemma, along with (H𝑚), (H), (H𝑔), (H𝑓 ), and the symmetry of 𝑓 , ensures

lim sup
𝑡→0+

𝜓 ′
𝑢(𝑡) = lim

𝑡→0+

[

𝑚(𝜙(𝑡∇𝑢))⟨𝜙′(𝑡∇𝑢),∇𝑢⟩ − ∫𝛺
𝑔(𝑡𝑢)𝑢 d𝑥

]

− 𝜆 lim inf
𝑡→0+ ∫𝛺

𝑓 (𝑡𝑢)𝑢 d𝑥

= −𝜆 lim inf
𝑡→0+ ∫𝛺

𝑓 (𝑡|𝑢|)|𝑢| d𝑥 ≤ −𝜆
(

lim inf
𝑡→0+

𝑓 (𝑡)
)

∫𝛺
|𝑢| d𝑥 < 0.

Exploiting (H𝑔), Proposition  2.6, and Lemmas  3.1 as well as 3.2 we get, for all 𝑡 sufficiently large,

𝐴(𝑡∇𝑢) − ∫𝛺
𝑔(𝑡𝑢)𝑡𝑢 d𝑥 ≤ 𝐴(𝑡∇𝑢) − 𝑟− ∫𝛺

𝐺(𝑡𝑢) d𝑥 ≤ 𝐶(𝑡‖∇𝑢‖ )𝑞𝜃 − 𝑐(𝑡‖𝑢‖ )𝑟−,

for some 𝑐, 𝐶 > 0. Hence, recalling (2.14) and 𝑞𝜃 < 𝑟− (see (3.8)),

lim sup
𝑡→+∞

𝜓 ′
𝑢(𝑡) = lim sup

𝑡→+∞

1
𝑡
𝜓 ′
𝑡𝑢(1) ≤ lim sup

𝑡→+∞

1
𝑡

[

𝐴(𝑡∇𝑢) − ∫𝛺
𝑔(𝑡𝑢)𝑡𝑢 d𝑥

]

≤ lim sup
𝑡→+∞

[

𝐶𝑡𝑞𝜃−1‖∇𝑢‖𝑞𝜃 − 𝑐𝑡𝑟−−1‖𝑢‖𝑟−
]

= −∞.

Reasoning as above, (2.14), (H𝑓 ), (H𝑔), Proposition  2.6, and Lemmas  3.1–3.2 imply 

𝑡𝜓 ′
𝑢(𝑡) = 𝜓 ′

𝑡𝑢(1) ≥ 𝑐𝑊 𝑞𝜃
𝑝 (𝑡‖∇𝑢‖ ) − 𝐶

[

𝜆𝑊
1−𝛾−
1−𝛾+

(𝑡‖∇𝑢‖ ) +𝑊
𝑟+
𝑟−
(𝑡‖∇𝑢‖ )

]

(4.7)

for all 𝑡 > 0 and opportune 𝑐, 𝐶 > 0. In order to have max𝑡>0 𝜓 ′
𝑢(𝑡) > 0, from (4.7) it suffices that

𝜆 <
𝑐𝑊 𝑞𝜃

𝑝 (𝑡‖∇𝑢‖ ) − 𝐶𝑊
𝑟+
𝑟−
(𝑡‖∇𝑢‖ )

𝐶𝑊
1−𝛾−
1−𝛾+

(𝑡‖∇𝑢‖ )
for some 𝑡 = 𝑡(𝑢) > 0.

To this aim we choose 𝑡 ∶= 𝜌
‖∇𝑢‖

 with 𝜌 ∈ (0, 1) such that

𝛬̂ ∶=
𝑐𝜌𝑞𝜃 − 𝐶𝜌𝑟−

> 0.

𝐶𝜌1−𝛾+
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This choice is possible since 𝑞𝜃 < 𝑟−. In particular, max𝑡>0 𝜓 ′
𝑢(𝑡) > 0 whenever 𝜆 < 𝛬̂. Moreover, note that 𝑡 depends on 𝑢, but 𝛬̂ does 

not.
Set 𝛬2 ∶= min{𝛬1, 𝛬̂}. Assuming 𝜆 < 𝛬2, Lemma  4.2 ensures  0 = ∅, so that each zero of 𝜓 ′

𝑢 is not a zero of 𝜓 ′′
𝑢 . Indeed, if 

𝑡 ∈ (0,+∞) is a zero of 𝜓 ′
𝑢, then (2.14) yields

𝜓 ′
𝑡𝑢(1) = 𝑡𝜓 ′

𝑢(𝑡) = 0 and 𝜓 ′′
𝑢 (𝑡) =

𝜓 ′′
𝑡𝑢(1)
𝑡2

≠ 0.

Hence Proposition  2.10 provides 0 < 𝑡+𝑢 < 𝑡−𝑢  such that 𝑡±𝑢 𝑢 ∈ ±.
Next we show the uniqueness. The argument above ensures that the sets 𝐸±

𝑢  are non-empty. We show that 𝐸+
𝑢 < 𝐸−

𝑢 . By 
contradiction suppose that there exist 𝑡− ≤ 𝑡+ such that 𝑡± ∈ 𝐸±

𝑢 . Then, by Lemma  4.2,
𝐷2 ≤ 𝑡−‖𝑢‖ ≤ 𝑡+‖𝑢‖ ≤ 𝐷1,

contradicting 𝐷1 < 𝐷2, which holds for all 𝜆 < 𝛬1.
Now we prove that 𝐸+

𝑢  is a singleton. An analogous argument guarantees the same property for 𝐸−
𝑢 . By contradiction, let 

𝑡+1 , 𝑡
+
2 ∈ 𝐸+

𝑢  fulfill 𝑡+1 < 𝑡+2 . Then there exists 𝛿 ∈ (0, 12 (𝑡
+
2 − 𝑡+1 )) such that 𝜓 ′

𝑢(𝑡
+
1 + 𝛿) > 0 > 𝜓 ′

𝑢(𝑡
+
2 − 𝛿). By Bolzano’s theorem there exists 

𝑡0 ∈ (𝑡+1 , 𝑡
+
2 ) such that 𝑡0𝑢 ∈  . Consider

𝑡 = sup
{

𝑡 ∈ (𝑡+1 + 𝛿, 𝑡+2 − 𝛿)∶ 𝑡𝑢 ∈ 
}

.

By continuity of 𝜓 ′
𝑢 we deduce that 𝑡𝑢 ∈  , so 𝑡 ∈ 𝐸+

𝑢 ∪𝐸
−
𝑢 ∪𝐸

0
𝑢 . Since  0 = ∅ one has 𝑡 ∉ 𝐸0

𝑢 . On the other hand, again by Bolzano’s 
theorem, 𝑡 ∈ 𝐸+

𝑢  would contradict the maximality of 𝑡. Hence 𝑡 ∈ 𝐸−
𝑢 . Since 𝑡 < 𝑡+2 , we get a contradiction with 𝐸+

𝑢 < 𝐸
−
𝑢 . We deduce 

𝐸+
𝑢 = {𝑡+1 }. □

Lemma 4.4.  Let hypotheses (H) be satisfied and 𝛬2 be as in Lemma  4.3. Then 𝐽 (𝑢) < 0 for all 𝑢 ∈ + provided 𝜆 < 𝛬2. Moreover, there 
exists 𝛬3 > 0 such that for all 𝜆 ∈ (0, 𝛬3) the following assertion is true: there exists 𝜎 > 0 such that 𝐽 (𝑣) ≥ 𝜎 for all 𝑣 ∈ −.

Proof.  Suppose 𝜆 < 𝛬2, where 𝛬2 is from Lemma  4.3. Pick any 𝑢 ∈ +. Owing to Lemma  4.3, one has 𝜓 ′
𝑢(𝑡) < 0 for all 𝑡 ∈ (0, 1). 

Indeed, 𝜓 ′
𝑢(𝑡) < 0 near 𝑡 = 0 and, if 𝜓 ′

𝑢(𝑡) = 0 for some 𝑡 ∈ (0, 1), then 𝑡 ∉ 𝐸+
𝑢 ∪𝐸−

𝑢 ∪𝐸0
𝑢 , according to the fact that 𝐸+

𝑢 = {1}, 𝐸+
𝑢 < 𝐸

−
𝑢 , 

and 𝐸0
𝑢 = ∅, respectively. Hence
𝐽 (𝑢) = 𝜓𝑢(1) < 𝜓𝑢(0) = 𝐽 (0) = 0.

Now consider an arbitrary 𝑣 ∈ −. Reasoning as in (4.7) we get

𝐽 (𝑡𝑣) = 𝜓𝑡𝑣(1) ≥ 𝑐𝑊 𝑞𝜃
𝑝 (𝑡‖∇𝑣‖ ) − 𝐶

[

𝜆𝑊
1−𝛾−
1−𝛾+

(𝑡‖∇𝑣‖ ) +𝑊
𝑟+
𝑟−
(𝑡‖∇𝑣‖ )

]

for all 𝑡 > 0 with some 𝑐, 𝐶 > 0. We take 𝜌 ∈ (0, 1) such that 𝑐𝜌𝑞𝜃 − 𝐶𝜌𝑟− > 0, which is possible since 𝑞𝜃 < 𝑟− (see (3.8)). Then there 
exists 𝜎 > 0 such that

𝛬̌ ∶=
𝑐𝜌𝑞𝜃 − 𝐶𝜌𝑟− − 𝜎

𝐶𝜌1−𝛾+
> 0.

Thus, choosing 𝑡 ∶= 𝜌
‖∇𝑣‖

, for all 𝜆 < 𝛬̌ one has 𝐽 (𝑡𝑣) ≥ 𝜎. Notice that 𝜎 is independent of 𝑢. Since 𝜆 < 𝛬2, Lemma  4.3 ensures that 
𝜓𝑣 has a unique global maximizer at 𝑡 = 1. Hence

𝐽 (𝑣) ≥ 𝐽 (𝑡𝑣) ≥ 𝜎 > 0

whenever 𝜆 < 𝛬3 ∶= min{𝛬2, 𝛬̌}. □

5. Proof of the main result

We set 𝛬 ∶= min{𝛬1, 𝛬2, 𝛬3} with 𝛬𝑖, 𝑖 = 1, 2, 3, defined in the Lemmas  4.2, 4.3, and 4.4, respectively.

Proposition 5.1.  Let hypotheses (H) be satisfied and let 𝜆 ∈ (0, 𝛬). Then there exists 𝑢 ∈ + such that 𝑢 ≥ 0 a.e. in 𝛺 and
𝐽 (𝑢) = min

+
𝐽 .

Proof.  Let {𝑢𝑛}𝑛∈N be a minimizing sequence of 𝐽 |+ . The coercivity of 𝐽 |+  (see Lemma  4.1) forces 𝑢𝑛 ⇀ 𝑢 for some 𝑢 ∈ 𝑊 1,
0 (𝛺), 

passing to a sub-sequence if necessary. We may assume also 𝑢𝑛 → 𝑢 in 𝐿𝜅 (𝛺) for all 𝜅 ∈ (1, 𝑝∗). The weak sequential lower semi-
continuity of 𝐽 , along with Lemma  4.4, implies 𝐽 (𝑢) ≤ inf+ 𝐽 < 0 and so 𝑢 ≠ 0. Owing to Lemma  4.3, there exists a unique 𝑡 > 0
such that 𝑡𝑢 ∈ +. It remains to prove that 𝑢 ∈ +.

Reasoning as in the first part of the proof of Lemma  4.4, 𝜓𝑢 is strictly decreasing in (0, 𝑡).
We claim that 𝑢𝑛 → 𝑢 in 𝑊 1,

0 (𝛺), up to sub-sequences. The claim is equivalent to 𝑡𝑢𝑛 → 𝑡𝑢 in 𝑊 1,
0 (𝛺). We argue by contradiction, 

assuming that {𝑡𝑢𝑛}𝑛∈N does not converge to 𝑡𝑢. We have
lim sup𝜙(𝑡𝑢𝑛) > 𝜙(𝑡𝑢),

𝑛→∞
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since the opposite inequality entails 𝑡𝑢𝑛 → 𝑡𝑢 by the uniform convexity of 𝑊 1,
0 (𝛺). Moreover, according to the convexity of (𝑥, ⋅)

for a.a.  𝑥 ∈ 𝛺, we get

0 ≤ lim inf
𝑛→∞

⟨𝜙′(𝑡∇𝑢𝑛) − 𝜙′(𝑡∇𝑢),∇𝑢𝑛 − ∇𝑢⟩ = lim inf
𝑛→∞

⟨𝜙′(𝑡∇𝑢𝑛),∇𝑢𝑛⟩ − ⟨𝜙′(𝑡∇𝑢),∇𝑢⟩.

We deduce

lim sup
𝑛→∞

⟨𝜙′(𝑡∇𝑢𝑛),∇𝑢𝑛⟩ > ⟨𝜙′(𝑡∇𝑢),∇𝑢⟩.

Indeed, if ⟨𝜙′(𝑡∇𝑢𝑛),∇𝑢𝑛⟩ → ⟨𝜙′(𝑡∇𝑢),∇𝑢⟩, then the weak-weak continuity of ∶𝑊 1,
0 (𝛺) → 𝑊 1,

0 (𝛺)∗ yields

lim sup
𝑛→∞

⟨(𝑡𝑢𝑛), 𝑡𝑢𝑛 − 𝑡𝑢⟩ = lim sup
𝑛→∞

⟨(𝑡𝑢𝑛), 𝑡𝑢𝑛⟩ − ⟨(𝑡𝑢), 𝑡𝑢⟩ = 𝑡
[

lim
𝑛→∞

⟨𝜙′(𝑡∇𝑢𝑛),∇𝑢𝑛⟩ − ⟨𝜙′(𝑡∇𝑢),∇𝑢⟩
]

= 0,

which forces 𝑡𝑢𝑛 → 𝑡𝑢 due to the (S+)-property of , ensured by Lemma  2.9. Hence, passing to a sub-sequence, we can assume 

lim
𝑛→∞

⟨𝜙′(𝑡∇𝑢𝑛),∇𝑢𝑛⟩ > ⟨𝜙′(𝑡∇𝑢),∇𝑢⟩ and lim
𝑛→∞

𝜙(𝑡𝑢𝑛) > 𝜙(𝑡𝑢). (5.1)

Exploiting Lebesgue’s dominated convergence theorem, the monotonicity of 𝑚, and (5.1), we infer 

lim inf
𝑛→∞

𝜓 ′
𝑢𝑛
(𝑡) = lim inf

𝑛→∞

[

𝑚(𝜙(𝑡∇𝑢𝑛))⟨𝜙′(𝑡∇𝑢𝑛),∇𝑢𝑛⟩ − ∫𝛺
𝑓 (𝑡𝑢𝑛)𝑢𝑛 d𝑥 − ∫𝛺

𝑔(𝑡𝑢𝑛)𝑢𝑛 d𝑥
]

= lim inf
𝑛→∞

[

𝑚(𝜙(𝑡∇𝑢𝑛))⟨𝜙′(𝑡∇𝑢𝑛),∇𝑢𝑛⟩
]

− ∫𝛺
𝑓 (𝑡𝑢)𝑢 d𝑥 − ∫𝛺

𝑔(𝑡𝑢)𝑢 d𝑥

> 𝑚(𝜙(𝑡∇𝑢))⟨𝜙′(𝑡∇𝑢),∇𝑢⟩ − ∫𝛺
𝑓 (𝑡𝑢)𝑢 d𝑥 − ∫𝛺

𝑔(𝑡𝑢)𝑢 d𝑥 = 𝜓 ′
𝑢(𝑡) = 0,

(5.2)

which forces 𝑡 > 1. Indeed 𝜓 ′
𝑢𝑛
(1) = 0. Reasoning as in the first part of Lemma  4.4, from 𝐸+

𝑢 = {𝑡} and 𝐸+
𝑢𝑛

= {1} we deduce 𝜓 ′
𝑢 < 0

in (0, 𝑡) and 𝜓 ′
𝑢𝑛
< 0 in (0, 1). Hence, exploiting also the weak sequential lower semi-continuity of 𝐽 yields

inf
+

𝐽 ≤ 𝐽 (𝑡𝑢) = 𝜓𝑢(𝑡) < 𝜓𝑢(1) = 𝐽 (𝑢) ≤ lim inf
𝑛→∞

𝐽 (𝑢𝑛) = inf
+

𝐽 ,

which is a contradiction. This establishes 𝑢𝑛 → 𝑢 in 𝑊 1,
0 (𝛺) up to sub-sequences, as claimed.

Letting 𝑛 → ∞ in both 𝜓 ′
𝑢𝑛
(1) = 0 and 𝜓 ′′

𝑢𝑛
(1) > 0, besides recalling Remark  2.11, we get 𝑢 ∈ + ∪  0. Taking into account 

Lemma  4.2, we deduce 𝑢 ∈ +. By the symmetry of 𝐽 and +, one can replace 𝑢 with |𝑢|, so that it is possible to assume 𝑢 ≥ 0
a.e. in 𝛺. □

Proposition 5.2.  Let hypotheses (H) be satisfied and let 𝜆 ∈ (0, 𝛬). Then there exists 𝑢 ∈ − such that 𝑢 ≥ 0 a.e. in 𝛺 and

𝐽 (𝑢) = min
−

𝐽 .

Proof.  Take any minimizing sequence {𝑢𝑛}𝑛∈N ⊆ − for 𝐽∣− . The proof is analogous to the one of Proposition  5.1, except the 
non-triviality of 𝑢 (that is, the weak limit of {𝑢𝑛}𝑛∈N in 𝑊 1,

0 (𝛺)) and the strong convergence of {𝑢𝑛}𝑛∈N in 𝑊 1,
0 (𝛺).

In order to prove that 𝑢 ≠ 0 we argue by contradiction, supposing that 𝑢𝑛 ⇀ 0 in 𝑊 1,
0 (𝛺). Without any loss of generality, 𝑢𝑛 → 0

in 𝐿𝜅 (𝛺) for all 𝜅 ∈ (1, 𝑝∗). Since 𝑢𝑛 ∈ − for all 𝑛 ∈ N, we have

𝑚(𝜙(∇𝑢𝑛))⟨𝜙′(∇𝑢𝑛),∇𝑢𝑛⟩ = 𝜆∫𝛺
𝑓 (𝑢𝑛)𝑢𝑛 d𝑥 + ∫𝛺

𝑔(𝑢𝑛)𝑢𝑛 d𝑥 for all 𝑛 ∈ N.

Letting 𝑛 → ∞, along with Lemma  3.1, reveals

lim
𝑛→∞

𝑊 𝑞𝜃
𝑝 (‖∇𝑢𝑛‖ ) ≤ 𝐶 lim

𝑛→∞
𝑚(𝜙(∇𝑢𝑛))⟨𝜙′(∇𝑢𝑛),∇𝑢𝑛⟩ = 0

for some 𝐶 > 0, which entails 𝑢𝑛 → 0 in 𝑊 1,
0 (𝛺). According to Lemma  4.4,

0 = 𝐽 (0) = lim
𝑛→∞

𝐽 (𝑢𝑛) ≥ 𝜎,

which is a contradiction.
Now we prove 𝑢𝑛 → 𝑢 in 𝑊 1,

0 (𝛺). Since 𝑢 ≠ 0, Lemma  4.3 produces a unique 𝑡 ∈ (0,+∞) such that 𝑡𝑢 ∈ −. Reasoning by 
contradiction as in Proposition  5.1, namely supposing (5.1), we deduce 𝜓 ′

𝑢𝑛
(𝑡) > 0 for 𝑛 sufficiently large (cf. (5.2)). This forces 𝑡 < 1, 

taking into account that, for any 𝑛 ∈ N, one has 𝐸−
𝑢𝑛

= {1} and 𝜓 ′
𝑢𝑛
(𝑡) < 0 for all 𝑡 > 1. Moreover, 𝑡 = 1 is the unique global maximizer 

of 𝜓𝑢𝑛 . Indeed, it is the unique local maximizer, and 𝜓 ′
𝑢𝑛
(𝑡) < 0 for all 𝑡 > 1 as well as 𝜓𝑢𝑛 (1) = 𝐽 (𝑢𝑛) ≥ 𝜎 > 0 = 𝐽 (0), due to Lemmas 

4.3 and 4.4, respectively. This information, together with (5.1) and the strict monotonicity of 𝑀 , yields

inf
−

𝐽 ≤ 𝐽 (𝑡𝑢) < lim inf
𝑛→∞

𝐽 (𝑡𝑢𝑛) = lim inf
𝑛→∞

𝜓𝑢𝑛 (𝑡) ≤ lim inf
𝑛→∞

𝜓𝑢𝑛 (1) = lim inf
𝑛→∞

𝐽 (𝑢𝑛) = inf
−

𝐽 ,

which is a contradiction. □
13 
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Proposition 5.3.  Let hypotheses (H) be satisfied and let 𝑢 ∈ + be such that 𝐽 (𝑢) = min+ 𝐽 . Then there exists 𝜀 > 0 such that
𝐽 (𝑢) ≤ 𝐽 (𝑢 + ℎ) for all ℎ ∈ 𝐵𝜀(0).

Proof.  Let us consider the function
𝐹 (ℎ, 𝑡) = 𝜓 ′

𝑢+ℎ(𝑡) for all (ℎ, 𝑡) ∈ 𝑊 1,
0 (𝛺) × (0,+∞).

Since 𝑢 ∈ + one has 𝐹 (0, 1) = 𝜓 ′
𝑢(1) = 0 and 𝜕𝑡𝐹 (0, 1) = 𝜓 ′′

𝑢 (1) > 0. Hence the implicit function theorem furnishes 𝜀1 > 0 and 
𝜁 ∶𝐵𝜀1 (0) → (0,+∞) such that 𝜁 (0) = 1 and 𝐹 (ℎ, 𝜁 (ℎ)) = 0, that is, 𝜁 (ℎ)(𝑢 + ℎ) ∈   by (2.14). According to Remark  2.11, 𝜕𝑡𝐹  is a 
continuous function. Thus there exist 𝜀2, 𝜎 > 0 such that 

𝜓 ′′
𝑢+ℎ(𝑡) = 𝜕𝑡𝐹 (ℎ, 𝑡) > 0 for all (ℎ, 𝑡) ∈ 𝐵𝜀2 (0) × (1 − 𝜎, 1 + 𝜎). (5.3)

The function 𝜁 is continuous as well, so there exists 𝜀3 > 0 such that 𝜁 (ℎ) ∈ (1−𝜎, 1+𝜎) for all ℎ ∈ 𝐵𝜀3 (0). Setting 𝜀 = min{𝜀1, 𝜀2, 𝜀3}, 
we deduce that 𝜁 (ℎ)(𝑢 + ℎ) ∈ + for all ℎ ∈ 𝐵𝜀(0). In particular, (5.3) implies also the convexity of 𝜓𝑢+ℎ in the interval joining 
𝑡 = 𝜁 (ℎ) and 𝑡 = 1. Hence, we have

𝜓𝑢+ℎ(𝜁 (ℎ)) ≤ 𝜓 ′
𝑢+ℎ(𝜁 (ℎ))(𝜁 (ℎ) − 1) + 𝜓𝑢+ℎ(1) = 𝜓𝑢+ℎ(1).

Accordingly,

𝐽 (𝑢) = min
+

𝐽 ≤ 𝐽 (𝜁 (ℎ)(𝑢 + ℎ)) = 𝜓𝑢+ℎ(𝜁 (ℎ)) ≤ 𝜓𝑢+ℎ(1) = 𝐽 (𝑢 + ℎ)

for all ℎ ∈ 𝐵𝜀(0). □

Remark 5.4.  The conclusion of Proposition  5.3 does not hold for the minimizers of 𝐽 constrained to − because they are not 
local minimizers of 𝐽 on 𝑊 1,

0 (𝛺). Instead they are saddle points. Indeed, given any 𝑢 such that 𝐽 (𝑢) = min− 𝐽 , 𝑢 is a strict local 
maximizer along the direction of 𝑢, while (reasoning as in Proposition  5.3, that furnishes 𝜁 such that 𝜁 (𝑡ℎ)(𝑢+ 𝑡ℎ) ∈ − for small 𝑡) 
it is a local minimizer along any curve of type 𝑡 ↦ 𝜁 (𝑡ℎ)(𝑢 + 𝑡ℎ) with ℎ ∈ 𝑊 1,

0 (𝛺) ⧵ {0}.

Lemma 5.5.  Let hypotheses (H) be satisfied and let 𝑢 ∈ 𝑊 1,
0 (𝛺), 𝑢 ≥ 0 a.e. in 𝛺, be a local minimizer of 𝐽 . Then 𝑢 > 0 a.e. in 𝛺 and 

𝑚(𝜙(∇𝑢))⟨(𝑢), ℎ⟩ ≥ 𝜆∫𝛺
𝑓 (𝑢)ℎ d𝑥 + ∫𝛺

𝑔(𝑢)ℎ d𝑥 (5.4)

for all ℎ ∈ 𝑊 1,
0 (𝛺) with ℎ ≥ 0 a.e. in 𝛺.

Proof.  Take any ℎ ∈ 𝑊 1,
0 (𝛺) ⧵ {0} fulfilling ℎ ≥ 0 a.e. in 𝛺. Since 𝑢 is a local minimizer of 𝐽 , then 𝐽 (𝑢) ≤ 𝐽 (𝑢 + 𝑡ℎ) for all 𝑡

sufficiently small. Take any sequence {𝑡𝑛}𝑛∈N with 𝑡𝑛 > 0 for all 𝑛 ∈ N such that 𝑡𝑛 → 0 and set 𝐾 = 𝑢−1(0). Then, for any 𝑛 large 
enough,

0 ≤
𝐽 (𝑢 + 𝑡𝑛ℎ) − 𝐽 (𝑢)

𝑡𝑛

=
𝑀(𝜙(∇(𝑢 + 𝑡𝑛ℎ))) −𝑀(𝜙(∇𝑢))

𝑡𝑛
− 𝜆∫𝛺

𝐹 (𝑢 + 𝑡𝑛ℎ) − 𝐹 (𝑢)
𝑡𝑛

d𝑥 − ∫𝛺
𝐺(𝑢 + 𝑡𝑛ℎ) − 𝐺(𝑢)

𝑡𝑛
d𝑥

=
𝑀(𝜙(∇(𝑢 + 𝑡𝑛ℎ))) −𝑀(𝜙(∇𝑢))

𝑡𝑛
− 𝜆∫𝐾

𝐹 (𝑡𝑛ℎ)
𝑡𝑛

d𝑥 − 𝜆∫𝛺⧵𝐾

𝐹 (𝑢 + 𝑡𝑛ℎ) − 𝐹 (𝑢)
𝑡𝑛

d𝑥 − ∫𝛺
𝐺(𝑢 + 𝑡𝑛ℎ) − 𝐺(𝑢)

𝑡𝑛
d𝑥.

From Lebesgue’s dominated convergence theorem we obtain

lim
𝑛→∞

𝑀(𝜙(∇(𝑢 + 𝑡𝑛ℎ))) −𝑀(𝜙(∇𝑢))
𝑡𝑛

= 𝑚(𝜙(∇𝑢))⟨(𝑢), ℎ⟩,

lim
𝑛→∞∫𝛺

𝐺(𝑢 + 𝑡𝑛ℎ) − 𝐺(𝑢)
𝑡𝑛

d𝑥 = ∫𝛺
𝑔(𝑢)ℎ d𝑥,

while Fatou’s lemma and the monotonicity of 𝐹  yields

lim inf
𝑛→∞ ∫𝛺⧵𝐾

𝐹 (𝑢 + 𝑡𝑛ℎ) − 𝐹 (𝑢)
𝑡𝑛

d𝑥 ≥ ∫𝛺⧵𝐾
𝑓 (𝑢)ℎ d𝑥.

Accordingly, 

0 ≤ lim sup
𝑛→∞

𝐽 (𝑢 + 𝑡𝑛ℎ) − 𝐽 (𝑢)
𝑡𝑛

≤ 𝑚(𝜙(∇𝑢))⟨(𝑢), ℎ⟩ − 𝜆∫𝛺⧵𝐾
𝑓 (𝑢)ℎ d𝑥 − ∫𝛺

𝑔(𝑢)ℎ d𝑥 − 𝜆 lim inf
𝑛→∞ ∫𝐾

𝐹 (𝑡𝑛ℎ)
𝑡𝑛

d𝑥. (5.5)

If 𝐾 has positive measure, then (H𝑓 ) forces

lim
𝐹 (𝑡𝑛ℎ) d𝑥 = +∞,
𝑛→∞∫𝐾 𝑡𝑛
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which is a contradiction. Hence 𝐾 has zero measure, that is, 𝑢 > 0 a.e. in 𝛺. So (5.5) rewrites as

0 ≤ 𝑚(𝜙(∇𝑢))⟨(𝑢), ℎ⟩ − 𝜆∫𝛺
𝑓 (𝑢)ℎ d𝑥 − ∫𝛺

𝑔(𝑢)ℎ d𝑥.

This inequality is obviously verified also for ℎ = 0, which concludes the proof. □

Lemma 5.6.  Let hypotheses (H) be satisfied and let 𝑢 ∈ − be such that 𝑢 ≥ 0 a.e. in 𝛺 and 𝐽 (𝑢) = min− 𝐽 . Then 𝑢 > 0 a.e. in 𝛺 and 
fulfills (5.4).

Proof.  We only sketch this proof, which is similar to those of Proposition  5.3 and Lemma  5.5.
Reasoning as in Proposition  5.3, there exists 𝜀 > 0 and a continuous function 𝜁 ∶𝐵𝜀(0) → (0,+∞) such that 𝜁 (0) = 1 and

𝜁 (ℎ)(𝑢 + ℎ) ∈ − for all ℎ ∈ 𝐵𝜀(0).

In particular, owing to 𝑢 ∈ −, one has 𝜓𝑢(𝜁 (𝑡ℎ)) ≤ 𝜓𝑢(1) for all ℎ ∈ 𝑊 1,
0 (𝛺) and 𝑡 sufficiently small. Take any sequence {𝑡𝑛}𝑛∈N

with 𝑡𝑛 > 0 for all 𝑛 ∈ N such that 𝑡𝑛 → 0 and set 𝐾 = 𝑢−1(0). For any 𝑛 sufficiently large we get 

0 ≤
𝐽 (𝜁 (𝑡𝑛ℎ)(𝑢 + 𝑡𝑛ℎ)) − 𝐽 (𝑢)

𝑡𝑛
≤
𝐽 (𝜁 (𝑡𝑛ℎ)(𝑢 + 𝑡𝑛ℎ)) − 𝐽 (𝜁 (𝑡𝑛ℎ)𝑢)

𝑡𝑛

=
𝑀(𝜙(∇[𝜁 (𝑡𝑛ℎ)(𝑢 + 𝑡𝑛ℎ)])) −𝑀(𝜙(∇[𝜁 (𝑡𝑛ℎ)𝑢]))

𝑡𝑛
− 𝜆∫𝐾

𝐹 (𝜁 (𝑡𝑛ℎ)𝑡𝑛ℎ)
𝑡𝑛

d𝑥 − 𝜆∫𝛺⧵𝐾

𝐹 (𝜁 (𝑡𝑛ℎ)(𝑢 + 𝑡𝑛ℎ)) − 𝐹 (𝜁 (𝑡𝑛ℎ)𝑢)
𝑡𝑛

d𝑥

− ∫𝛺
𝐺(𝜁 (𝑡𝑛ℎ)(𝑢 + 𝑡𝑛ℎ)) − 𝐺(𝜁 (𝑡𝑛ℎ)𝑢)

𝑡𝑛
d𝑥.

(5.6)

Fix any 𝑡 > 0 and consider the function
𝛤 ∶ [0, 𝑡] → R, 𝛤 (𝑠) ∶=𝑀(𝜙(∇[𝜁 (𝑡ℎ)(𝑢 + 𝑠ℎ)])).

Lagrange’s mean value theorem produces 𝑠𝑡 ∈ (0, 𝑡) such that
𝑀(𝜙(∇[𝜁 (𝑡ℎ)(𝑢 + 𝑡ℎ)])) −𝑀(𝜙(∇[𝜁 (𝑡ℎ)𝑢])) = 𝑡𝑚(𝜙(∇[𝜁 (𝑡ℎ)(𝑢 + 𝑠𝑡ℎ)]))⟨𝜙′(∇[𝜁 (𝑡ℎ)(𝑢 + 𝑠𝑡ℎ)]),∇[𝜁 (𝑡ℎ)ℎ]⟩.

Hence, recalling also 𝜁 (𝑡ℎ) → 1 as 𝑡 → 0+,

lim
𝑡→0+

1
𝑡
[𝑀(𝜙(∇[𝜁 (𝑡ℎ)(𝑢 + 𝑡ℎ)])) −𝑀(𝜙(∇[𝜁 (𝑡ℎ)𝑢]))] = lim

𝑡→0+
𝑚(𝜙(∇[𝜁 (𝑡ℎ)(𝑢 + 𝑠𝑡ℎ)]))⟨𝜙′(∇[𝜁 (𝑡ℎ)(𝑢 + 𝑠𝑡ℎ)]),∇[𝜁 (𝑡ℎ)ℎ]⟩

= 𝑚(𝜙(∇𝑢))⟨𝜙′(∇𝑢),∇ℎ⟩ = 𝑚(𝜙(∇𝑢))⟨(𝑢), ℎ⟩.

Arguing in the same way for the difference quotients involving 𝐹  and 𝐺, (5.6) yields

0 ≤ lim sup
𝑛→∞

𝐽 (𝜁 (𝑡𝑛ℎ)(𝑢 + 𝑡𝑛ℎ)) − 𝐽 (𝑢)
𝑡𝑛

≤ 𝑚(𝜙(∇𝑢))⟨(𝑢), ℎ⟩ − 𝜆∫𝛺⧵𝐾
𝑓 (𝑢)ℎ d𝑥 − ∫𝛺

𝑔(𝑢)ℎ d𝑥 − 𝜆 lim inf
𝑛→∞ ∫𝐾

𝐹 (𝜁 (𝑡𝑛ℎ)𝑡𝑛ℎ)
𝑡𝑛

d𝑥,

which parallels (5.5). The proof now follows exactly as in Lemma  5.5. □

Proposition 5.7.  Let hypotheses (H) be satisfied. Any 𝑢 ∈   satisfying both 𝑢 > 0 a.e. in 𝛺 and (5.4) is a weak solution to (P𝜆).

Proof.  Let us consider the linear operator 𝑇 ∶𝑊 1,
0 (𝛺) → R defined as

⟨𝑇 , ℎ⟩ = 𝑚(𝜙(∇𝑢))⟨(𝑢), ℎ⟩ − 𝜆∫𝛺
𝑓 (𝑢)ℎ d𝑥 − ∫𝛺

𝑔(𝑢)ℎ d𝑥 for all ℎ ∈ 𝑊 1,
0 (𝛺).

According to (5.4), 𝑇  is well-defined and non-negative (i.e., ⟨𝑇 , ℎ⟩ ≥ 0 for all ℎ ≥ 0 a.e. in 𝛺). Moreover, 𝑢 ∈   is equivalent to 
⟨𝑇 , 𝑢⟩ = 0. Hence, taking any 𝜑 ∈ 𝑊 1,

0 (𝛺) and 𝜀 > 0, we have
0 ≤ ⟨𝑇 , (𝑢 + 𝜀𝜑)+⟩ = ⟨𝑇 , 𝑢 + 𝜀𝜑⟩ + ⟨𝑇 , (𝑢 + 𝜀𝜑)−⟩ = ⟨𝑇 , 𝑢⟩ + 𝜀⟨𝑇 , 𝜑⟩ + ⟨𝑇 , (𝑢 + 𝜀𝜑)−⟩ = 𝜀⟨𝑇 , 𝜑⟩ + ⟨𝑇 , (𝑢 + 𝜀𝜑)−⟩,

where (𝑢+ 𝜀𝜑)+ and (𝑢+ 𝜀𝜑)− stand for the positive and the negative part of 𝑢+ 𝜀𝜑, respectively. Recalling the definition of 𝑇 , 𝑢 > 0
a.e. in 𝛺, and 𝜕𝑠(𝑥, |∇𝑢|) ≥ 0 a.e. in 𝛺, we have

⟨𝑇 , (𝑢 + 𝜀𝜑)−⟩ ≤ 𝑚(𝜙(∇𝑢))⟨(𝑢), (𝑢 + 𝜀𝜑)−⟩ = −𝑚(𝜙(∇𝑢))∫{𝑢+𝜀𝜑≤0}
𝜕𝑠(𝑥, |∇𝑢|) ∇𝑢

|∇𝑢|
(∇𝑢 + 𝜀∇𝜑) d𝑥

≤ −𝜀𝑚(𝜙(∇𝑢))∫{𝑢+𝜀𝜑≤0}
𝜕𝑠(𝑥, |∇𝑢|) ∇𝑢

|∇𝑢|
∇𝜑 d𝑥.

Thus we get

0 ≤ ⟨𝑇 , 𝜑⟩ − 𝑚(𝜙(∇𝑢))∫{𝑢+𝜀𝜑≤0}
𝜕𝑠(𝑥, |∇𝑢|) ∇𝑢

|∇𝑢|
∇𝜑 d𝑥.

Notice that |{𝑢 + 𝜀𝜑 ≤ 0}| → 0 as 𝜀 → 0. Therefore, ⟨𝑇 , 𝜑⟩ ≥ 0 for all 𝜑 ∈ 𝑊 1,
0 (𝛺). Since 𝜑 is arbitrarily chosen, we have ⟨𝑇 , 𝜑⟩ = 0

for all 𝜑 ∈ 𝑊 1, (𝛺), which means that 𝑢 is a weak solution to (P ). □
0 𝜆
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Now we can give the proof of our main result.

Proof of Theorem  1.1.  Owing to Propositions  5.1 and 5.2, we can find functions 𝑢, 𝑣 ∈ 𝑊 1,
0 (𝛺) such that

𝐽 (𝑢) = min
+

𝐽 and 𝐽 (𝑣) = min
−

𝐽 .

By virtue of Proposition  5.3 (see also Remark  5.4), Lemma  5.5 is applicable to 𝑢. Thus, Proposition  5.7 ensures that 𝑢 is a weak 
solution of problem (P𝜆). On the other hand, Lemma  5.6 and Proposition  5.7 guarantee that 𝑣 is a weak solution to (P𝜆). The 
conclusion follows by Lemma  4.4, since 𝑢 ∈ + and 𝑣 ∈ − imply

𝐽 (𝑢) < 0 < 𝐽 (𝑣). □
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