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ARTICLE INFO ABSTRACT

Communicated by Matteo Novaga In this paper we study quasilinear elliptic Kirchhoff equations driven by a non-homogeneous
operator with unbalanced growth and right-hand sides that consist of sub-linear, possibly

g/gcl:s singular, and super-linear reaction terms. Under very general assumptions we prove the
35762 existence of at least two solutions for such problems by using the fibering method along with
35J75 an appropriate splitting of the associated Nehari manifold. In contrast to other works our

treatment is very general, with much easier and shorter proofs as it was done in the literature
Keywords: before. Furthermore, the results presented in this paper cover a large class of second-order
Fibering method

differential operators like the p-Laplacian, the (p, g)-Laplacian, the double phase operator, and

Generalized N-function the logarithmic double phase operator.

Musielak—Orlicz Sobolev spaces
Nehari manifold

Singular term

Super-linear nonlinearity
Unbalanced-growth operator

1. Introduction

Given a bounded domain 2 € RN, N > 2, with Lipschitz boundary 92, this paper deals with general Kirchhoff problems involving
singular and super-linear reaction terms of the form

—m </ H(x, |Vu|)dx> Lw)=Af(u)+ gu) in Q,
Q

u>0 in Q. ®)

u=0 on 09,

where 4 > 0 is a parameter, f,g: (0,+00) — (0,+0c0) are continuously differentiable functions, m: [0, +c0) — [0, +0) is the so-called
Kirchhoff function, H : 2 X [0, +00) — [0, +00) is a generalized N-function, while £ : WO]’H(.Q) — WOI’H(_Q)* is an operator (possibly
non-homogeneous and with unbalanced growth) satisfying certain structure conditions. To be more precise, we suppose the following
assumptions on the data of problem (P)):
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(H) (H,,) The function m: [0,+00) — [0,+o0) is continuously differentiable, non-decreasing, and m(s) > 0 for all s > 0. In
particular,

sm’(s) S

0.

N i=su
b m(s)

(H,) The function H : 2 x [0, +c0) — [0, +o0) is a generalized N-function such that H(x,-) € C?(0,+oo) for a.a. x € 2 and
o, H(x,
s0,H(x,s) -1

i 1= in 5
@ p (x,9)€Qx(0,+0)  H(x, s)
sO,H(x, s)
(i) ¢ := sup " < p%;
(n.9)EQX(04w0)  H(X, )
502 H(x, 5)
(iii) I_ := inf = X
(x,9)€Qx(0,4+00) I H(x,s)
502 H(x, s)
aGv) 1, = —= <4,

sup
(x,5)EQX(O0,+00) OsH(X,5)

with the Sobolev conjugate p* of p. Moreover, L : WOI‘H(Q) - WOI’H(.Q)* is defined as

L(u) :=div <0SH(x, |Vu|>ﬂ> . 1.1
[Vul

In addition, we suppose that

wiHQ) o LH(Q) compactly. (1.2)

(H,) The function f : (0,+00) — (0, +c0) is continuously differentiable and satisfies

liminf f(s) € (0,+0o0],
s—0+

N O N
mETS Ty T
R LO)
vy i=—inf = <L

(Hg) The function g : (0, +00) — (0, +o0) is continuously differentiable and satisfies

!
roi= 1 vinf O o
>0 g(s)
’
ry :=l+supSg ) <p*
s>0 &(s)

(H¢) The following condition holds true:
an+l, <r_-1,

where ¢, 1, are defined in (H,), # is given in (H,,), and r_ comes from (HS,).
The following conclusions can be made from hypotheses (H):

» the condition 0 < /_ </, < +oo in (H,) makes £ a uniformly elliptic operator;
* (H;) ensures that f is sub-linear, possibly singular;

* (H,) guarantees that g is sub-critical;

* (H¢) is a super-linearity condition on g.

First, we mention that hypotheses (H) include the standard Kirchhoff function m(s) = a+bs" with a, b € R?\ {(0,0)}, that means we
allow degenerate Kirchhoff problems which create the most interesting models in applications. The following operators are included

in hypotheses (H), whereby we suppose in all cases that 1 < p < N, p < g, and 0 < u(-) € L*(2), while we assume ¢ < p* := NN—_”[]
for (i) and q + x < p* for (ii)-(iii), where x := e:to € (0,1) and 7, > 0 is the unique solution of 7 = elog(e + 1):
(i) Double phase operator:
div (|Vu|1’_2Vu + ,u(x)qu|q_2Vu)
generated by the generalized N-function
H(x,s) = s? + u(x)s? for all (x,s) € 2 %[0, o), 1.3)

see Crespo-Blanco-Gasifiski-Harjulehto-Winkert [1];
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(ii) Logarithmic double phase operator:

div <|Vu|1’—2w + u(x) |log(e + |Vul) + L] |Vu|"_2Vu> (1.4)
qe + [Vul)

generated by the generalized N-function
H(x,s) = s? + u(x)s?log(e +s) for all (x,s) € QX [0, ), (1.5)

where e is the Euler number, see Arora—Crespo-Blanco-Winkert [2];
(iii) Double phase operator with logarithmic perturbation:

. _ _ Vu|
div ( (IVulP~>Vu + Vul972Vu) |log(e + |V +|—]> (1.6)
((I ul u+ p(x)|Vul u) |log(e + |Vul) 2@+ va)
generated by the generalized N-function
H(x,s) = [s” + u(x)s?]log(e + s) for all (x,s) € 2 X [0, o0), 1.7)

where e is the Euler number, see Lu-Vetro-Zeng [3].

We point out that, in the examples above, we do not need that 0 < p(-) € C%1(Q) and

§< I +%, (1.8

as required quite often in the double phase setting. Note that (1.2) holds for (1.3), (1.5), and (1.7), see [1, Proposition 2.18], [2,
Proposition 3.9], and [3, Proposition 2.24], respectively, without supposing (1.8). Sufficient conditions for the compact embedding
in (1.2) to be true can be found in the book by Harjulehto—Hasto [4, see Chapter 6.3] or the recent paper by Cianchi-Diening [5,
Theorem 3.7]. Concerning the nonlinearities on the right-hand side of (P,), the choices f(s) = s™” and g(s) = s"~! are allowed for
O<y<l<g<r<p*.

Our main result is the following theorem.

Theorem 1.1. Let (H) be satisfied. Then there exists A > 0 such that, for any A € (0, A), problem (P,) admits two weak solutions with
opposite energy sign.

The proof of Theorem 1.1 is based on the fibering method along with the corresponding Nehari manifold related to problem
(P,). Indeed, even though the energy functional J : WOI’H(Q) — R associated with (P,) is not C ! (due to the presence of the singular
term f), one can define the Nehari manifold to (P,) as

N = {ue Wy @)\ {0} 1y (1) =0},
where y, : (0,+00) — R is the fibering map defined for any u € WOI'H(.Q) \ {0} by
w, (1) :=J@u) forall > 0.

The idea is then to split the Nehari manifold into three disjoint parts minimizing J over two of them to get the required solutions
with different energy sign. This method is not new, but it is the first time that it is applied to a very general setting and so no
concrete, long calculations are needed. Indeed, we do not only cover the results obtained by Papageorgiou-Repovs-Vetro [6]
((g, p)-Laplacian), Papageorgiou-Winkert [7] (weighted p-Laplacian), Liu-Dai-Papageorgiou-Winkert [8] (double phase operator)
or Arora-Fiscella-Mukherjee-Winkert [9] (Kirchhoff double phase operator), but we also have much easier and shorter proofs as
in those papers and we also cover new operators within our setting, like the logarithmic double phase operators given in (1.4) and
(1.6).

In general, the use of the fibering method along with the Nehari manifold is a very powerful tool and has been further
developed by the works of Drdbek-Pohozaev [10] and Sun-Wu-Long [11]. Subsequently, several authors have applied this method
to various problems of singular type and non-singular type. We refer to works by Alves-Santos-Silva [12] (singular-superlinear
Schrodinger equations with indefinite-sign potential), Arora-Fiscella-Mukherjee-Winkert [13] (critical double phase Kirchhoff
problems with singular nonlinearity), Chen-Kuo-Wu [14] (Kirchhoff Laplace equations), Fiscella-Mishra [15] (fractional singular
Kirchhoff problems), Kumar-Radulescu-Sreenadh [16] (singular problems with unbalanced growth and critical exponent), Liu-
Winkert [17] (double phase problems in RY), Mukherjee-Sreenadh [18] (fractional p-Laplace problems), Tang-Cheng [19] (ground
state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials), Wang-Zhao-Zhao [20] (critical
Laplace equations with singular term), see also the references therein. For a survey concerning singular problems, we address the
reader to the overview article by Guarnotta-Livrea-Marano [21]. It should be mentioned that, in contrast to the results available
in the literature (see the list above and also Candito—Guarnotta—Perera [22] and Candito-Guarnotta-Livrea [23]), our method does
not require the use of Hardy-Sobolev’s inequality.

The paper is organized as follows. In Section 2 we introduce our function space and recall some basic facts about generalized
N-functions and related Musielak-Orlicz Sobolev spaces. Further, we prove some auxiliary results and give the precise definition of
the Nehari manifold to problem (P,) including its splitting into three disjoint parts. Section 3 discusses some basic estimates which
are needed in the sequel while Section 4 gives a detailed study of the Nehari manifold and its properties. Finally, in Section 5, we
are able to prove Theorem 1.1.
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2. Preliminaries

In this section we recall some basic definitions about N-functions, Musielak-Orlicz Sobolev spaces and its properties. These
results are mainly taken from the monographs by Chlebicka—Gwiazda—-Swierczewska-Gwiazda—Wréblewska-Kamiriska [24], Diening—
Harjulehto-Hast6-Rtzicka [25], Harjulehto-Hé&st6 [4], Musielak [26], and Papageorgiou-Winkert [27]. We start with some
definitions.

Definition 2.1.

(i) A continuous and convex function ¢ : [0, o) — [0, c0) is said to be a @-function if @(0) = 0 and ¢(¢) > 0 for all ¢ > 0.
(ii) A function ¢: Q x [0,00) — [0, ) is said to be a generalized @-function if ¢(-,f) is measurable for all + > 0 and ¢(x,-) is a
@-function for a.a. x € 2. We denote the set of all generalized ®@-functions on 2 by @(Q).
(iii) A function @ € ®() is locally integrable if ¢(-,t) € L'(£2) for all ¢ > 0.
(iv) A function ¢ € ®() satisfies the 4,-condition if there exist a positive constant C and a nonnegative function 4 € L' () such
that

@(x,21) < Co(x,1) + h(x)

for a.a. x € 2 and for all ¢ € [0, ).
(v) Given ¢,y € &(Q), we say that ¢ is weaker than y, denoted by ¢ < vy, if there exist two positive constants C;,C, and a
nonnegative function h € L'(Q2) such that

@(x,1) < Ciy(x, Cyt) + h(x)
for a.a. x € 2 and for all ¢ € [0, o).

For ¢ € ®(R2) we denote by p,, the corresponding modular given by

o) = [ o x ) .
Q
Let M(£2) be the set of all measurable functions u : 2 — R. Then, the Musielak—Orlicz space L?(£) is defined by
L?() := {u € M(Q): there exists « > 0 such that p,,(au) < +oo}
equipped with the norm

llull, ::inf{a>0:p¢(g) < 1}.

The next proposition is taken from Musielak [26, Theorem 7.7 and Theorem 8.5].

Proposition 2.2.

(i) Let ¢ € &(R). Then (L*(L2),]| - ||,,) is a Banach space.
(ii) Let @,y € ®(£) be locally integrable with ¢ < y. Then

LY(Q) & L2(Q).

0.y

The following proposition can be found in the books by Musielak [26, Theorem 8.13] and Diening-Harjulehto-Hast6—-Rtzicka [25,
Lemma 2.1.14].
Proposition 2.3. Let ¢ € &(Q2).
(i) If @ satisfy the A,-condition, then
L) ={ue M(): p,) <+co} .
(ii) Furthermore, if u € L?(£2), then p,(u) <1 (resp. = 1; >1) if and only if |lull, < 1 (resp. = 1; >1).

Now we can state the definition of a N-function.

Definition 2.4. A function ¢ : [0, o) — [0, o) is called N-function if it is a @-function such that

fim 29 20 and 1im 22 -
i ime 1

We call a function ¢ : 2x[0, ) — [0, ) a generalized N-function if ¢(-, ) is measurable for all 7 € [0, ) and ¢(x, -) is a N-function
for a.a. x € 2. We denote the class of all generalized N-functions by N(£2).
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Now, let ¢ € (). The corresponding Sobolev space W !-#(Q) is defined by
Whe(Q) = {ue LY(Q): |Vu| € L*(Q)}
equipped with the norm
llelly = llull,, + 11 Vul,,

where ||Vull, = || [Vul ||,,- If ¢ € N(£) is locally integrable, we denote by WOI"”(Q) the completion of C(£2) in whe(Q).
The next theorem gives a criterion when the Sobolev spaces are Banach spaces and also reflexive. This result can be found in
Musielak [26, Theorem 10.2] and Fan [28, Proposition 1.7 and 1.8].

Theorem 2.5. Let ¢ € N(£) be locally integrable such that

inf 1 .
;ggw(x, )>0

Then the spaces W %(Q) and Wol“”(.Q) are separable Banach spaces. Moreover, they are reflexive if L?(£2) is reflexive.

Let us now consider the generalized N-function H satisfying hypotheses (H,). First note, that from Lemma 2.3.16 in Chlebicka—
Gwiazda-Swierczewska-Gwiazda-Wréblewska-Kamiriska [24], we know that H satisfies the 4,-condition and so, by Proposition 2.3,
the space L () can be given by

LM(@Q) = {ue MQ): py(u) < +oo}
with the associated modular py,(-). Also, Corollary 3.5.5 in [24] guarantees that L’() is reflexive and so, by Theorem 2.5, the

spaces W (Q) and WOI’H(Q) are separable and reflexive. Note that (1.2) implies the validity of the Poincaré inequality, i.e.,

llullye < ClIVully, for all u € W™ (). (2.1)

We refer to the proof of Proposition 2.18 in [1] which can be done for any generalized N-function in the same way. Using (2.1),
we can equip the space WOI"H(.Q) with the equivalent norm

llull = Vully, for all ue W, ().

Note that the requirement to suppose (1.2) is very general. Indeed, in Harjulehto-Hasto [4, see Chapter 6.3] or Cianchi-Diening [5,
Theorem 3.7] one can find sufficient conditions for (1.2) to hold and one key assumption is condition (A1), which says the following:

« A generalized N-function ¢ : 2 X [0, ) — [0, o) satisfies (A1) if there exists g € (0, 1) such that

fo'x.) <07 (1)

for every 1 € [1, ﬁ], for a.a. x,y € BN 2 and for every ball B with |B| < 1.

We avoided to suppose conditions like (A1) because the embedding (1.2) is more general than assumption (Al). In fact, in [1-3]
the validity of (1.2) for the logarithmic double phase operator, the double phase operator, and the double phase operator with
logarithmic perturbation have been proved without condition (A1). For (Al) to be true for these operators we have to require that
0 < u(-) € C*1(Q) and

§<1+%, (2.2)

see [2, Theorem 3.12], [1, Theorem 2.23], and [3, Proposition 2.27]. However, the compactness of (1.2) still holds when 0 < u(:) €
L>(2) without supposing (2.2), see [2, Proposition 3.9], [1, Proposition 2.18], and [3, Proposition 2.24].

Next, we introduce the following functions, useful to compare generalized N-functions with suitable power functions. To this
end, for given —co < @ < f < +00, we define

Wi = min{r*, "} and W'(1) := max{%, ). (2.3)

The next proposition summarizes the information carried by the so-called ‘indices’, i.e., the quantities appearing in (2.5) below.
Although the result is well-known for N-functions, for the sake of completeness we will sketch its proof in a more general case,
where no convexity of functions is required.

Proposition 2.6. Let K : [0, +00) — [0, +00) be of class C?, strictly increasing, and such that K(0) = 0. Set k := K’ and suppose
lim sk(s) =0, (2.4)
s—0%

as well as

! !
— oo <i; :=inf sk's) <su sk'(s)
>0 k(s) ~ o k(s)

=I5, < +o0. (2.5)
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Then

. . . Sk(s) sk(s)

zk+ls§r>n; X&) Silig K(s) <sp+ L (2.6)
Moreover,

KW E(5) < k(s) < k(W (5) 2.7)
and

—s+1

KW s) < K(s) < KOW, () 2.8)

forall s > 0.

Proof. By (2.5) we have

i k() < tk'(t) < s, k(r) for all t > 0. (2.9)
Integrating by parts, along with K(0) = 0 and (2.4), yields

i K(s) < sk(s) — K(s) < s, K(s) forall s>0, (2.10)

ensuring (2.6).
Taking any s > 1 and integrating (2.9) in [1, s] we infer

s s ! s
ik/ﬂs/ mdzssk a
1t 1 k@ 1!
Recalling that k > 0 because of the monotonicity of K, we deduce
log s't < log % < log s%,
which implies (2.7) for s > 1. Now suppose s € (0, 1). Integrating (2.9) in [s, 1] leads to

1 1 7 1
ik/ gs/ KO <5, [ 4
A ATy L

log s™ < log % <logs™%, (2.11)
s

Thus,

which gives (2.7) for s € (0, 1). The proof of (2.8) is analogous, taking (2.10) into account. []

Remark 2.7. It is worth noticing that (2.4) is automatically satisfied when i, > —1, due to (2.11). This is the case of the N-function
K :=H(x,-) (since (H,)(iii) forces i, > 0) and of the singular term k := f (see (Hf)).

Adapting standard arguments for N-functions (see, e.g., Fukagai-Ito-Narukawa [29, Lemma 2.1]), it is readily seen that the
following result holds true.

Proposition 2.8. Let @ be a generalized N-function of class C'. Suppose that

50,D(x, s) 50,D(x, 5)
a:.= in ——>1, b:= su; _
(x,9)€Qx%(0,+0)  D(X, §) (x,5)ERX(0,+00) D(x,s)
Then

—b
Wililg) < [ @G lubdx <T(luly) for allu € L@
Next, we are going to prove the properties of the operator.

Lemma 2.9. Let (H,) be satisfied. Then L : WOI’H(Q) - WOI’H(Q)* defined in (1.1) is a strictly monotone operator and fulfills the
(S,)-property.
Proof. The result is a consequence of Proposition 3.12 by Crespo-Blanco [30]. The only nontrivial condition to verify is
lim dSZSH(x,c +5)(c—s)P? =400 foralle>0.
s—=>+00
To this aim, it suffices to prove that

lim 5202 H(x,s) = +o, (2.12)
§—+00
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since the change of variable r = s + ¢ yields
S} 2 . 23 T=2c\?
lim 0% H(x,c +s)(c — s = lim 7202 H(x,7) (—) for all ¢ > 0.
§—+00 T—+00 T

Proposition 2.6 (applied with k = o, H(x, -)), (H,)(@), (H,)(iii), and (2.8) entail

502 H(x, s)
lim szdsz(x, s)= lim —=
s—>+00

> : I_+1 _
S TTe) sO,H(x,5) > 1_0;H(x, 1) SETOO N +00,

ensuring (2.12). []

Next, we will make use of this simple real-analysis result.

Proposition 2.10. Let ¢ : (0,+c0) — R be a differentiable function such that
(i) limsup @(7) < 0 and lim sup ¢(¢) < 0;
=0t t—+00
(ii) max @) > 0;
1€(0,+00)
(iii) each zero of ¢ is non-degenerate, i.e., p(t) = 0 implies ¢'(t) # 0.

Then there exist 0 < t, < t, such that o(t,) = ¢(t,) =0 and ¢'(t;) > 0 > ¢'(t,).

Proof. Set

t, =inf{r>0: @) >0} and 1, =sup{tr>0: () >0}.

Nonlinear Analysis 264 (2026) 113986

The sets are non-empty by hypothesis and since ¢ is continuous, we have 7, < r,. We will only reason for 7, the argument for ¢, is
analogous. By assumption we have ¢, > 0, and by continuity of ¢ we infer ¢(7;) > 0. If @(7,) > 0, then there exists § > 0 such that
@(t; — 6) > 0, contradicting the minimality of 7,. Thus ¢(t;) = 0 and so ¢'(¢;) # 0 by the non-degeneracy hypothesis. Suppose by
contradiction that ¢'(#;) < 0. Then there exists § > 0 such that ¢(¢; — §) > 0, again in contradiction with the minimality of #,. Hence

@'(t)>0. [

In order to define an energy functional associated with (P,), we consider the following odd extensions of f and g:

f(s) if s >0, g(s) if s >0,
f(s):=30 ifs=0, &(s) =40 ifs=0,
—f(=s) ifs<0, —g(-s) if s <0.

For simplification, we still call this extensions as f and g, respectively. We also introduce the functions F,G : R — R defined as

F(s) := / fdt, G(s) := / g(t)dr for all s e R.
0 0
We set

s
M(s) = / m(t)dt for all s e R
0

and

sm(s)
6 :=sup ——,
s>0 M(s)

as well as

¢ = / H(x,|E])dx for all & e L*(Q;RV).
Q

The energy functional J : WO"H (£2) - R associated with (P,) is

J@W) 1= M(¢(Vu) — A / F(u)dx — / Guydx for all u e W,""(Q).
Q Q

(2.13)

Due to the symmetries chosen in the construction of F and G, we have J(u) = J(|u|) for all u € WOI’H(_Q). Moreover, due to (H), J

turns out to be weakly sequentially lower semi-continuous.
For any u € WOI’H(Q) we define the fibering map y,, : (0,+00) - R as

w, (1) 1= J(tu) = M(p(tVu)) — /l/ F(tu)dx — / G(tu)dx for all ¢ > 0.
Q Q

Note that F is even and F(0) =0, so

/ F(tu)dx = / F(tu)dx + / F(—tu)dx
Q Qn{u>0} Qn{u<0}
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forallt>0andu € WOI’H(Q). Thus, exploiting (H,), Proposition 2.6, and Lebesgue’s dominated converge theorem, besides recalling
f(0) =0, one has

0, [/ F(tu) dx] = / f(@uwudx for all > 0.
Q Q

Taking into account the fact that s — f(s)s is even and vanishes at the origin, one can reason as above to obtain

02 [ / F(tu)dx] = / fl@uu?dx for all t > 0,
Q Q

where we set f/(0) := 0. Analogous arguments hold for G.
Accordingly,

y/,:(t) = (J’(m),u)WULH(Q) = m(p(Vu)){¢' tVu), VM)LH(Q;RN) -4 /-Q f(uwudx — /Q g(tuwyudx
and
v (1) = m' (p(tVu) (P tVu), w)ZLH v MGV (tVu)(Vu, Vu) — A / £y dx — / g’ (tuy? dx,
u (RN) 0 Q

where ¢ (£)(-, -) represents the bilinear form on L™ (Q;RN)x L™ (Q;R") induced by ¢ (£). Owing to (H,), ¢ (&) is positive definite
for all £ € LM (Q;RN). Notice that

v =, (D, () =y, (), and Py = /() (2.14)

for all ¢ € (0, +0).

Remark 2.11. Using hypotheses (H), Proposition 2.6, and Lebesgue’s dominated converge theorem, it is readily seen that the maps
(t.u) & y, (1), (t.u) — (1), and (t,u) — (1) are continuous in (0, +o0) X W, ().

The Nehari manifold N associated with J is
N = {ue Wy @)\ {0} 1y (1) =0},
which can be divided in the following sets:
Nt i={ueN:y!1) >0},
N :={ue N y()=0},
N~ i={ueN:y/1) <0}

Due to the symmetry of J, both u — y/(1) and u  y//(1) are even. Thus, if u € N then |u| € N, and the same holds for N'*, N7,
and N. For any u € W' () \ {0} we define

Ef :={te(0,+0):tuec N*},
ED :={t € (0,+00): tu € N},
E; :={te(0,+):tue N7}
We will say that EF < E; if r* <~ for all /* € EZ. Furthermore, for all £ € L™ (2;RN), we set
AE) 1= m(PEONP (&), ) prarn)»
B() := m,(¢(§))<¢,(§)7§>iH(Q;RN) +m(E)P" (£, ),

which represent the principal parts of y/(1) and v’ (1), respectively.
To simplify matters, we will omit the subscripts in the duality brackets when the context is clear. As usual, the generic constants
¢, C > 0 may change their value at each place.

3. Basic estimates
In this section we will discuss some basic estimates which are needed in the sequel. We start with the following lemma.

Lemma 3.1. Suppose (H,,) and (H,) to be satisfied. Then, for all & € L' (2;RN), the following hold:
(a;) pM($(§)) < A(§) < qOM($(D);
(a) 1_A() < B(&) < (qn +1,)A);

(a3) MWL) < M@GE) < MW (€],

where EZ",WZH are as in (2.3), while 0 is defined in (2.13).
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Proof. We fix £ € L (@2;R"). Reasoning as in the proof of (2.6), the monotonicity of m gives

inf S) 5 (3.1
>0 M(5)

Proposition 2.6, (H,), and (2.13) yield

m(ENP' (). &) = m(¢(é))/ O H(x, [EDIE] dx < gm(p(§)p(E) < O M ($($)). (3.2)
Q
Hence, using (H,) and (3.1),

m(@ENP' (©), €) 2 pm(@(E))P(E) = pM($(E)). (3.3)

Putting together (3.2) and (3.3) yields (a)).
Reasoning as above, from (H,) and (H,,) we infer

m' (NP (). &) < gm' (PENPE) < gnm(d(©)), 3.4

and

¢"(©)E 6 = /Q 2 H(x, |EDIE P dx < 1 /l2 O H(x, D] dx = 1,.('(©). &) (3.5)
Summing (3.4) multiplied by (¢'(¢), &) with (3.5) multiplied by m(¢(¢)) yields

B(©) < (gn +1)AD).
On the other hand, arguing as in (3.5),

B(&) 2 m(@(ENP" ()&, &) 2 I_m(ENe'(9).€) = LA,

which concludes the proof of (a,).
Let us show (a;). According to Proposition 2.8 and (H,) we have

WAEl) < @ < Wl (3.6)
while Proposition 2.6, (H,,), and (3.1) ensure

MMW(s) < M(s) < M(DW'(s) for all s > 0. (3.7)
Thus, (3.6) and (3.7) together lead to
—0 —0 —q —q0
M(@©&) < M(HW () < MW (W (lI¢llz) = MW , (lI¢ll1)
and
M($(©) = MW ($(&) = MW W AEllz) = MW P (IEll),
which gives (a3). [
Note that the estimates contained in Lemma 3.1 will allow us to have controls of type
—q0
B(¢) = A(§) = M(¢(£)), KZG(II-flIH) SM(@) S W,q, (142
with W W as in (2.3).
Lemma 3.2. Under the hypotheses (H), for all u € WOI'H(.Q) one has
J——
O [ Fudx< W, AVl
Q
(bs) W (lully) < / Gy dx < CW(1Vully),
Q
for some ¢, C > 0 independent of u.
Proof. Fix any u € WOI’H(.Q). Exploiting Proposition 2.6 and (H,) we have

. . Sf(s)
ip Z=§I>1£ F0) >21=-y, >0, sp:= éup

Thus, using Proposition 2.6 again, besides Holder’s inequality and WOI'H(.Q) o LM (Q) < LP(Q) (see (H,) and Proposition 2.2), we
get

SF ip SF ir SF ir —SF —]—y_
Fwdx<C wrdx + wt dx | < C(llull,” +llull,”) < CAIVully, +1Vully) < CW, (IVullz) < CW_, (IVully),
Q {u=1} {u<1}

9
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for a suitable C > 0 changing at each place. Hence (b)) is established.
In order to show (b,), observe that Proposition 2.6 and (H,) entail
5g(s)

. . 58(s) "
ig :=inf >r_>1, sgi=sup——=<r, <p".
G TR0 Gh) T G = Ge =P

In particular, G is a generalized N-function satisfying the hypotheses of Proposition 2.8. Moreover, owing to (3.1), one has 6 > 1.
Then (H.) and Proposition 2.6 yield

re>gn+l,+1>2qn+1)>q0 >q2>p. (3.8)

Since p < g <r_ <r, < p*, by Sobolev’s embedding and Proposition 2.2 one has Vlfol’H(Q) < WO""(.Q) S LP(Q) s L6(R) o LH(Q).
Thus, Proposition 2.8 ensures

/Q G dx < W, (lullg) < CW (I Vullyp).
Analogously,
[ Gwax = W ullg) > WS,
establishing (b,). [
4. Analysis of the Nehari manifold
In this section we study the Nehari manifold and its properties.
Lemma 4.1. Let hypotheses (H) be satisfied. Then J |, is coercive.

Proof. Let {u,},ey € N be such that ||u,|| — co. By definition of N we have
/ gu,)u, dx = m(p(Vu, )¢’ (Vu,), Vu,) — /1/ f(u,)u, dx (4.1)
Q Q
for all n € N. Thus Proposition 2.6, (H,), (4.1), and Lemmas 3.1 as well as 3.2 imply that, whenever ||Vu,||;, is sufficiently large,

g(u,)u,

-1
1) = M@ - [ Fupas- [ ( ) o,y dx
Q o\ GQu,)

> M(¢p(Vu,)) — /1/ F(u,)dx — L / g(u,)u, dx
Q r-Ja

= M@(Va,)) = ~-m(@ (V)X (V) V) = [ / Flua,)dv— / Fuu, dx]
— Q - JQ

r

> (1 - ﬁ) M@(Vu,) - 4 /Q F(u,)dx > c||Vu, |7, = AC||Va, I}, 7~
with ¢, C > 0, where we also used that r_ > ¢6, owing to (3.8). Recalling 1 — y_ < p yields J(u,) - +c0. [
Lemma 4.2. Let hypotheses (H) be satisfied. Then there exist D, = D,(4) > 0 and D, > 0 such that
lu*| <D, and |lu"|| > D, (4.2)
for dall u* € N'* UN? and for all u= € N~ U N°. Moreover,
}i%ﬁ Dy(A) =0, (4.3)

so there exists A, > 0 such that D, < D, and N° = § for any 1 € (0, A,).

Proof. We take u* € N+ UN? and u= € N~ U NO. Then, by the definitions of A, N'%, and N, one has

A(Vur) = A/ f@H)u* dx +/ g(uH)u* dx, 4.4)
Q Q
as well as
B(Vu") > A / FluhHhH? dx + / g WHwh)? dx (4.5)
Q Q
and
B(Vu) < A / Fl) @) dx + / &' (W)W )? dx. (4.6)
Q Q

10
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Let us reason for u*. According to (Hy), along with (4.4) and (4.5), we get

(r_ — DA(Vu*) — B(Vu*) < /1/9 fwhHut <r_ —-1- fl;?%) dx + Lg(u*’)lf’ (r_ —-1- %) dx

[yt
< /1/Qf(u+)u+ (r, -1- W) dx.

Thus, owing to Lemma 3.1, (H,), (3.8), Proposition 2.6, and Lemma 3.2, we have

CZZB(HVqullH) <@ —-1—qn—1)ANVu") < (r_ - DA(Vu*) — B(Vu*) < ﬂ/ fwhHut <r_ -1- M)

fwh)
<AMr_-1 +y+)/ F@hHutdx < Ar_ —1+y)(0 -7 )/ F(u+)dx<ACW1 " "IVt i),

for suitable ¢,C > 0. Since 1 —y_ < p, {Vut} is bounded in L™ (), whence {u*} is bounded in W " (Q). Moreover, |lut| — 0 as
A — 0, ensuring (4.3).
Now we focus on u~, reasoning as above. Hypothesis (Hy), besides (4.4) and (4.6), yields

y_A(Vu")+ B(Vu™) < /1/ fHu™ (y, + M) dx +/ g )u~ <y, + M) dx
Q f@w) gw™)

< / g~ (J’_ + M) dx
Q gu)

Exploiting Lemma 3.1, (H,), (3.8), Proposition 2.6, and Lemma 3.2, we deduce

&™)
<(ry-1+ y,)'/ g dx < (rp -1+ y,)rJr/ G )dx < CW?(HVIFHH).
Q Q -

CKZB(HVM_HH) <y ANVu ) <y_A(Vu")+ B(Vu™) < / g~ (y_ + M) dx
Q

Since g6 < r_ by (3.8), there exists a positive lower bound for ||Vu~||;;, namely |lu~||. Hence, (4.2) is established.

To conclude, observe that (4.3) provides A, > 0 such that D, < D, for all 2 € (0, A}), with D, D, as in (4.2). Let 4 € (0, A)). If,
by contradiction, there exists u € N, then applying (4.2) with u* = 4~ = u entails |lu|| < D; < D, < ||u||, which is a contradiction.
Accordingly, N'O = ¢ for all 1€ (0,4;). [

Lemma 4.3. Let hypotheses (H) be satisfied. Then there exists A, > 0 such that for all A € (0, A,) the following statement holds true: for
any u € WOI'H(Q)\ {0} there exist unique 0 < t} < r, such that ttu e N* and r;u e N~.

Proof. Fixanyu € WO1 *H(Q)\{0}. We are going to apply Proposition 2.10 to the function w,. To this end, using Lebesgue’s dominated
convergence theorem and Fatou’s lemma, along with (H,,), (H,), (Hg), (H,), and the symmetry of f, ensures

lim sup y, (1) = hm [m(d)(tVu))(q.’) (tVu), Vu) — /g(tu)u dx] —Mim(i)nf/ f(twudx
Q =0t Jo

-0+
= —uiminf/ F@tublul dx < -2 <liminff(t)> / |u] dx < 0.
=0t Jo =0t Q
Exploiting (H,), Proposition 2.6, and Lemmas 3.1 as well as 3.2 we get, for all 7 sufficiently large,
A(tVu) —/ g(tuytudx < A(tVu) — r_/ G(tu)dx < C(tlqullH)"e —c(tllull)",
Q Q
for some ¢, C > 0. Hence, recalling (2.14) and ¢0 < r_ (see (3.8)),

lim sup y,, "(t) = 11m sup y/m(l) < limsup - [A(IVM) / gltuytu dx] < lim sup [thg_l ||Vu||;1f — -1 ||u||;{_] = —oo.

t—+oco 1—+00 t—=+oc0

Reasoning as above, (2.14), (Hf), (Hg), Proposition 2.6, and Lemmas 3.1-3.2 imply
—1-y_ —r
) = (D) = W@ Vully) - C [3W,7 @l Vully) + W, @l Vull)| @7
for all + > 0 and opportune ¢, C > 0. In order to have max, ‘I’L:(’) > 0, from (4.7) it suffices that

- —_—r -
WP Vully) = W, G| Vully)
<

- for some 1 = #(u) > 0.
Wi, @liVullz)

To this aim we choose 7 := = o ” with p € (0, 1) such that
N q0 _ Cp'-
A= —P”
Cpl-r+

11
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This choice is possible since g6 < r_. In particular, max,, y/(t) > 0 whenever 4 < A. Moreover, note that 7 depends on u, but A does
not.

Set A, := min{A;, A}. Assuming A < A,, Lemma 4.2 ensures N'* = §, so that each zero of y/ is not a zero of y. Indeed, if
t € (0,4c0) is a zero of y/, then (2.14) yields

"
v, (D
D=1y, =0 and y/()=—5—#0.

Hence Proposition 2.10 provides 0 < ¢# < r such that rfu € N'*.

Next we show the uniqueness. The argument above ensures that the sets EX are non-empty. We show that E} < E,. By
contradiction suppose that there exist /= <* such that r* € E*. Then, by Lemma 4.2,

Dy <17 |lull < F|lull < Dy,

contradicting D, < D,, which holds for all 1 < 4.

Now we prove that E} is a singleton. An analogous argument guarantees the same property for E,. By contradiction, let
rf,t; € E} fulfill 17 < ;. Then there exists 6 € (0, 1(@ — 1)) such that y/(r}7 +6) > 0 > y/(t; — 5). By Bolzano’s theorem there exists
1y € (rf,13) such that 7,u € N. Consider

t=sup{re @t +6,1f-8):meN}.

By continuity of y/ we deduce that 7u € N, so7 € EX UE; UE?. Since N = ff one has 7 ¢ EC. On the other hand, again by Bolzano’s
theorem, 7 € E} would contradict the maximality of 7. Hence 7 € E;. Since 7 < t}, we get a contradiction with EX < E;. We deduce
Er={rf}. O

Lemma 4.4. Let hypotheses (H) be satisfied and A, be as in Lemma 4.3. Then J (u) < 0 for all u € N'* provided A < A,. Moreover, there
exists A3 > 0 such that for all A € (0, A3) the following assertion is true: there exists ¢ > 0 such that J(v) > o for all v € N'~.

Proof. Suppose 4 < A,, where A, is from Lemma 4.3. Pick any u € N'*. Owing to Lemma 4.3, one has y/l:(t) <0 forall t € (0,1).
Indeed, /(1) < 0 near ¢ = 0 and, if /(1) = 0 for some ¢ € (0,1), thent ¢ EF UE; UES, according to the fact that EF = {1}, Ef < E,
and E? = fJ, respectively. Hence

JW) =y, (1) <y, (0)=J(0) =0.

Now consider an arbitrary v € N ~. Reasoning as in (4.7) we get
—1—y_ —

J(tv) =y, (1) 2 CEZG(IHVUHH) -C /1W1_y+(t||VU||H) + W,f(fllvvllu)]
for all ¢ > 0 with some ¢, C > 0. We take p € (0, 1) such that cp? — Cp"- > 0, which is possible since g6 < r_ (see (3.8)). Then there
exists ¢ > 0 such that

. a _ Cpl- —

A = w > 0

Cplr+

Thus, choosing 7 := W, for all A < A one has J(fv) > . Notice that ¢ is independent of u. Since 4 < A,, Lemma 4.3 ensures that
H

v, has a unique global maximizer at 7 = 1. Hence
J) 2 J({tv)=20>0

whenever 1 < A3 := min{Az,/i}. O
5. Proof of the main result
We set A :=min{A|, A,, A3} with A;, i = 1,2,3, defined in the Lemmas 4.2, 4.3, and 4.4, respectively.

Proposition 5.1. Let hypotheses (H) be satisfied and let A € (0, A). Then there exists u € N'* such that u > 0 a.e.in 2 and

J(u) ZIJI\}IPJ.

Proof. Let {u,},cy be a minimizing sequence of J| y +. The coercivity of J| -+ (see Lemma 4.1) forces u,, — u for some u € WOI‘H(.Q),
passing to a sub-sequence if necessary. We may assume also u, — u in L*(R) for all « € (1, p*). The weak sequential lower semi-
continuity of J, along with Lemma 4.4, implies J(u) < inf s+ J < 0 and so u # 0. Owing to Lemma 4.3, there exists a unique >0
such that ru € M'*. It remains to prove that u € N'*.

Reasoning as in the first part of the proof of Lemma 4.4, y,, is strictly decreasing in (0, 7).

We claim that u, - u in WOI’H(Q), up to sub-sequences. The claim is equivalent to fu, — fu in WOI’H(Q). We argue by contradiction,
assuming that {tu,},cn does not converge to ru. We have

lim sup d)(;u,,) > P(tu),

n—oo

12
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since the opposite inequality entails 7u, — fu by the uniform convexity of WOI’H(.Q). Moreover, according to the convexity of H(x,-)
for a.a. x € 2, we get

0 < liminf{¢'(tVu,) — ¢’ tVu), Vu, — Vu) = liminf (¢’ tVu,), Vu,) — (¢’ tVu), Vu).
n—oo h—oo
We deduce

lim sup(¢’ (tVu,), Vu,) > (¢ (tVu), Vu).

n—oo

Indeed, if (¢'(tVu,), Vu,) — (¢'(tVu), Vu), then the weak-weak continuity of £ : WI‘H(_Q) - WI’H(Q)* yields

lm Sup(£ ). T, — ) = lim sup(£ G, ). ) = (£(Gw). ) =17 [hm (' TVu,), V) — (¢ (Vu), Vu>] -0,

n—oo

which forces fu, — fu due to the (S,)-property of £, ensured by Lemma 2.9. Hence, passing to a sub-sequence, we can assume
lim (¢’ (tVu,), Vu,) > (¢'(tVu), Vu) and lim ¢(tu,) > P(tu). (5.1)
n—0o0 h—oo

Exploiting Lebesgue’s dominated convergence theorem, the monotonicity of m, and (5.1), we infer
liminf v, () = iminf | m(@GVu,)(@ (V2,), Va,) — /Q F Gy dx — /Q e, dx]
= lim inf [m(dpVu,)) (@' Vu,), Vu,)] - /Q f(ruyudx — /Q g(tuyu dx (5.2)
> m(p(AVu))(P' tVu), Vu) — /Q f@uwudx — /Q gwudx = /(@) =0,

which forces 7 > 1. Indeed y/ (1) = 0. Reasoning as in the first part of Lemma 4.4, from E} = {r} and E} = {1} we deduce y/ <0
in (0,7) and ! <0 in (0, ). Hence, exploiting also the weak sequential lower semi-continuity of J yields

.1/\1}£ J<J@w) =y, <y, (1)=J@w < llggolf J(u,) = w{ J,
which is a contradiction. This establishes u, — u in W1 H(Q) up to sub-sequences, as claimed.

Letting n — oo in both y/ (1) = 0 and y/” 1) > 0 besides recalling Remark 2.11, we get u € N+ U N, Taking into account
Lemma 4.2, we deduce u € N+, By the symmetry of J and N'*, one can replace u with |u|, so that it is possible to assume u > 0
a.e.in Q. [

Proposition 5.2. Let hypotheses (H) be satisfied and let A € (0, A). Then there exists u € N~ such that u > 0 a.e.in 2 and

J(u) =minJ.
(@) = mir

Proof. Take any minimizing sequence {u,},ey € N~ for J| - The proof is analogous to the one of Proposition 5.1, except the
non-triviality of u (that is, the weak limit of {u,},cy in WOI’H(.Q)) and the strong convergence of {u,},cy in WOI’H(.Q).

In order to prove that u # 0 we argue by contradiction, supposing that u, — 0 in VVOI’H(_Q). Without any loss of generality, u, — 0
in L*(Q) for all x € (1, p*). Since u, € N~ for all n € N, we have

m(p(Vu,){¢'(Vu,), Vu,) = 4 /.(2 S (u,)u, dx + /Q g(uyu,dx forallneN.
Letting n — oo, along with Lemma 3.1, reveals
’}LTOKZG(HVWHH) <C lim m(@(Vu, )X’ (Vu,), Vu,) =0
for some C > 0, which entails u, — 0 in WOI’H(Q). According to Lemma 4.4,
0=J(0) = V}LIIE}OJ(M") >0,

which is a contradiction.

Now we prove u, — u in W1 "(Q). Since u # 0, Lemma 4.3 produces a unique 7 € (0,+o0) such that iu € N'-. Reasoning by
contradiction as in Proposition 5 1, namely supposing (5.1), we deduce v, (t) > 0 for n sufficiently large (cf. (5.2)). This forces 7 < 1,
taking into account that, for any n € N, one has E’ ={1}and y, (t) <Oforalls> 1. Moreover, ¢t = 1 is the unique global maximizer
of W, Indeed, it is the unique local maximizer, and v, (t) <0forallt>1 aswell as v, (D =J,) >0 >0=J(0), due to Lemmas
4.3 and 4. 4, respectively. This information, together with (5.1) and the strict monotonicity of M, yields

inf J < J(tu) < liminf J(tu,) = liminf y, (7) < liminf y, (1) = liminf J(u,) = inf J,
N-— n—co n—co n n—oco n n—oo N-—
which is a contradiction. []

13
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Proposition 5.3. Let hypotheses (H) be satisfied and let u € N'* be such that J(u) = min -+ J. Then there exists € > 0 such that

J@w) < Ju+h) foral he B,©0).

Proof. Let us consider the function
F(h,ty =y, () forall (h,1)€ W,"'(€2)x (0,+c0).

Since u € N'* one has F(0,1) = w,(1) = 0 and 9,F(0,1) = (1) > 0. Hence the implicit function theorem furnishes ¢; > 0 and
¢ B, (0) = (0,400) such that ¢(0) = 1 and F(h,{(h)) = 0, that is, {(h)(u + h) € N by (2.14). According to Remark 2.11, o,F is a
continuous function. Thus there exist ¢,,6 > 0 such that

v ()= 0,F(h,t)y>0 forall (h,1) € B,,(0)x (1 —0,1+0). (5.3)

The function ¢ is continuous as well, so there exists e; > 0 such that {(h) € (1—0,1+0) forall h € B, (0). Setting € = min{¢, &,,&3},
we deduce that {(h)(u+ h) € N for all A € B,(0). In particular, (5.3) implies also the convexity of y,,, in the interval joining
t =¢(h) and 7 = 1. Hence, we have

WurnC) Sy, CNER) = 1) + Wiy (1) = Wy (1.

Accordingly,
JW) = rjlgfigJ STEMA+ 1) =y, 1 (M) Sy (1) = J(u+ h)

for all h € B,(0). [

Remark 5.4. The conclusion of Proposition 5.3 does not hold for the minimizers of J constrained to N~ because they are not
local minimizers of J on WOI’H(Q). Instead they are saddle points. Indeed, given any « such that J(u) = min,,- J, u is a strict local
maximizer along the direction of u, while (reasoning as in Proposition 5.3, that furnishes ¢ such that {(th)(u +th) € N~ for small 1)
it is a local minimizer along any curve of type ¢ — {(th)(u + th) with h € WOI’H(.Q)\ {0}.

Lemma 5.5. Let hypotheses () be satisfied and let u € VVO"H(.Q), u >0 ae.in £, be a local minimizer of J. Then u > 0 a.e.in 2 and
m(p(Vu)){L(w), h) > /1/ fhdx + / g(w)hdx (5.4)
Q Q

foralhe WOI’H(_Q) with h > 0 a.e.in £.

Proof. Take any h € WOI"H(.Q) \ {0} fulfilling 4 > 0 a.e.in Q. Since u is a local minimizer of J, then J(u) < J(u + th) for all ¢
sufficiently small. Take any sequence {7,},cn with #, > 0 for all n € N such that ¢, — 0 and set K = u~'(0). Then, for any n large
enough,
o<l —Jw
t}’l
M(Pp(V(u +t,h))) — M(p(Vu)) /1/ F(u+t,h)— F(u) d / Gu+1t,h) — Gu) d
- x — —dx
Iy Q In Q In
M(p(V(u +1,h)) — M($(Vu)) / F(t,h) / F(u+1t,h)— F(u) / G(u+t,h) — Gu)
-4 dx -4 — dx - — dx.
t K t Q\K t Q t

n n n n

From Lebesgue’s dominated convergence theorem we obtain

lim M@V @+ 1,h) - M($(Vu) _ MGV Lw, ),

n—oo 1

n

Gu+t,h)—G
lim/wdx:/g(u)hdx’
n—oo Q t Q

n

while Fatou’s lemma and the monotonicity of F yields

F h)—F
lim inf / Futth = F@W g5 [ fanax.
n=e - Jo\k Iy O\K
Accordingly,
. Jw+1t,h)— J W) L. F(t,h)
0 < limsup ——————= < m(P(Vu)){(L(u), h) — A/ fwhdx — / gw)hdx — Alim 1nf/ ——dx. (5.5)
n—oo 1, Q\K Q = Jk n

If K has positive measure, then (H ) forces

F@, h
lim/ﬁdx:ﬂm,
K

n—oo
n

14



U. Guarnotta and P. Winkert Nonlinear Analysis 264 (2026) 113986
which is a contradiction. Hence K has zero measure, that is, u > 0 a.e.in Q. So (5.5) rewrites as
0 < m(p(Vu)){L(w), h) — ﬂ/ fwhdx - / g(u)hdx.
Q Q

This inequality is obviously verified also for A = 0, which concludes the proof. []

Lemma 5.6. Let hypotheses (H) be satisfied and let u € N'~ be such that u > 0 a.e.in 2 and J(u) = min,-- J. Then u > 0 a.e.in 2 and
fulfills (5.4).

Proof. We only sketch this proof, which is similar to those of Proposition 5.3 and Lemma 5.5.
Reasoning as in Proposition 5.3, there exists e > 0 and a continuous function ¢ : B,(0) — (0, 4+o0) such that ¢(0) = 1 and

(W) +h) e N~ for all h € B,(0).

In particular, owing to u € N7, one has y,({(th)) < y,(1) for all h € WO"H(.Q) and r sufficiently small. Take any sequence {t,},en
with ¢, > 0 for all n € N such that 7, — 0 and set K = u~'(0). For any n sufficiently large we get
0 < JE@,m)u+1,h) — J(u) < JE@, ) +1,h) — J(E(t,hu)
- t, - t,
_ M(P(VIE@, M +1,m)]) — M(S(VIE(E,h)ul) _ /1/ F@,mt,h) dx— /1/ F@,Mw+1,h) — F(@,hu) e
1, K ! O\K t
_/ G, +1,h) — G, hu) dx
Q ! ’

(5.6)

n n

n

Fix any 7 > 0 and consider the function
I:[0,1-R, I(s):=M@@VIEEh)(u+sh))).
Lagrange’s mean value theorem produces s, € (0,7) such that
M@V + th)]) — M(P(VIE(thu])) = tm((VIEth)w + s,p)DNP (VIEER)w + s,1)]), VIE(h)h]).
Hence, recalling also ((th) — 1 as t — 0%,
,l_lgl % [M(P(VIEh)(u + th)])) — M((V[E(thu])] = 11_151 m(@(VIEE)u + s;HDNP (VIE ) + s,m)), VIS (th)h])
= m(p(Vi){p' (Vu), Vh) = m(p(Vu)){L(w), h).

Arguing in the same way for the difference quotients involving F and G, (5.6) yields
J(E(@t,h t,h)—J
0 < lim sup @, +1,h)—Jw

n—oo t,

F({(t:h)t,,h) dx

>

< m(p(Vu)){L(u), h) — A/ fwhdx — / gw)hdx — Alim inf/
Q\K Q n—ee Jk

n

which parallels (5.5). The proof now follows exactly as in Lemma 5.5. []
Proposition 5.7. Let hypotheses (H) be satisfied. Any u € N satisfying both u > 0 a.e.in Q and (5.4) is a weak solution to (P)).

Proof. Let us consider the linear operator T : WOLH(.Q) — R defined as

(T, hY = m(p(Vu){L(w), h) — A / Fhdx — / gwhdx for all h e W)"(Q).
Q Q

According to (5.4), T is well-defined and non-negative (i.e., (T, h) > 0 for all 4 > 0 a.e.in Q). Moreover, u € N is equivalent to
(T,u) = 0. Hence, taking any ¢ € I/VOI‘H(_Q) and € > 0, we have

0<(T,(u+ep)")=(T,u+e@) +(T,(u+ep) ) =(T,u) + (T, @) +{T,(u+e@)") = &(T,0) +{T,(u+ep)”),

where (u+e@)* and (u+ @)~ stand for the positive and the negative part of u + e¢, respectively. Recalling the definition of T, u > 0
a.e.in @, and d,H(x, |Vul|) > 0 a.e.in £, we have

(T, (u+ep)”) < mp(Vi)) (L), (u+ep)”) = —m(P(Vu)) 9, H(x, | Vul) vu (Vu+eVe)dx
{u+ep<0} [Vul
< —em(¢p(Vu)) dH(x, |Vu|)ﬂ Ve dx.
(utep<0) [Vul
Thus we get
0 < (T. ) — m(é(Vi) 0,M(x, |Vu) 2V g dx.
(u+ep<0} [Vul

Notice that |{u + ep < 0}| — 0 as € — 0. Therefore, (T, ) >0 for all p € WOI‘H(.Q). Since ¢ is arbitrarily chosen, we have (T, ) =0
for all ¢ € WO] ‘H(.Q), which means that u is a weak solution to (P,). [
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Now we can give the proof of our main result.

Proof of Theorem 1.1. Owing to Propositions 5.1 and 5.2, we can find functions u,v € VVOI‘H(_Q) such that
Jw)=minJ and J(v)=minJ.
N+ N—

By virtue of Proposition 5.3 (see also Remark 5.4), Lemma 5.5 is applicable to u. Thus, Proposition 5.7 ensures that u is a weak
solution of problem (P,). On the other hand, Lemma 5.6 and Proposition 5.7 guarantee that v is a weak solution to (P,). The
conclusion follows by Lemma 4.4, since u € N'* and v € N~ imply

Juw <0< J@). O
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