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A B S T R A C T

In this paper we study the asymptotic behavior of solutions to the (𝑝, 𝑞)-equation

−𝛥𝑝𝑢 − 𝛥𝑞𝑢 = 𝑓 (𝑥, 𝑢) in 𝛺, 𝑢 = 0 on 𝜕𝛺,

as 𝑝 → 1+, where 𝑁 ≥ 2, 1 < 𝑝 < 𝑞 < 1∗ ∶= 𝑁∕(𝑁 − 1) and 𝑓 is a Carathéodory function that
grows superlinearly and subcritically. Based on a Nehari manifold treatment, we are able to
prove that the (1, 𝑞)-Laplace problem given by

−div
(

∇𝑢
|∇𝑢|

)

− 𝛥𝑞𝑢 = 𝑓 (𝑥, 𝑢) in 𝛺, 𝑢 = 0 on 𝜕𝛺,

has at least two constant sign solutions and one sign-changing solution, whereby the sign-
changing solution has least energy among all sign-changing solutions. Furthermore, the solutions
belong to the usual Sobolev space 𝑊 1,𝑞

0 (𝛺) which is in contrast with the case of 1-Laplacian
problems, where the solutions just belong to the space BV(𝛺) of all functions of bounded
variation. As far as we know this is the first work dealing with (1, 𝑞)-Laplace problems even
in the direction of constant sign solutions.

. Introduction

In the last three decades, problems involving the 1-Laplacian have gained great interest and were subject of several research
ctivities using different techniques. This 1-Laplacian is formally defined as

𝛥1𝑢 = div
(

∇𝑢
|∇𝑢|

)

(1.1)

nd was studied intensively in the groundbreaking works of Andreu–Ballester–Caselles–Mazón [5–7], see also the monograph by
ndreu–Vaillo–Caselles–Mazón [8]. Among the very first works on this topic were the papers of Kawohl [24] and Demengel [15].
owever, the operator is not only of great interest from a mathematical point of view, it also appears in several applications, see,

or example, the papers of Chen–Levine–Rao [14] and Rudin–Osher–Fatemi [34] in the field of image restoration.
The natural function space in order to make (1.1) well-defined is the space BV(𝛺) of all functions of bounded variation. The main

isadvantage of this space is the lack of reflexivity which makes the proof of compactness conditions as the Cerami or the Palais
male conditions quite challenging. One possible approach can be done by dealing with a solution in the space BV(𝛺) in which the
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Nonlinear Analysis 251 (2025) 113677 
subdifferential of the energy functional vanishes. The advantage of this treatment is the fact that one can apply variational methods in
order to get solutions of corresponding equations driven by the 1-Laplacian. We refer to the papers of Alves–Figueiredo–Pimenta [2]
nd Figueiredo–Pimenta [17–19].

Another method to deal problem with the 1-Laplacian is the pairing theory developed by Anzellotti [9] in order to give a meaning
o the quotient 𝐷𝑢∕|𝐷𝑢| for 𝑢 ∈ BV(𝛺). This approach has been applied, for example, by Mercaldo–Segura de León–Trombetti [29]
ho studied the problem

− div
(

∇𝑢
|∇𝑢|

)

= 𝑓 (𝑥) in 𝛺, 𝑢 = 0 on 𝜕𝛺, (1.2)

ith a function 𝑓 ∈ 𝐿1(𝛺) independent of 𝑢. The authors prove the existence of a renormalized solution 𝑢𝑝 of the corresponding
-Laplace problem which turns out to be a solution of the limit problem (1.2). In 2018, Latorre–Segura de León [25] have been
onsidered the Dirichlet problem

−div
(

∇𝑢
|∇𝑢|

)

+ |𝐷𝑢| = 𝑓 (𝑥) in 𝛺, 𝑢 = 0 on 𝜕𝛺,

and proved existence results and a comparison principle when 𝑓 ∈ 𝐿1(𝛺), see also Mazón–Segura de León [26] for the case 𝑓 ∈ 𝐿𝑞(𝛺)
ith 𝑞 > 𝑁 . Recently, Figueiredo–Pimenta [21] treated the 1-Laplacian problem in R𝑁 defined by

− div
(

∇𝑢
|∇𝑢|

)

+ 𝑢
|𝑢|

= 𝑓 (𝑢) in R𝑁 , (1.3)

with a continuous function 𝑓 ∶R → R that has subcritical growth and satisfies the Ambrosetti–Rabinowitz condition. By considering
the associated Nehari manifold to (1.3) the existence of a sign-changing solution with least energy has been proved. In particular the
authors apply ideas from the paper of Molina Salas–Segura de León [30]. Finally, we mention further existence results in the direction
of 1-Laplacian problems which have been published within the last decades. We refer to the works of Abdellaoui–Dall’Aglio–Segura
de León [1] involving critical gradient terms, Alves–Pimenta [3] for unbounded domains using the concentration–compactness
principle, Chang [12] for the spectrum of the 1-Laplacian, Demengel [16] for variational problems, Figueiredo–Pimenta [20]
involving gradient terms, Mercaldo–Rossi–Segura de León–Trombetti [27,28] for anisotropic and Neumann boundary values
problems, respectively, Parini [31] for the second eigenvalue of the 𝑝-Laplacian as 𝑝 goes to 1 and Pimenta–dos Santos–Santos
Júnior [32] for discontinuous problems, see also the references therein.

In this work, we study the asymptotic behavior of the solutions of the following (𝑝, 𝑞)-Laplacian problem

− 𝛥𝑝𝑢 − 𝛥𝑞𝑢 = 𝑓 (𝑥, 𝑢) in 𝛺, 𝑢 = 0 on 𝜕𝛺, (1.4)

s 𝑝 → 1+, where 𝑁 ≥ 2, 1 < 𝑝 < 𝑞 < 1∗ and 1∗ = 𝑁∕(𝑁 − 1). The nonlinearity 𝑓 ∶𝛺 × R → R is a Carathéodory function which is
assumed to satisfy the following conditions:

(f1) There exists 𝑐1 > 0 such that

|𝑓 (𝑥, 𝑠)| ≤ 𝑐1
(

1 + |𝑠|𝑟−1
)

for a.a. 𝑥 ∈ 𝛺 and for all 𝑠 ∈ R,

where 𝑞 < 𝑟 < 1∗.
(f2)

lim
𝑠→±∞

𝑓 (𝑥, 𝑠)
|𝑠|𝑞−2𝑠

= +∞ uniformly for a.a. 𝑥 ∈ 𝛺.

(f3) There exists 𝛼 > 0 such that

lim sup
𝑠→0

|𝑓 (𝑥, 𝑠)|
|𝑠|𝛼

< +∞ uniformly for a.a. 𝑥 ∈ 𝛺.

(f4) 𝑠 ↦ 𝑓 (𝑥, 𝑠)𝑠 − 𝑞𝐹 (𝑥, 𝑠) is nondecreasing in R+ and nonincreasing in R−, for a.a. 𝑥 ∈ 𝛺, where

𝐹 (𝑥, 𝑠) = ∫

𝑠

0
𝑓 (𝑥, 𝑡) d𝑡.

(𝑓5) 𝑠 ↦ 𝑓 (𝑥, 𝑠) is increasing for a.a. 𝑥 ∈ 𝛺.

As 𝑝 → 1+, the solutions 𝑢𝑝 of (1.4) are expected to converge to a function 𝑢0 ∈ 𝑊 1,𝑞
0 (𝛺), which satisfies

−div
(

∇𝑢
|∇𝑢|

)

− 𝛥𝑞𝑢 = 𝑓 (𝑥, 𝑢) in 𝛺,

𝑢 = 0 on 𝜕𝛺,
(1.5)

in the weak sense, that is,

∫𝛺
∇𝑢0 ⋅ ∇𝑣
|∇𝑢0|

d𝑥 + ∫𝛺
|∇𝑢0|

𝑞−2∇𝑢0 ⋅ ∇𝑣 d𝑥 = ∫𝛺
𝑓 (𝑥, 𝑢0)𝑣 d𝑥 (1.6)

olds for all 𝑣 ∈ 𝑊 1,𝑞
0 (𝛺).

Our first main result is the following one.
2 
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Theorem 1.1. Suppose 𝑁 ≥ 2, 1 < 𝑞 < 1∗ and that 𝑓 satisfies (f1)–(f5). Then there exist non-trivial constant sign solutions
𝑢0, 𝑣0 ∈ 𝑊 1,𝑞

0 (𝛺) of (1.5) in the sense of (1.6) such that 𝑢0 is nonnegative and 𝑣0 is nonpositive, respectively.

In the second part of this paper we prove the following result, which states the existence of a sign-changing solution of (1.5) in
he sense of (1.6).

heorem 1.2. Suppose 𝑁 ≥ 2, 1 < 𝑞 < 1∗ and that 𝑓 satisfies (𝑓1) − (𝑓5). Then there exists a sign-changing solution 𝑤0 ∈ 𝑊 1,𝑞
0 (𝛺) of

(1.5), which turns out to be a least energy sign-changing solution of (1.5).

The proofs of our results are mainly based on the usage of the Nehari manifold to get a sign-changing solution to problem (1.4).
To be more precise we consider the so called nodal Nehari set defined by

𝑝 =
{

𝑢 ∈ 𝑊 1,𝑞
0 (𝛺)∶ 𝑢± ≠ 0 and ⟨𝛷′

𝑝(𝑢), 𝑢
±
⟩ = 0

}

,

where

𝛷𝑝(𝑢) ∶= 𝐼𝑝(𝑢) +
𝑝 − 1
𝑝

|𝛺|

ith 𝐼𝑝 being the energy functional to (1.4). This method is very powerful and does not need any regularity on the solutions. As
ar as we know, the set 𝑝 was first used by Bartsch–Weth [11] in order to get nodal solutions for the semilinear equation

−𝛥𝑢 + 𝑢 = 𝑓 (𝑢) in 𝛺, 𝑢 = 0 on 𝜕𝛺,

with differentiable 𝑓 growing superlinearly and subcritically provided 𝛺 contains a large ball.
We point out that, up to our knowledge, our work is the first one dealing with a (1, 𝑞)-Laplacian instead of a 1-Laplacian. This

fact gives us, in addition to the existence results in Theorems 1.1 and 1.2, more regularity on the solutions. Indeed, in our results we
obtain that the solutions belong to the usual Sobolev space 𝑊 1,𝑞

0 (𝛺) which implies that their weak derivative exist. Such property
is in general not true for functions on BV(𝛺) for which the distributional derivative is just a vectorial Radon measure. As a result
of this, our solutions satisfy (1.5) in the weak sense given in (1.6), what is unusual for problems involving this operator.

This paper is organized as follows. In Section 2 we introduce our function space BV(𝛺) of all functions of bounded variation
including its properties and we present the pairing theory introduced by Anzellotti [9]. Section 3 is devoted to the proof of
Theorem 1.1 while in Section 4 we give the proof of Theorem 1.2.

2. Preliminaries

In this section we present the main function space and tools that will be needed in the sequel. First of all, let us introduce the
space of functions of bounded variation, denoted by BV(𝛺), where 𝛺 ⊂ R𝑁 is a bounded domain, see the monograph of Attouch–
Buttazzo–Michaille [10]. We say that 𝑢 ∈ BV(𝛺), or is a function of bounded variation, if 𝑢 ∈ 𝐿1(𝛺) and its distributional derivative
𝐷𝑢 is a vectorial Radon measure, i.e.,

BV(𝛺) =
{

𝑢 ∈ 𝐿1(𝛺)∶ 𝐷𝑢 ∈ (𝛺,R𝑁 )
}

.

It can be proved that 𝑢 ∈ BV(𝛺) if and only if 𝑢 ∈ 𝐿1(𝛺) and

∫𝛺
|𝐷𝑢| ∶= sup

{

∫𝛺
𝑢 div𝜙 d𝑥∶𝜙 ∈ 𝐶1

𝑐 (𝛺,R𝑁 ), ‖𝜙‖∞ ≤ 1
}

< +∞.

The space BV(𝛺) is a Banach space when endowed with the norm

‖𝑢‖BV ∶= ∫𝛺
|𝐷𝑢| + ∫𝛺

|𝑢| d𝑥,

which is continuously embedded into 𝐿𝑟(𝛺) for all 𝑟 ∈ [1, 1∗], where 1∗ = 𝑁∕(𝑁 − 1). Since the domain 𝛺 is bounded, it also holds
the compactness of the embedding of BV(𝛺) into 𝐿𝑟(𝛺) for all 𝑟 ∈ [1, 1∗).

The space 𝐶∞(𝛺) is not dense in BV(𝛺) with respect to the strong topology. However, with respect to the strict convergence, it
does. We say that (𝑢𝑛)𝑛∈N ⊂ BV(𝛺) converges to 𝑢 ∈ BV(𝛺) in the sense of the strict convergence, if

𝑢𝑛 → 𝑢 in 𝐿1(𝛺) and ∫𝛺
|𝐷𝑢𝑛| → ∫𝛺

|𝐷𝑢|

as 𝑛 → ∞. In Ambrosio–Fusco–Pallara [4] it has been shown that the trace operator BV(𝛺) ↪ 𝐿1(𝜕𝛺) is well defined in such a way
that

‖𝑢‖ ∶= ∫𝛺
|𝐷𝑢| + ∫𝜕𝛺

|𝑢| d𝑁−1

is an equivalent norm to ‖ ⋅ ‖BV.
Given 𝑢 ∈ BV(𝛺), we can decompose its distributional derivative as

𝐷𝑢 = 𝐷𝑎𝑢 +𝐷𝑠𝑢,
3 
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where 𝐷𝑎𝑢 is absolutely continuous with respect to the Lebesgue measure 𝑁 while 𝐷𝑠𝑢 is singular with respect to the same measure.
Moreover, we denote the total variation of 𝐷𝑢 as |𝐷𝑢|.

In several arguments used in this work, it is mandatory to have a sort of Green’s formula to expressions like 𝑤 div(𝐳), where
∈ 𝐿∞(𝛺,R𝑁 ), div(𝐳) ∈ 𝐿𝑁 (𝛺) and 𝑤 ∈ BV(𝛺). For this we have to somehow deal with the product between 𝐳 and 𝐷𝑤, which we
enote by (𝐳, 𝐷𝑤). This can be done through the pairings theory developed by Anzellotti in [9], see also Frid–Chen in [13]. Below,
e describe the main results of this theory.

Let us denote

𝑋𝑁 (𝛺) =
{

𝐳 ∈ 𝐿∞(𝛺,R𝑁 )∶ div(𝐳) ∈ 𝐿𝑁 (𝛺)
}

.

or 𝐳 ∈ 𝑋𝑁 (𝛺) and 𝑤 ∈ BV(𝛺), we define the distribution (𝐳, 𝐷𝑤) ∈ ′(𝛺) as

⟨(𝐳, 𝐷𝑤), 𝜑⟩ ∶= −∫𝛺
𝑤𝜑 div(𝐳) d𝑥 − ∫𝛺

𝑤𝐳 ⋅ ∇𝜑 d𝑥

or every 𝜑 ∈ (𝛺). With this definition, it can be proved that (𝐳, 𝐷𝑤) is in fact a Radon measure such that
|

|

|

|

∫𝐵
(𝐳, 𝐷𝑤)

|

|

|

|

≤ ‖𝐳‖∞ ∫𝐵
|𝐷𝑤| (2.1)

or every Borel set 𝐵 ⊂ 𝛺.
In order to define an analogue of Green’s formula, it is also necessary to describe a weak trace theory for 𝐳. In fact, there exists

trace operator [ ⋅ , 𝜈] ∶𝑋𝑁 (𝛺) → 𝐿∞(𝜕𝛺) such that

‖ [𝐳, 𝜈] ‖𝐿∞(𝜕𝛺) ≤ ‖𝐳‖∞

nd, if 𝐳 ∈ 𝐶1(𝛺𝛿 ,R𝑁 ),

[𝐳, 𝜈] (𝑥) = 𝐳(𝑥) ⋅ 𝜈(𝑥) on 𝛺𝛿 ,

here 𝛺𝛿 is a 𝛿-neighborhood of 𝜕𝛺. Thanks to these definitions, it can be proved that the following Green’s formula holds for
every 𝐳 ∈ 𝑋𝑁 (𝛺) and 𝑤 ∈ BV(𝛺) ∩ 𝐿∞(𝛺):

∫𝛺
𝑤 div(𝐳) d𝑥 + ∫𝛺

(𝐳, 𝐷𝑤) = ∫𝜕𝛺
[𝐳, 𝜈]𝑤 d𝑁−1. (2.2)

3. Existence of constant sign solutions

In this section we are going to prove Theorem 1.1. In order to get the solutions we are interested in, the first step is to consider
the following problem for 𝑞 > 𝑝 > 1,

−𝛥𝑝𝑢 − 𝛥𝑞𝑢 = 𝑓 (𝑥, 𝑢) in 𝛺,

𝑢 = 0 on 𝜕𝛺.
(3.1)

It is well known that weak solutions of (3.1) are critical points of the energy functional 𝐼𝑝 ∶𝑊
1,𝑞
0 (𝛺) → R given by

𝐼𝑝(𝑢) ∶=
1
𝑝 ∫𝛺

|∇𝑢|𝑝 d𝑥 + 1
𝑞 ∫𝛺

|∇𝑢|𝑞 d𝑥 − ∫𝛺
𝐹 (𝑥, 𝑢) d𝑥,

hich is well defined as by (f1) it holds

∫𝛺
𝐹 (𝑥, 𝑢) d𝑥 ≤ 𝐶1‖𝑢‖1 + 𝐶2‖𝑢‖

𝑟
𝑟.

Since we are looking for nonnegative (or nonpositive) solutions, let us consider the truncated version of 𝐼𝑝 (denoted by the sake of
simplicity also by 𝐼𝑝), as

𝐼𝑝(𝑢) ∶=
1
𝑝 ∫𝛺

|∇𝑢|𝑝 d𝑥 + 1
𝑞 ∫𝛺

|∇𝑢|𝑞 d𝑥 − ∫𝛺
𝐹+(𝑥, 𝑢) d𝑥,

here 𝐹+(𝑥, 𝑠) = ∫ 𝑠
0 𝑓+(𝑥, 𝑡) d𝑡 and 𝑓+(𝑥, 𝑠) = 0 for 𝑠 ≤ 0 and 𝑓+(𝑥, 𝑠) = 𝑓 (𝑥, 𝑠) for 𝑠 > 0.

We consider the functional 𝛷𝑝 ∶𝑊
1,𝑞
0 (𝛺) → R given by

𝛷𝑝(𝑢) ∶= 𝐼𝑝(𝑢) +
𝑝 − 1
𝑝

|𝛺|,

hich is well defined and (𝛷𝑝(𝑢))𝑝>1 is non-decreasing in 𝑝, for all 𝑢 ∈ 𝑊 1,𝑞
0 (𝛺). Indeed, if 1 < 𝑝1 ≤ 𝑝2 < 𝑁 , then by Young’s

inequality with exponents 𝑝2∕𝑝1 and 𝑝2∕(𝑝2 − 𝑝1), it follows that

|∇𝑢|𝑝1 d𝑥 ≤
𝑝1

|∇𝑢|𝑝2 d𝑥 +
𝑝2 − 𝑝1

|𝛺|.
∫𝛺 𝑝2 ∫𝛺 𝑝2

4 
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Hence, it follows that, for all 𝑢 ∈ 𝑊 1,𝑞
0 (𝛺),

𝛷𝑝1 (𝑢) =
1
𝑝1 ∫𝛺

|∇𝑢|𝑝1 d𝑥 +
𝑝1 − 1
𝑝1

|𝛺| + 1
𝑞 ∫𝛺

|∇𝑢|𝑞 d𝑥 − ∫𝛺
𝐹 (𝑢) d𝑥

≤ 1
𝑝1

(

𝑝1
𝑝2 ∫𝛺

|∇𝑢|𝑝2 d𝑥 +
𝑝2 − 𝑝1

𝑝2
|𝛺|

)

+
𝑝1 − 1
𝑝1

|𝛺| + 1
𝑞 ∫𝛺

|∇𝑢|𝑞 d𝑥

− ∫𝛺
𝐹 (𝑢) d𝑥

= 𝛷𝑝2 (𝑢).

(3.2)

ince 𝛷𝑝 and 𝐼𝑝 differs just by a constant, we can study (3.1) from a variational point of view by dealing with either 𝐼𝑝 or 𝛷𝑝.
By (f3), for 𝑝 > 1 sufficiently close to 1, the function 𝑓 satisfies

lim sup
𝑠→0

|𝑓 (𝑥, 𝑠)|
|𝑠|𝑝−1

= 0 uniformly for a.a. 𝑥 ∈ 𝛺.

Then, for each such 𝑝, standard arguments imply that 𝛷𝑝 satisfies the geometric conditions of the mountain-pass theorem. Moreover,
as in Molina Salas–Segura de León [30], one can prove that there exists 𝑒 ∈ 𝑊 1,𝑞

0 (𝛺), such that

𝛷𝑝(𝑒) < 0 for all 1 < 𝑝 < 𝑞.

Then, we can find a sequence (𝑢𝑛)𝑛∈N ⊂ 𝑊 1,𝑞(𝛺) such that, as 𝑛 → +∞,

𝛷𝑝(𝑢𝑛) → 𝑐𝑝,

and
(

1 + ‖𝑢𝑛‖𝑊 1,𝑞
)

𝛷′
𝑝(𝑢𝑛) → 0 in 𝑊 −1,𝑞′ (𝛺),

where

𝑐𝑝 = inf
𝛾∈𝛤𝑝

max
𝑡∈[0,1]

𝛷𝑝(𝛾(𝑡))

and

𝛤𝑝 = {𝛾 ∈ 𝐶([0, 1],𝑊 1,𝑞
0 (𝛺))∶ 𝛾(0) = 0 and 𝛾(1) = 𝑒}.

Moreover, as in Gasiński–Winkert [23], one can prove that 𝐼𝑝 satisfy the Cerami compactness condition. Then, there exists an
element 𝑢𝑝 ∈ 𝑊 1,𝑞

0 (𝛺) such that

𝑢𝑛 → 𝑢𝑝 in 𝑊 1,𝑞
0 (𝛺) as 𝑛 → +∞.

Hence, 𝑢𝑝 is a weak solution of (3.1), that is,

∫𝛺
|∇𝑢𝑝|

𝑝−2∇𝑢𝑝 ⋅ ∇𝑣 d𝑥 + ∫𝛺
|∇𝑢𝑝|

𝑞−2∇𝑢𝑝 ⋅ ∇𝑣 d𝑥 = ∫𝛺
𝑓 (𝑥, 𝑢𝑝)𝑣 d𝑥 (3.3)

ith

𝛷𝑝(𝑢𝑝) = 𝑐𝑝.

In addition, by taking 𝑢−𝑝 as test function in (3.3), we have that

∫𝛺
|∇𝑢−𝑝 |

𝑝 d𝑥 + ∫𝛺
|∇𝑢−𝑝 |

𝑞 d𝑥 = 0,

hich implies that 𝑢𝑝 is a nonnegative solution.
It is also possible to show that the mountain pass solution 𝑢𝑝 is the minimum of 𝛷𝑝 over the Nehari manifold associated to (3.1)

for instance, see [33][Proposition 3.11), defined by

𝑝 =
{

𝑢 ∈ 𝑊 1,𝑞
0 (𝛺) ⧵ {0}∶ ⟨𝛷′

𝑝(𝑢), 𝑢⟩ = 0
}

,

.e.,

𝛷𝑝(𝑢𝑝) = min
𝑢∈𝑝

𝛷𝑝(𝑢). (3.4)

ence, since 𝑝 contains all nontrivial nonnegative solutions of (3.1), it follows that 𝑢𝑝 is a nonnegative ground state solution of
3.1).

In Gasiński–Winkert [23] (as well as in Figueiredo–Ramos Quoirin [22]), the authors deal with (3.1) by using the Nehari manifold
nd prove that for each 𝑢 ∈ 𝑊 1,𝑞

0 (𝛺), 𝑢 ≥ 0 and 𝑢 ≠ 0, there exists a unique 𝑡𝑢 > 0 such that 𝛷′
𝑝(𝑡𝑢𝑢) = 0 and

𝛷 (𝑡 𝑢) = max𝛷 (𝑡𝑢). (3.5)
𝑝 𝑢 𝑡>0 𝑝
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Moreover, 𝑡𝑢𝑝 = 1, i.e.

𝛷𝑝(𝑢𝑝) = max
𝑡>0

𝛷𝑝(𝑡𝑢𝑝).

Now we prove some technical lemmas that will imply that the family (𝑢𝑝)1<𝑝<𝑞 is bounded in 𝑊 1,𝑞
0 (𝛺).

Lemma 3.1. The family (𝛷𝑝(𝑢𝑝))𝑝 is nondecreasing for 𝑝 ∈ (1, 𝑞).

Proof. Let 1 < 𝑝1 ≤ 𝑝2 < 𝑞 and 𝑢𝑝1 , 𝑢𝑝2 ∈ 𝑊 1,𝑞
0 (𝛺) satisfying (3.4). Since 𝑢𝑝2 ≠ 0, there exists 𝑡 > 0 such that

𝑡𝑢𝑝2 ∈ 𝑝1 . (3.6)

Then, from (3.2), (3.4), (3.5) and (3.6), it follows that

𝛷𝑝2 (𝑢𝑝2 ) ≥ 𝛷𝑝2 (𝑡𝑢𝑝2 ) ≥ 𝛷𝑝1 (𝑡𝑢𝑝2 ) ≥ 𝛷𝑝1 (𝑢𝑝1 ). □

Lemma 3.2. There exists 𝐶 > 0 such that

‖𝑢𝑝‖1,𝑞 ≤ 𝐶 for all 𝑝 ∈ (1, 𝑞). (3.7)

The family (𝑢𝑝)1<𝑝<𝑞 is bounded in 𝑊 1,𝑞
0 (𝛺).

Proof. Let us assume by contradiction that

‖𝑢𝑝‖1,𝑞 → +∞ as 𝑝 → 1+. (3.8)

et 𝑤𝑝 ∶= 𝑢𝑝∕‖𝑢𝑝‖1,𝑞 . Since (𝑤𝑝)1<𝑝<𝑞 is bounded in 𝑊 1,𝑞
0 (𝛺), there exists 𝑤 ∈ 𝑊 1,𝑞

0 (𝛺) such that 𝑤 ≥ 0 and

𝑤𝑝 ⇀ 𝑤 in 𝑊 1,𝑞
0 (𝛺)

𝑤𝑝 → 𝑤 in 𝐿𝑟(𝛺) for all 1 ≤ 𝑟 <
𝑁𝑞

𝑁 − 𝑞
.

rom Lemma 3.1, there exists 𝐶 > 0 such that 𝛷𝑝(𝑢𝑝) ≤ 𝐶 for 1 < 𝑝 < 𝑞. Hence,

𝛷𝑝(𝑢𝑝)

‖𝑢𝑝‖
𝑞
1,𝑞

= 𝑜𝑝(1). (3.9)

oreover, note that by (f2), for a given 𝜂 > 0, there exists 𝛿 > 0, such that
𝐹 (𝑥, 𝑠)
|𝑠|𝑞

≥ 𝜂 for |𝑠| ≥ 𝛿.

Then, from (3.9), we have that

1
𝑝

‖𝑢𝑝‖
𝑝
1,𝑝

‖𝑢𝑝‖
𝑞
1,𝑞

+ 1
𝑞
= ∫𝛺

𝐹 (𝑥, 𝑢𝑝)

‖𝑢𝑝‖
𝑞
1,𝑞

d𝑥 + 𝑜𝑝(1)

≥ ∫𝛺∩{𝑢𝑝≥𝛿}

𝐹 (𝑥, 𝑢𝑝)

‖𝑢𝑝‖
𝑞
1,𝑞

d𝑥 + 𝑜𝑝(1)

≥ ∫𝛺∩{𝑢𝑝≥𝛿}

𝐹 (𝑥, 𝑢𝑝)

𝑢𝑞𝑝
𝑤𝑞

𝑝 d𝑥 + 𝑜𝑝(1)

≥ 𝜂 ∫𝛺∩{𝑢𝑝≥𝛿}
𝑤𝑞

𝑝 d𝑥 + 𝑜𝑝(1).

(3.10)

n the other hand, since 𝑊 1,𝑞
0 (𝛺) ↪ 𝑊 1,𝑝

0 (𝛺), it follows that

‖𝑢𝑝‖
𝑝
1,𝑝

‖𝑢𝑝‖
𝑞
1,𝑞

=
(

‖𝑢𝑝‖1,𝑝
‖𝑢𝑝‖1,𝑞

)𝑝

‖𝑢𝑝‖
𝑝−𝑞
1,𝑞 = 𝑜𝑝(1). (3.11)

Hence, from (3.10), (3.11), Fatou’s Lemma and the fact that 𝜒{𝑢𝑝≥𝛿} → 𝜒{𝑤>0} a.e., we get

1
𝑞
≥ 𝜂 ∫𝛤

𝑤𝑝 d𝑥 for all 𝜂 > 0,

where 𝛤 = {𝑥 ∈ 𝛺∶𝑤(𝑥) > 0}. Then, 𝑤 = 0 in 𝑊 1,𝑞
0 (𝛺).

Now, let 𝑘 ≥ 1 and define

𝑣 = (𝑞𝑘)
1
𝑞 𝑤 .
𝑝 𝑝
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Then, note that

𝑣𝑝 ⇀ 0 in 𝑊 1,𝑞
0 (𝛺)

and

𝑣𝑝 → 0 in 𝐿𝑟(𝛺) for 1 ≤ 𝑟 <
𝑁𝑞

𝑁 − 𝑞
.

For each 𝑝 ∈ (1, 𝑞), let 𝑡𝑝 ∈ [0, 1] such that

𝛷𝑝(𝑡𝑝𝑢𝑝) = max
0≤𝑡≤1

𝛷𝑝(𝑡𝑢𝑝).

From (3.8), there exists 𝑝 ∈ (1, 𝑞), such that

0 ≤ (𝑞𝑘)
1
𝑞

‖𝑢𝑝‖1,𝑞
≤ 1 for all 𝑝 ∈ (1, 𝑝).

Then, taking (f1) and (f2) into account, there exists a constant 𝐶 > 0 such that

𝐹 (𝑥, 𝑠) ≥ −𝐶 for a.a. 𝑥 ∈ 𝛺 and for all 𝑠 ∈ R.

sing this, we obtain

𝛷𝑝(𝑡𝑝𝑢𝑝) ≥ 𝛷𝑝

⎛

⎜

⎜

⎝

(𝑞𝑘)
1
𝑞

‖𝑢𝑝‖1,𝑞
𝑢𝑝
⎞

⎟

⎟

⎠

= 𝛷𝑝(𝑣𝑝)

= 1
𝑝
(𝑞𝑘)

𝑝
𝑞
‖∇𝑤𝑝‖

𝑝
𝑝 + 𝑘‖∇𝑤𝑝‖

𝑞
𝑞 − ∫𝛺

𝐹 (𝑥, 𝑣𝑝) d𝑥

≥ min
{

1
𝑝
(𝑞𝑘)

𝑝
𝑞 , 1

}

𝑘
𝑝
𝑞
(

‖∇𝑤𝑝‖
𝑝
𝑝 + ‖∇𝑤𝑝‖

𝑞
𝑞

)

− ∫𝛺
𝐹 (𝑥, 𝑣𝑝) d𝑥

≥ min
{

1
𝑝
(𝑞𝑘)

𝑝
𝑞 , 1

}

𝑘
𝑝
𝑞
‖∇𝑤𝑝‖

𝑞
𝑞 − 𝐶

≥ min
{

1
𝑝
(𝑞𝑘)

𝑝
𝑞 , 1

}

𝑘
𝑝
𝑞
‖𝑤𝑝‖

𝑞
1,𝑞 − 𝐶

= min
{

1
𝑝
(𝑞𝑘)

𝑝
𝑞 , 1

}

𝑘
𝑝
𝑞 − 𝐶.

Then, it follows that

lim
𝑝→1+

𝛷𝑝(𝑡𝑝𝑢𝑝) = +∞. (3.12)

Since 𝛷𝑝(0) =
𝑝−1
𝑝 |𝛺| and, from Lemma 3.1, (𝛷𝑝(𝑢𝑝))𝑝 is bounded, there exists 𝑝̃ > 1 such that

0 < 𝑡𝑝 < 1 for all 𝑝 ∈ (1, 𝑝̃).

ence,
d
d𝑡
𝛷𝑝(𝑡𝑢𝑝)

|

|

|𝑡=𝑡𝑝
= 0.

Then, for 1 < 𝑝 < 𝑝̃,

‖𝑡𝑝∇𝑢𝑝‖𝑝𝑝 + ‖𝑡𝑝∇𝑢𝑝‖𝑞𝑞 = ∫𝛺
𝑓 (𝑥, 𝑡𝑝𝑢𝑝)𝑡𝑝𝑢𝑝 d𝑥. (3.13)

From Lemma 3.1 there exists 𝐶 > 0 such that

𝑞𝛷𝑝(𝑢𝑝) ≤ 𝐶. (3.14)

Moreover, we have that

‖∇𝑢𝑝‖𝑝𝑝 + ‖∇𝑢𝑝‖𝑞𝑞 = ∫𝛺
𝑓 (𝑥, 𝑢𝑝)𝑢𝑝 d𝑥. (3.15)

Subtracting (3.15) from (3.14) yields
(

𝑞
− 1

)

‖∇𝑢𝑝‖𝑝𝑝 +
(

𝑓 (𝑥, 𝑢𝑝)𝑢𝑝 − 𝑞𝐹 (𝑥, 𝑢𝑝)
)

d𝑥 ≤ 𝐶. (3.16)

𝑝 ∫𝛺
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On the other hand, by (f4) and (3.16),
(

𝑞
𝑝
− 1

)

‖𝑡𝑝∇𝑢𝑝‖𝑝𝑝 + ∫𝛺

(

𝑓 (𝑥, 𝑡𝑝𝑢𝑝)𝑡𝑝𝑢𝑝 − 𝑞𝐹 (𝑥, 𝑡𝑝𝑢𝑝)
)

d𝑥

≤
(

𝑞
𝑝
− 1

)

‖∇𝑢𝑝‖𝑝𝑝 + ∫𝛺

(

𝑓 (𝑥, 𝑢𝑝)𝑢𝑝 − 𝑞𝐹 (𝑥, 𝑢𝑝)
)

d𝑥

≤ 𝐶.

(3.17)

From (3.13) and (3.17), for 1 < 𝑝 < 𝑝̃, we have
𝑞
𝑝
‖𝑡𝑝∇𝑢𝑝‖𝑝𝑝 + ‖𝑡𝑝∇𝑢𝑝‖𝑞𝑞 − 𝑞 ∫𝛺

𝐹 (𝑥, 𝑡𝑝𝑢𝑝) d𝑥 ≤ 𝐶,

which implies that

𝑞𝛷𝑝(𝑡𝑝𝑢𝑝) ≤ 𝐶 for all 𝑝 ∈ (1, 𝑝̃).

But this contradicts (3.12), so the assertion of the lemma follows. □

Using Lemma 3.2 we can find 𝑢0 ∈ 𝑊 1,𝑞
0 (𝛺) such that

𝑢𝑝 ⇀ 𝑢0 in 𝑊 1,𝑞
0 (𝛺), (3.18)

𝑢𝑝 → 𝑢0 in 𝐿𝑟(𝛺) for all 1 ≤ 𝑟 <
𝑞𝑁

𝑁 − 𝑞
, (3.19)

𝑢𝑝 → 𝑢0 a.e. in 𝛺,

s 𝑝 → 1+. Note that this implies that 𝑢0 ≥ 0.
Now let us find out what kind of problem the limit function 𝑢0 satisfies. In a first step, we are going to prove that 𝑢0 satisfies

(1.5) in a very weak sense. Actually, after the next results, we prove that 𝑢0 is a solution of bounded variation of (1.5), i.e., there
exists 𝐳 ∈ 𝐿∞(𝛺,R𝑁 ) such that ‖𝐳‖∞ ≤ 1 and

⎧

⎪

⎨

⎪

⎩

−div 𝐳 − 𝛥𝑞𝑢0 = 𝑓 (𝑥, 𝑢0) in ′(𝛺),
𝐳 ⋅ ∇𝑢0 = |∇𝑢0| a.e. in 𝛺,

𝑢0 = 0, on 𝜕𝛺.

Lemma 3.3. There exists 𝐳 ∈ 𝐿∞(𝛺,R𝑁 ) such that ‖𝐳‖∞ ≤ 1 and

|∇𝑢𝑝|
𝑝−2∇𝑢𝑝 ⇀ 𝐳 in 𝐿𝑠(𝛺,R𝑁 ) for 1 ≤ 𝑠 < +∞, (3.20)

as 𝑝 → 1+.

Proof. Let us fix 𝑠 ∈ [1,+∞). By Hölder’s inequality, for 1 < 𝑝 < 𝑠∕(𝑠 − 1), one has

‖|∇𝑢𝑝|
𝑝−2∇𝑢𝑝‖𝑠𝑠 = ∫𝛺

|∇𝑢𝑝|
(𝑝−1)𝑠 d𝑥

≤
(

∫𝛺
|∇𝑢𝑝|

𝑝 d𝑥
)

(𝑝−1)𝑠
𝑝

|𝛺|

1− 𝑠
𝑝′

≤

(

(

∫𝛺
|∇𝑢𝑝|

𝑞 d𝑥
)

𝑝
𝑞
|𝛺|

(𝑞−𝑝)
𝑞

)

(𝑝−1)𝑠
𝑝

|𝛺|

1− 𝑠
𝑝′

≤ ‖𝑢𝑝‖
(𝑝−1)𝑠
1,𝑞 |𝛺|

1− (𝑝−1)𝑠
𝑞

≤ 𝐶 (𝑝−1)𝑠
|𝛺|

1− (𝑝−1)𝑠
𝑞 ,

where 𝐶 > 0 is as in (3.7). Then

‖|∇𝑢𝑝|
𝑝−2∇𝑢𝑝‖𝑠 ≤ 𝐶 (𝑝−1)

|𝛺|

1
𝑠 −

(𝑝−1)
𝑞 .

ence, (|∇𝑢𝑝|𝑝−2∇𝑢𝑝)𝑝>1 is bounded in 𝐿𝑠(𝛺). Then, there exists 𝐳𝑠 ∈ 𝐿𝑠(𝛺,R𝑁 ), such that |∇𝑢𝑝|𝑝−2∇𝑢𝑝 ⇀ 𝐳𝑠 in 𝐿𝑠(𝛺,R𝑁 ). Through
diagonal argument, it is possible to show that 𝐳𝑠 does not depend on 𝑠 and then we denote it simply by 𝐳. By making 𝑝 → 1+,

rom the last inequality and the weak semicontinuity of the norm in 𝐿𝑠(𝛺,R𝑁 ),

‖𝐳‖𝑠 ≤ lim inf
𝑝→1+

‖|∇𝑢𝑝|
𝑝−2∇𝑢𝑝‖𝑠 ≤ |𝛺|

1
𝑠 .

Finally, letting 𝑠 → +∞, we have that

‖𝐳‖∞ ≤ 1,

which finishes the proof. □
8 
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From (3.20), we get

−𝛥𝑝 = div(|∇𝑢𝑝|
𝑝−2∇𝑢𝑝) → div 𝐳 in ′(𝛺) (3.21)

as 𝑝 → 1+, what follows from taking ∇𝜑 as a test function in (3.20), where 𝜑 ∈ (𝛺).
Note that, from (3.1), (3.19) and (3.21) and applying Lebesgue’s Dominated Convergence Theorem, it follows that

− div 𝐳 − 𝛥𝑞𝑢0 = 𝑓 (𝑥, 𝑢0) in ′(𝛺), (3.22)

i.e.,

∫𝛺
𝐳 ⋅ ∇𝜑 d𝑥 + ∫𝛺

|∇𝑢0|
𝑞−2∇𝑢0 ⋅ ∇𝜑 d𝑥 = ∫𝛺

𝑓 (𝑥, 𝑢0)𝜑 d𝑥, ∀𝜑 ∈ (𝛺).

Lemma 3.4. The function 𝑢0 and the vector field 𝐳 satisfy the following equality

𝐳 ⋅ ∇𝑢0 = |∇𝑢0| a.e. in 𝛺.

Proof. First, note that, since ‖𝐳‖∞ ≤ 1, it follows that,

𝐳 ⋅ ∇𝑢0 ≤ |𝐳 ⋅ ∇𝑢0| ≤ ‖𝐳‖∞|∇𝑢0| ≤ |∇𝑢0|, a.e. in 𝛺.

Hence, it is enough to show the opposite inequality. For this, it is enough to prove that

∫𝛺
𝜑 𝐳 ⋅ ∇𝑢0 d𝑥 ≥ ∫𝛺

𝜑|∇𝑢0| d𝑥 (3.23)

for all 𝜑 ∈ 𝐶1
0 (𝛺) with 𝜑 ≥ 0.

Let 𝜑 ∈ 𝐶1
0 (𝛺), such that 𝜑 ≥ 0 and let us consider (𝜌𝜖)𝜖>0 a family of mollifiers. By taking (𝑢0𝜑) ∗ 𝜌𝜖 as a test function in (3.22),

we have that

∫𝛺
𝐳 ⋅ ∇𝑢0𝜑 ∗ 𝜌𝜖 d𝑥 = ∫𝛺

𝐳 ⋅ ∇(𝑢0𝜑 ∗ 𝜌𝜖) d𝑥 − ∫𝛺
𝐳 ⋅ ∇𝜑𝑢0 ∗ 𝜌𝜖 d𝑥

= −∫𝛺
|∇𝑢0|

𝑞−2∇𝑢0 ⋅ ∇(𝑢0𝜑 ∗ 𝜌𝜖) d𝑥 + ∫𝛺
𝑓 (𝑥, 𝑢0)𝑢0𝜑 ∗ 𝜌𝜖 d𝑥

− ∫𝛺
𝐳 ⋅ ∇𝜑𝑢0 ∗ 𝜌𝜖 d𝑥

= −∫𝛺
|∇𝑢0|

𝑞𝜑 ∗ 𝜌𝜖 d𝑥 − ∫𝛺
|∇𝑢0|

𝑞−2∇𝑢0 ⋅ ∇𝜑𝑢0 ∗ 𝜌𝜖 d𝑥

+ ∫𝛺
𝑓 (𝑥, 𝑢0)𝑢0𝜑 ∗ 𝜌𝜖 d𝑥 − ∫𝛺

𝐳 ⋅ ∇𝜑𝑢0 ∗ 𝜌𝜖 d𝑥.

By doing 𝜖 → 0+, we have that

∫𝛺
𝐳 ⋅ ∇𝑢0𝜑 d𝑥 = ∫𝛺

𝑓 (𝑥, 𝑢0)𝑢0𝜑 d𝑥 − ∫𝛺
𝜑|∇𝑢0|

𝑞 d𝑥 (3.24)

−∫𝛺
𝑢0|∇𝑢0|

𝑞−2∇𝑢0 ⋅ ∇𝜑 d𝑥 − ∫𝛺
𝑢0𝐳 ⋅ ∇𝜑 d𝑥.

Now, let us consider 𝑢𝑝𝜑 ∈ 𝑊 1,𝑞
0 (𝛺) as a test function in (3.1). Then we obtain,

∫𝛺
𝜑|∇𝑢𝑝|

𝑝 d𝑥 + ∫𝛺
𝑢𝑝|∇𝑢𝑝|

𝑝−2∇𝑢𝑝 ⋅ ∇𝜑 d𝑥

+ ∫𝛺
𝜑|∇𝑢𝑝|

𝑞 d𝑥 + ∫𝛺
𝑢𝑝|∇𝑢𝑝|

𝑞−2∇𝑢𝑝 ⋅ ∇𝜑 d𝑥

= ∫𝛺
𝑓 (𝑥, 𝑢𝑝)𝑢𝑝𝜑 d𝑥.

(3.25)

Now we calculate the lim inf as 𝑝 → 1+ in both sides of (3.25). Before, note that,

∫𝛺
𝜑|∇𝑢0| d𝑥 ≤ lim inf

𝑝→1+ ∫𝛺
|∇𝑢𝑝|

𝑝𝜑 d𝑥. (3.26)

ndeed, by Young’s inequality,

∫𝛺
𝜑|∇𝑢0| d𝑥 ≤ lim inf

𝑝→1+ ∫𝛺
𝜑|∇𝑢𝑝| d𝑥

≤ lim inf
(

1 𝜑|∇𝑢𝑝|
𝑝 d𝑥 +

𝑝 − 1
𝜑 d𝑥

)

𝑝→1+ 𝑝 ∫𝛺 𝑝 ∫𝛺

9 
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= lim inf
𝑝→1+ ∫𝛺

𝜑|∇𝑢𝑝|
𝑝 d𝑥.

oreover, by (3.19) and (3.20), it follows that

lim
𝑝→1+ ∫𝛺

𝑢𝑝|∇𝑢𝑝|
𝑝−2∇𝑢𝑝 ⋅ ∇𝜑 d𝑥 = ∫𝛺

𝑢0𝐳 ⋅ ∇𝜑 d𝑥. (3.27)

inally, Lebesgue’s Dominated Convergence Theorem and (3.19) imply that

lim
𝑝→1+ ∫𝛺

𝑓 (𝑥, 𝑢𝑝)𝑢𝑝𝜑 d𝑥 = ∫𝛺
𝑓 (𝑥, 𝑢0)𝑢0𝜑 d𝑥. (3.28)

Then, from (3.18), (3.24), (3.25), (3.26), (3.27) and (3.28), we obtain

∫𝛺
𝐳 ⋅ ∇𝑢0𝜑 d𝑥

= ∫𝛺
𝑓 (𝑥, 𝑢0)𝑢0𝜑 d𝑥 − ∫𝛺

𝜑|∇𝑢0|
𝑞 d𝑥 − ∫𝛺

𝑢0|∇𝑢0|
𝑞−2∇𝑢0 ⋅ ∇𝜑 d𝑥 − ∫𝛺

𝑢0𝐳 ⋅ ∇𝜑 d𝑥

≥ lim inf
𝑝→1+

(

∫𝛺
𝑓 (𝑥, 𝑢𝑝)𝑢𝑝𝜑 d𝑥 − ∫𝛺

𝜑|∇𝑢𝑝|
𝑞 d𝑥 − ∫𝛺

𝑢𝑝|∇𝑢𝑝|
𝑞−2∇𝑢𝑝 ⋅ ∇𝜑 d𝑥

−∫𝛺
𝑢𝑝|∇𝑢𝑝|

𝑝−2∇𝑢𝑝 ⋅ ∇𝜑 d𝑥
)

= lim inf
𝑝→1+ ∫𝛺

𝜑|∇𝑢𝑝|
𝑝 d𝑥

≥ ∫𝛺
𝜑|∇𝑢0| d𝑥,

hich implies (3.23). □

Note that, up to now, from (3.22) and Lemma 3.4, we have found 𝑢0 ∈ 𝑊 1,𝑞
0 (𝛺), for which there exists 𝐳 ∈ 𝑋𝑁 (𝛺) such that

𝐳‖∞ ≤ 1 and

⎧

⎪

⎨

⎪

⎩

−div 𝐳 − 𝛥𝑞𝑢0 = 𝑓 (𝑥, 𝑢0) in ′(𝛺),
𝐳 ⋅ ∇𝑢0 = |∇𝑢0| a.e. in 𝛺,

𝑢0 = 0 on 𝜕𝛺.
(3.29)

Now, what is left to do is to show that 𝑢0 ≠ 0. For this purpose, we introduce the energy functional 𝛷∶𝑊 1,𝑞
0 (𝛺) → R given by

𝛷(𝑢) = ∫𝛺
|∇𝑢| d𝑥 + 1

𝑞 ∫𝛺
|∇𝑢|𝑞 d𝑥 − ∫𝛺

𝐹 (𝑥, 𝑢) d𝑥. (3.30)

irst of all, note that by Young’s inequality, 𝛷(𝑢) ≤ 𝛷𝑝(𝑢) for every 𝑢 ∈ 𝑊 1,𝑞
0 (𝛺). Moreover,

lim
𝑝→1+

𝛷𝑝(𝑢𝑝) = 𝛷(𝑢0). (3.31)

Indeed, since 𝑢0 satisfies (3.29) and 𝑢𝑝 fulfills (3.1), by a regularizing argument which allows us to use 𝑢0 as test function in (3.29),
note that, as 𝑝 → 1+,

∫𝛺
|∇𝑢0| d𝑥 + ∫𝛺

|∇𝑢0|
𝑞 d𝑥 = ∫𝛺

𝐳 ⋅ ∇𝑢0 + ∫𝛺
|∇𝑢0|

𝑞 d𝑥

= −∫𝛺
𝑢0 div 𝐳 d𝑥 + ∫𝛺

|∇𝑢0|
𝑞 d𝑥

= ∫𝛺
𝑓 (𝑥, 𝑢0)𝑢0 d𝑥

= ∫𝛺
𝑓 (𝑥, 𝑢𝑝)𝑢𝑝 d𝑥 + 𝑜𝑝(1)

= ∫𝛺
|∇𝑢𝑝|

𝑝 d𝑥 + ∫𝛺
|∇𝑢𝑝|

𝑞 d𝑥 + 𝑜𝑝(1).

(3.32)

On the other hand, from (3.18) and since 𝑊 1,𝑞
0 (𝛺) ↪ 𝑊 1,𝑟

0 (𝛺), for every 1 ≤ 𝑟 < 𝑞, it follows from the weak lower semicontinuity
of the norm and Young’s inequality that

∫𝛺
|∇𝑢0| d𝑥 ≤ lim inf

𝑝→1+ ∫𝛺
|∇𝑢𝑝| d𝑥 ≤ lim inf

𝑝→1+ ∫𝛺
|∇𝑢𝑝|

𝑝 d𝑥. (3.33)

n the same way,

|∇𝑢0|
𝑞 d𝑥 ≤ lim inf |∇𝑢𝑝|

𝑞 d𝑥. (3.34)
∫𝛺 𝑝→1+ ∫𝛺

10 
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Then, from (3.32), (3.33) and (3.34), it follows that

∫𝛺
|∇𝑢0| d𝑥 = ∫𝛺

|∇𝑢𝑝|
𝑝 d𝑥 + 𝑜𝑝(1) (3.35)

nd

∫𝛺
|∇𝑢0|

𝑞 d𝑥 = ∫𝛺
|∇𝑢𝑝|

𝑞 d𝑥 + 𝑜𝑝(1). (3.36)

Moreover, by (f1), (3.19) and the Lebesgue’s Dominated Convergence Theorem, as 𝑝 → 1+,

∫𝛺
𝐹 (𝑥, 𝑢0) d𝑥 = ∫𝛺

𝐹 (𝑥, 𝑢𝑝) d𝑥 + 𝑜(1). (3.37)

hen, (3.35), (3.36) and (3.37) imply (3.31).
Note also that, by (f1), (f3) and the Sobolev embedding, for all 𝜀 > 0, there exists a positive constant 𝐶𝜀 > 0 such that

|𝑓 (𝑥, 𝑠)𝑠| ≤ 𝜀|𝑠| + 𝐶𝜀|𝑠|
𝑟 for a.a. 𝑥 ∈ 𝛺 and for all 𝑠 ∈ R.

hen,

𝛷(𝑢) ≥ (1 − 𝜀)‖𝑢‖𝑞1,𝑞 d𝑥 − 𝐶𝜀‖𝑢‖
𝑟
1,𝑞 .

et us consider 𝜀 > 0 small enough such that 1 − 𝜀 > 1∕2. Then, if ‖𝑢‖1,𝑞 ≤ 𝜌, where 0 < 𝜌 <
(

(1 − 𝜀) − 1∕2
𝐶𝜀

)
1

𝑟−𝑞
, it follows that

𝛷(𝑢) ≥
‖𝑢‖𝑞1,𝑞

2
. (3.38)

hen, for all 𝑝 ∈ (1, 𝑝),

𝛷𝑝(𝑢𝑝) ≥ 𝛷𝑝

( 𝜌𝑢𝑝
‖𝑢𝑝‖1,𝑞

)

≥ 𝛷
( 𝜌𝑢𝑝
‖𝑢𝑝‖1,𝑞

)

≥ 𝜌𝑞

2
.

Hence
𝜌𝑞

2
≤ 𝛷𝑝(𝑢𝑝)

≤ ∫𝛺
|∇𝑢𝑝|

𝑝 d𝑥 + ∫𝛺
|∇𝑢𝑝|

𝑞 d𝑥 − ∫𝛺
𝐹 (𝑥, 𝑢𝑝) d𝑥

= ∫𝛺
𝑓 (𝑥, 𝑢𝑝)𝑢𝑝 d𝑥 − ∫𝛺

𝐹 (𝑥, 𝑢𝑝) d𝑥.

or all 𝑝 ∈ (1, 𝑝). Then, if 𝑢𝑝 → 0 in 𝐿𝑟(𝛺), for 1 ≤ 𝑟 < 𝑞𝑁∕(𝑁 − 𝑞), we have a contradiction. Hence, 𝑢0 ≠ 0.
So far, we have proved that 𝑢0 ∈ 𝑊 1,𝑞

0 (𝛺) is a solution of bounded variation of (1.5). To be more precise, we have proved that
0 satisfies (3.29). Now, let us prove that 𝑢0 is in fact a weak solution of (1.5), i.e.,

∫𝛺
∇𝑢0 ⋅ ∇𝑣
|∇𝑢0|

d𝑥 + ∫𝛺
|∇𝑢0|

𝑞−2∇𝑢0 ⋅ ∇𝑣 d𝑥 = ∫𝛺
𝑓 (𝑥, 𝑢0)𝑣 d𝑥

holds for all 𝑣 ∈ 𝑊 1,𝑞
0 (𝛺). To this end, let us consider the functional 𝛷 defined in (3.30). Note that

𝛷 =  −  ,

where

 (𝑢) = ∫𝛺
|∇𝑢| d𝑥 + 1

𝑞 ∫𝛺
|∇𝑢|𝑞 d𝑥 and  (𝑢) = ∫𝛺

𝐹 (𝑥, 𝑢) d𝑥.

Since  is a convex and locally Lipschitz and  ∈ 𝐶1(𝑊 1,𝑞
0 (𝛺)), the subdifferential of 𝛷(𝑢0), given by 𝜕𝛷(𝑢0) ⊂ 𝑊 −1,𝑞′ (𝛺), is well

defined. Moreover, 𝑢0 ∈ 𝜕𝛷(𝑢0) if and only if

 (𝑣) −  (𝑢0) ≥ ∫𝛺
𝑓 (𝑥, 𝑢0)(𝑣 − 𝑢0) d𝑥 for all 𝑣 ∈ 𝑊 1,𝑞

0 (𝛺). (3.39)

This, in turn, is equivalent to  ′(𝑢0) ∈ 𝜕 (𝑢0).
Furthermore, note that  = 1 + 𝑞 , where

1(𝑢) = ∫𝛺
|∇𝑢| d𝑥 and 𝑞(𝑢) =

1
𝑞 ∫𝛺

|∇𝑢|𝑞 d𝑥.

Since 𝑞 ∈ 𝐶1
(

𝑊 1,𝑞
0 (𝛺),R

)

and it is convex, we infer

 ′(𝑢 )(𝑣 − 𝑢 ) ≤  (𝑣) −  (𝑢 ) for all 𝑣 ∈ 𝑊 1,𝑞(𝛺). (3.40)
𝑞 0 0 𝑞 𝑞 0 0
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Lemma 3.5. The solution 𝑢0 of bounded variation is such that

 ′(𝑢0) ∈ 𝜕 (𝑢0).

roof. For 𝑣 ∈ 𝑊 1,𝑞
0 (𝛺), let us take (𝑣 − 𝑢0) as test function in (3.29). Then it follows

−∫𝛺
div 𝐳(𝑣 − 𝑢0) d𝑥 + ∫𝛺

|∇𝑢0|
𝑞−2∇𝑢0 ⋅ ∇(𝑣 − 𝑢0) d𝑥 = ∫𝛺

𝑓 (𝑥, 𝑢0)(𝑣 − 𝑢0) d𝑥.

he last equality, Green’s formula (2.2), (2.1), Lemma 3.4 and (3.40), imply that

 ′(𝑢0)(𝑣 − 𝑢0)

= −∫𝛺
𝑣 div 𝐳 d𝑥 + ∫𝛺

𝑢0 div 𝐳 d𝑥 + ∫𝛺
|∇𝑢0|

𝑞−2∇𝑢0 ⋅ ∇𝑣 d𝑥 − ∫𝛺
|∇𝑢0|

𝑞 d𝑥

= ∫𝛺
𝐳 ⋅ ∇𝑣 d𝑥 − ∫𝛺

𝐳 ⋅ ∇𝑢0 d𝑥 + ∫𝛺
|∇𝑢0|

𝑞−2∇𝑢0 ⋅ ∇𝑣 d𝑥 − ∫𝛺
|∇𝑢0|

𝑞 d𝑥

≤ ∫𝛺
|∇𝑣| d𝑥 − ∫𝛺

|∇𝑢0| d𝑥 +  ′
𝑞 (𝑢0)(𝑣 − 𝑢0)

≤ ∫𝛺
|∇𝑣| d𝑥 − ∫𝛺

|∇𝑢0| d𝑥 + 𝑞(𝑣) − 𝑞(𝑢0)

=  (𝑣) −  (𝑢0).

ence,  ′(𝑢0) ∈ 𝜕 (𝑢0). □

Since we know that (3.39) holds for all 𝑣 ∈ 𝑊 1,𝑞
0 (𝛺), by considering 𝑣 = 𝑢0 + 𝑡𝑤 as test function and making 𝑡 → 0±, we find that

∫𝛺
∇𝑢0 ⋅ ∇𝑤
|∇𝑢0|

d𝑥 + ∫𝛺
|∇𝑢0|

𝑞−2∇𝑢0 ⋅ ∇𝑤 d𝑥 = ∫𝛺
𝑓 (𝑥, 𝑢0)𝑤 d𝑥.

Then, 𝑢0 is a nonnegative weak nontrivial solution of (1.5).
The existence of a nonpositive weak solution 𝑣0 of (1.5) can be shown in the same way, just dealing with the functional defined

truncating the negative part of 𝑓 (𝑥, ⋅). The Theorem 1.1 is proved.

4. Existence of nodal solutions

In the proof of Theorem 1.2, as in the previous section, we approximate the nodal solution we are looking for by the solutions
of the (𝑝, 𝑞)-Laplacian problem (3.1).

Let us consider the energy functional 𝐼𝑝 ∶𝑊
1,𝑞
0 (𝛺) → R given by

𝐼𝑝(𝑢) ∶=
1
𝑝 ∫𝛺

|∇𝑢|𝑝 d𝑥 + 1
𝑞 ∫𝛺

|∇𝑢|𝑞 d𝑥 − ∫𝛺
𝐹 (𝑥, 𝑢) d𝑥.

gain, as in the previous section, we consider

𝛷𝑝(𝑢) ∶= 𝐼𝑝(𝑢) +
𝑝 − 1
𝑝

|𝛺|

nd note that 𝛷𝑝 and 𝐼𝑝 have the very same critical points.
In order to get nodal solutions of (3.1), let us consider the so called nodal Nehari set

𝑝 =
{

𝑢 ∈ 𝑊 1,𝑞
0 (𝛺)∶ 𝑢± ≠ 0 and ⟨𝛷′

𝑝(𝑢), 𝑢
±
⟩ = 0

}

.

As before, we denote by 𝑝 the usual Nehari manifold associated to (3.1). From Gasiński–Winkert [23], for every 𝑢 ∈
𝑊 1,𝑞

0 (𝛺) ⧵ {0}, there exists a unique 𝑡𝑢 > 0 such that 𝑡𝑢𝑢 ∈ 𝑝. This implies that for every 𝑢 ∈ 𝑊 1,𝑞
0 (𝛺) such that 𝑢± ≠ 0, there

xist a unique pair (𝑡, 𝑠) ∈ R+ × R+, such that 𝑡𝑢+ + 𝑠𝑢− ∈ 𝑝. Moreover, again by Gasiński–Winkert [23], if 𝑢 ∈ 𝑝,

𝛷𝑝(𝑢) = max
𝑡>0

𝛷𝑝(𝑡𝑢).

ence, if 𝑢 ∈ 𝑝, then

𝛷𝑝(𝑢) = max
𝑡,𝑠>0

𝛷𝑝(𝑡𝑢+ + 𝑠𝑢−). (4.1)

By Gasiński–Winkert [23], there exists a nodal solution 𝑣𝑝 ∈ 𝑊 1,𝑞
0 (𝛺) of (3.1) such that

𝛷𝑝(𝑣𝑝) = min
𝑝

𝛷𝑝. (4.2)

ence, since by its definition 𝑝 contains all sign-changing solutions, it follows that 𝑣𝑝 is a nodal solution with the lowest energy
evel among all the sign-changing ones.

emma 4.1. The family (𝛷 (𝑣 )) is nondecreasing for 𝑝 ∈ (1, 𝑞).
𝑝 𝑝 𝑝
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Proof. Let 1 < 𝑝1 ≤ 𝑝2 < 𝑞 and 𝑣𝑝1 , 𝑣𝑝2 ∈ 𝑊 1,𝑞
0 (𝛺) satisfying (4.2). Since 𝑣±𝑝2 ≠ 0, there exist 𝑡, 𝑠 > 0 such that

𝑡𝑣+𝑝2 + 𝑠𝑣−𝑝2 ∈ ±
𝑝1
. (4.3)

Then, from (3.2), (4.1), (4.2) and (4.3), it follows that

𝛷𝑝2 (𝑣𝑝2 ) ≥ 𝛷𝑝2 (𝑡𝑣
+
𝑝2

+ 𝑠𝑣−𝑝2 ) ≥ 𝛷𝑝1 (𝑡𝑣
+
𝑝2

+ 𝑠𝑣−𝑝2 ) ≥ 𝛷𝑝1 (𝑣𝑝1 ). □

Lemma 4.2. The family (𝑣𝑝)1<𝑝<𝑞 is bounded in 𝑊 1,𝑞
0 (𝛺).

Proof. The proof is analogous to Lemma 3.2. □

As in Section 3, it follows that there exists 𝑣0 ∈ 𝑊 1,𝑞
0 (𝛺) such that

𝑣𝑝 ⇀ 𝑣0 in 𝑊 1,𝑞
0 (𝛺),

𝑣𝑝 → 𝑣0 in 𝐿𝑟(𝛺) for all 1 ≤ 𝑟 <
𝑞𝑁

𝑁 − 𝑞
,

𝑣𝑝 → 𝑣0 a.e. in 𝛺,

s 𝑝 → 1+. Moreover, with the same arguments, one can prove that 𝑣0 is a weak solution of (3.1), i.e.,

∫𝛺
∇𝑣0 ⋅ ∇𝑤
|∇𝑣0|

d𝑥 + ∫𝛺
|∇𝑣0|

𝑞−2∇𝑣0 ⋅ ∇𝑤 d𝑥 = ∫𝛺
𝑓 (𝑥, 𝑣0)𝑤 d𝑥,

for all 𝑤 ∈ 𝑊 1,𝑞
0 (𝛺).

Then, in order to complete the proof of Theorem 1.2, we just should prove that 𝑣±0 ≠ 0. To this end, let us remember that from
(3.38), there exists 𝜌 > 0 sufficiently small such that, if ‖𝑣‖1,𝑞 ≤ 𝜌, then

𝛷(𝑣) ≥
‖𝑣‖𝑞1,𝑞

2
, (4.4)

here 𝛷 is given by (3.30). Note that since 𝑣𝑝 belongs to the Nehari nodal set 𝑝, then 𝑣±𝑝 ∈ 𝑝. Hence, 𝑠 = 1 is the maximum of
he function 𝑠 ↦ 𝛷𝑝(𝑠𝑣±𝑝 ) and so, for all 𝑝 ∈ (1, 𝑞), from (4.4),

𝛷𝑝(𝑣±𝑝 ) ≥ 𝛷𝑝

(

𝜌𝑣±𝑝
‖𝑣±𝑝 ‖

)

≥ 𝛷

(

𝜌𝑣±𝑝
‖𝑣±𝑝 ‖

)

≥ 𝜌
2
. (4.5)

hen, from (4.5), we obtain
𝜌
2
≤ 𝛷𝑝(𝑣±𝑝 )

≤ ‖∇𝑣±𝑝 ‖
𝑝
𝑝 + ‖∇𝑣±𝑝 ‖

𝑞
𝑞 − ∫𝛺

𝐹 (𝑥, 𝑣±𝑝 ) d𝑥

= ∫𝛺

(

𝑓 (𝑥, 𝑣±𝑝 )𝑣
±
𝑝 − 𝐹 (𝑥, 𝑣±𝑝 )

)

d𝑥.

(4.6)

hen, from (4.6), if 𝑣±𝑝 → 0 in 𝐿𝑟(𝛺) as 𝑝 → 1+, we see that (4.5) would not hold. Therefore, 𝑣±0 ≠ 0 and this finishes the proof of
heorem 1.2.
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