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a b s t r a c t

In this paper we study a rather wide class of quasilinear parabolic problems
with nonlinear boundary condition and nonstandard growth terms. It includes the
important case of equations with a p(t, x)-Laplacian. By means of the localization
method and De Giorgi’s iteration technique we derive global a priori bounds for
weak solutions of such problems. Our results seem to be new even in the constant
exponent case.
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1. Introduction

This paper is concerned with a rather wide class of quasilinear parabolic problems with nonlinear boundary
condition. An important feature of the problems under study is that they may contain nonlinear terms with
variable growth exponents depending on time and space. To be more precise, let Ω ⊂ RN , N > 1, be a
bounded domain with Lipschitz boundary Γ := ∂Ω and let T > 0, QT = (0, T ) × Ω and ΓT = (0, T ) × Γ .
Given p ∈ C(QT ) satisfying 1 < p− = inf(t,x)∈QT

p(t, x), the main purpose of the paper consists in proving
global a priori bounds for weak solutions of parabolic equations of the form

ut − divA(t, x, u,∇u) = B(t, x, u,∇u) in QT ,

A(t, x, u,∇u) · ν = C(t, x, u) on ΓT ,
u(0, x) = u0(x) in Ω .

(1.1)
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Here ν(x) denotes the outer unit normal of Ω at x ∈ Γ , u0 ∈ L2(Ω) and the nonlinearities involved
A : QT × R × RN → RN , B : QT × R × RN → R and C : ΓT × R → R are assumed to satisfy appropriate
p(t, x)-structure conditions which are stated in hypothesis (H), see below. Our setting includes as a special
case parabolic equations with a p(t, x)-Laplacian, which is given by

∆p(t,x)u = div

|∇u|p(t,x)−2∇u


,

and which reduces to the p(x)-Laplacian if p(t, x) = p(x), respectively, to the well-known p-Laplacian in case
p(t, x) ≡ p.

Nonlinear equations of the type considered in (1.1) with variable exponents in the structure con-
ditions are usually termed equations with nonstandard growth. Such equations are of great in-
terest and occur in the mathematical modeling of certain physical phenomena, for example in
fluid dynamics (flows of electro-rheological fluids or fluids with temperature-dependent viscosity), in
nonlinear viscoelasticity, in image processing and in processes of filtration through porous media,
see for example, Acerbi–Mingione–Seregin [1], Antontsev–Dı́az–Shmarev [7], Antontsev–Rodrigues [8],
Chen–Levine–Rao [21], Diening [23], Rajagopal–Růžička [37], Růžička [39] and Zhikov [51,52] and the ref-
erences therein.

Throughout the paper we impose the following conditions.

(H) The functions A : QT × R× RN → RN , B : QT × R× RN → R and C : ΓT × R→ R are Carathéodory
functions satisfying the subsequent structure conditions:

(H1) |A(t, x, s, ξ)| ≤ a0|ξ|p(t,x)−1 + a1|s|q1(t,x) p(t,x)−1
p(t,x) + a2, a.e. in QT ,

(H2) A(t, x, s, ξ) · ξ ≥ a3|ξ|p(t,x) − a4|s|q1(t,x) − a5, a.e. in QT ,

(H3) |B(t, x, s, ξ)| ≤ b0|ξ|p(t,x) q1(t,x)−1
q1(t,x) + b1|s|q1(t,x)−1 + b2, a.e. in QT ,

(H4) |C(t, x, s)| ≤ c0|s|q2(t,x)−1 + c1, a.e. in ΓT ,

for all s ∈ R, all ξ ∈ RN and with positive constants ai, bj , cl. Further, p ∈ C(QT ) with
inf(t,x)∈QT

p(t, x) > 1 and q1 ∈ C(QT ) as well as q2 ∈ C(ΓT ) are chosen such that

p(t, x) ≤ q1(t, x) < p∗(t, x), (t, x) ∈ QT ,
p(t, x) ≤ q2(t, x) < p∗(t, x), (t, x) ∈ ΓT ,

with the critical exponents

p∗(t, x) = p(t, x)N + 2
N

, p∗(t, x) = p(t, x)N + 2
N
− 2
N
.

(P) The exponent p ∈ C(QT ) is log-Hölder continuous on QT , that is, there exists k > 0 such that

|p(t, x)− p(t′, x′)| ≤ k

log

e+ 1

|t−t′|+|x−x′|

 ,
for all (t, x), (t′, x′) ∈ QT .

A function u : QT → R is called a weak solution (subsolution, supersolution) of problem (1.1)
if

u ∈ W :=

v ∈ C


[0, T ];L2(Ω)


: |∇v| ∈ Lp(·,·)(QT )


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such that

−

Ω

u0ϕdx


t=0
−
 T

0


Ω

uϕtdxdt+
 T

0


Ω

A(t, x, u,∇u) · ∇ϕdxdt

= (≤, ≥)
 T

0


Ω

B(t, x, u,∇u)ϕdxdt+
 T

0


Γ

C(t, x, u)ϕdσdt
(1.2)

holds for all nonnegative test functions

ϕ ∈ V :=

ψ ∈W 1,2 [0, T ];L2(Ω)


: |∇ψ| ∈ Lp(·,·)(QT )


,

with ϕ

t=T = 0, where dσ denotes the (N − 1)-dimensional surface measure.

Using the notation y+ = max(y, 0), our main result reads as follows.

Theorem 1.1. Let the assumptions in (H) and (P) be satisfied. Then there exist positive constants α = α(T ),
β = β(p, q1, q2) and

C = C(p, q1, q2, a3, a4, a5, b0, b1, b2, c0, c1, N,Ω , T )

such that the following assertions hold.

(A) If u ∈ W is a weak subsolution of (1.1) and if u0 ∈ L2(Ω) is essentially bounded above in Ω , then both
ess sup(0,T )×Ωu and ess sup(0,T )×Γu are bounded from above by

2αmax

ess sup
Ω

u0, C


1 +

 T
0


Ω

u
q1(t,x)
+ dxdt+

 T
0


Γ

u
q2(t,x)
+ dσdt

β .

(B) If u ∈ W is a weak supersolution of (1.1) and if u0 ∈ L2(Ω) is essentially bounded below in Ω , then
both ess inf(0,T )×Ωu and ess inf(0,T )×Γu are bounded from below by

− 2αmax

− ess inf
Ω

u0, C


1 +

 T
0


Ω

(−u)q1(t,x)
+ dxdt+

 T
0


Γ

(−u)q2(t,x)
+ dσdt

β .

Note that the assumptions of Theorem 1.1 imply that the bounds given in Part (A) and (B) are finite.
In fact, for u ∈ W the finiteness of the integral terms in (A) and (B) can be seen by means of localization
(p is continuous) and the parabolic embeddings from Proposition 2.5.

Since a weak solution of (1.1) is both, a weak subsolution and a weak supersolution of (1.1), an important
consequence of Theorem 1.1 is stated in the following corollary.

Corollary 1.2. Let the assumptions (H) and (P) be satisfied and let u0 ∈ L∞(Ω). Then, every weak solution
u ∈ W of (1.1) is essentially bounded both in (0, T ) × Ω and on (0, T ) × Γ (the latter w.r.t. the surface
measure on Γ ), and the estimates in (A) and (B) from Theorem 1.1 give a lower and an upper bound of u
on (0, T )× Ω and (0, T )× Γ , respectively.

In case that p does not depend on t, the following result is valid.

Theorem 1.3. If the exponent p is independent of t, then the statements in Theorem 1.1 and Corollary 1.2 re-
main true without assuming condition (P).

The first novelty of our paper is the fact that we present a priori bounds for very general parabolic
equations with nonlinear boundary condition and involving nonlinearities that fulfill nonstandard growth
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conditions with a variable exponent function p depending on time and space. In order to prove such bounds we
obtain several results of independent interest. Indeed, although we were looking intensively in the literature,
we could not find a version of the Gagliardo–Nirenberg inequality proved in Theorem 2.3(2), which we
needed to get the parabolic embedding stated in Proposition 2.5 with the critical exponent

p∗ = p
N + 2
N
− 2
N
, p > 1.

From the proof of Proposition 2.5 we directly deduce that p∗ is indeed optimal. It seems that such a critical
exponent for parabolic boundary estimates is not known so far even in the constant exponent case.

Another novelty of this work is a modified technique in order to obtain a suitable time regularization
corresponding to (1.1). This leads to a new equivalent weak formulation based on so-called smoothing
operators, which replace the well-known Steklov averages in the constant exponent case. Note that in our
approach the log-Hölder continuity (P) is only required for the time regularization. It is not needed for the
estimates that are derived from the basic truncated energy estimates in Section 4, here continuity of p is
sufficient. In the case that p does not depend on t we can drop the log-Hölder continuity condition. Here
one can use the well-known Steklov averaging technique, and it is sufficient to merely assume continuity of
the function p. The present work can be seen as a nontrivial generalization of the elliptic case studied by
the authors in [45,46] to the parabolic one.

As mentioned in the beginning, in recent years there has been a growing interest in the study of elliptic and
parabolic problems involving nonlinearities that have nonstandard growth. Local boundedness and interior
Hölder continuity of weak solutions to parabolic equations of the form

ut − div

|∇u|p(t,x)−2∇u


= 0 (1.3)

have been proved by Xu–Chen [47, Theorems 2.2 and 2.3], where p : [0, T )×Ω → R is a measurable function
satisfying

1 < p1 ≤ p(t, x) ≤ p2 <∞, |p(t, x)− p(s, y)| ≤ C1

log (|x− y|+ C2|t− s|p2)−1 (1.4)

for any (t, x), (s, y) ∈ [0, T )× Ω such that |x− y| < 1
2 and |t− s| < 1

2 with positive constants p1, p2, C1, C2.
The idea in the proof is to apply a modified version of Moser’s iteration. Note that the second inequality
in (1.4) is different from ours stated in (P). Bögelein–Duzaar [19] established local Hölder continuity of the
spatial gradient of weak solutions to the parabolic system

ut − div

a(t, x) |∇u|p(t,x)−2∇u


= 0,

in the sense that ∇u ∈ C0;α2 ,α
loc for some α ∈ (0, 1] provided the functions p and a satisfy a Hölder continuity

property. An extension of this result to systems with nonhomogenous right-hand sides of the form

ut − div

a(t, x) |∇u|p(t,x)−2∇u


= div


|F |p(t,x)−2F


, (1.5)

could be achieved by Yao [49] (see also Yao [48]). Baroni–Bögelein [16] have shown that the spatial gradient
∇u of the solution to (1.5) is as integrable as the right-hand side F , that is

|F |p(·) ∈ Lqloc =⇒ |∇u|p(·) ∈ Lqloc for any q > 1.

We also mention a similar result of Bögelein–Li [20] concerning higher integrability for very weak solutions
to certain degenerate parabolic systems. Partial regularity for parabolic systems like (1.3) has been obtained
by Duzaar–Habermann in [25].
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Global and local in time L∞-bounds for weak solutions in suitable Orlicz–Sobolev spaces to the following
anisotropic parabolic equations

ut −

i

Di


ai(z, u) |Diu|pi(z)−2

Diu+ bi(z, u)


+ d(z, u) = 0 in (0, T ]× Ω ,

u = 0 on ΓT , u(0, x) = u0(x) in Ω ,

with z = (t, x) ∈ (0, T ] × Ω has been derived by Antontsev–Shmarev [10]. Concerning existence results
to certain problems involving nonlinearity terms with p(t, x)-structure conditions we refer to the papers
of Alkhutov–Zhikov [3,4], Antontsev [5], Antontsev–Chipot–Shmarev [6], Antontsev–Shmarev [9,14,13,12],
Bauzet–Vallet–Wittbold–Zimmermann [17], Guo–Gao [29], Zhikov [53] and the references therein. We
also mention the recent monograph of Antontsev–Shmarev [15] about several results to evolution partial
differential equations with nonstandard growth conditions.

In the stationary case with p = p(x) merely continuous, the authors of this paper established global a
priori bounds for weak solutions to equations of the form

− divA(x, u,∇u) = B(x, u,∇u) in Ω , A(x, u,∇u) · ν = C(x, u) on Γ , (1.6)

involving nonlinearities with suitable p(x)-structure conditions via De Giorgi iteration combined with
localization, see [45,46]. Local boundedness of solutions to the equation

−divA(x, u,∇u) = B(x, u,∇u) in Ω ,

has been studied by Fan–Zhao [26] and Gasiński–Papageorgiou (see [28, Proposition 3.1]) proved global a
priori bounds for weak solutions to the equation

−∆p(x)u = g(x, u) in Ω ,
∂u

∂ν
= 0 on Γ ,

where the Carathéodory function g : Ω × R → R satisfies a subcritical growth condition and p ∈ C1(Ω)
with 1 < minx∈Ω p(x). We also mention the works of You [50] (Cα-regularity) and Skrypnik [40] (regularity
near a nonsmooth boundary) concerning parabolic equations with nonstandard growth. Existence results
for p(x)-structure equations from different angles (L1-data, blow up, anisotropic) can be found, for example
in the papers of Antontsev–Shmarev [11], Bendahmane–Wittbold–Zimmermann [18] and Pinasco [35], see
also the references therein.

Finally, L∞-estimates for solutions of (1.6) in case p(x) ≡ p with q1(x) = q2(x) ≡ p have been
established by the first author in [42,43] following Moser’s iteration technique (for constant p see also
Pucci–Servadei [36]).

The paper is organized as follows. Section 2 collects some basic properties of the corresponding function
spaces, states new interpolation inequalities and provides certain parabolic embedding results, which will be
used in later considerations. In Section 3 we introduce associated smoothing operators to derive a regularized
weak formulation of (1.1). Based on this, in Section 4 we prove truncated energy estimates and give the
complete proof of Theorem 1.1 by applying De Giorgi iteration along with localization.

2. Preliminaries and hypotheses

Let Ω ⊂ RN be a bounded domain, T > 0 and QT = (0, T )×Ω . For p ∈ C(QT ) we denote by Lp(·,·)(QT )
the variable exponent Lebesgue space which is defined by

Lp(·,·)(QT ) =

u
 u : QT → R is measurable and


QT

|u|p(t,x)dxdt < +∞

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equipped with the Luxemburg norm

∥u∥Lp(·,·)(QT ) = inf

τ > 0 :


QT

u(t, x)
τ

p(t,x)
dxdt ≤ 1


.

It is well known that Lp(·,·)(QT ) is a reflexive Banach space provided that p− := minQT p > 1. For
more information and basic properties on variable exponent spaces we refer the reader to the papers of
Fan–Zhao [27], Kováčik–Rákosńık [32] and the monograph of Diening–Harjulehto–Hästö-Růžička [24].

The next result concerns the Gagliardo–Nirenberg multiplicative embedding inequality. First we
state the following proposition on a version of a fractional Gagliardo–Nirenberg inequality (see
Hajaiej–Molinet–Ozawa–Wang [30, Proposition 4.2]).

Proposition 2.1. Let 1 < p̂, p0, p1 <∞, s, ŝ1 ≥ 0, 0 ≤ θ ≤ 1 and denote by Hsp̂(RN ) := (I −∆)− s2Lp̂(RN ) the
Bessel potential space. Then there exists a positive constant C̃ such that the inequality

∥u∥Hs
p̂

(RN ) ≤ C̃∥u∥θH ŝ1
p1 (RN )∥u∥

1−θ
Lp0 (RN )

holds if
N

p̂
− s = θ


N

p1
− ŝ1


+ (1− θ)N

p0
, and s ≤ θŝ1.

Remark 2.2. Let Ω ⊂ RN be a bounded domain with Lipschitz boundary. Then the statement of
Proposition 2.1 remains true when replacing RN by Ω and restricting s, ŝ1 to the interval [0, 1]. This follows
from Proposition 2.1 by means of extension (from Ω to the whole space RN ) and restriction. Recall that for
any bounded Lipschitz domain Ω there exists a bounded linear extension operator from H1

p (Ω) to H1
p (RN )

(see e.g. Adams [2]) and that this property carries over to the case of Bessel potential spaces Hsp with
s ∈ [0, 1], by interpolation.

With the help of Proposition 2.1 and Remark 2.2 we can now obtain the subsequent two interpolation
(and trace) inequalities. The first one is well known, whereas we could not find any source for the second
inequality, which is of vital importance with regard to sharp boundary estimates.

Theorem 2.3. Let Ω ⊂ RN , N > 1, be a bounded domain with Lipschitz boundary Γ := ∂Ω and let
u ∈W 1,p(Ω) with 1 < p <∞.

(1) For every fixed s1 ∈ (1,∞) there exists a constant CΩ > 0 depending only upon N, p and s1 such that

∥u∥Lq1 (Ω) ≤ CΩ∥u∥α1
W 1,p(Ω)∥u∥

1−α1
Ls1 (Ω),

where α1 ∈ [0, 1] and q1 ∈ (1,∞) are linked by

N

q1
= α1


N

p
− 1


+ (1− α1)N
s1
.

(2) For every fixed s2 ∈ (1,∞) there exists a constant CΓ > 0 depending only upon N, p and s2 such that

∥u∥Lq2 (Γ) ≤ CΓ∥u∥α2
W 1,p(Ω)∥u∥

1−α2
Ls2 (Ω),

where α2 ∈ [0, 1] and q2 ∈ (1,∞) are linked by

N − 1
q2

= α2


N

p
− 1


+ (1− α2)N
s2

and α2 >
1
q2
.
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Proof. We may apply Proposition 2.1 and Remark 2.2 with s = 0, p̂ = q1, ŝ1 = 1, p1 = p, p0 = s1 and α1 = θ.
This yields the assertion of (1). Let us prove part (2). Since α2 >

1
q2

we may fix a real number r such that
1
q2
< r < α2. Then we choose the number q such that

r

N
− 1
q

= −N − 1
Nq2

. (2.1)

From (2.1) we see that rq < N and

q = Nq2

rq2 +N − 1 .

Due to 1
q2
< r we have q < q2 and since N > 1 we derive rq > 1 thanks to the representation in (2.1). Then,

the embedding

F rq2(Ω) ↩→ B
r− 1

q
qq (Γ ) (2.2)

is continuous (see Triebel [41, Section 3.3.3]), where Brqq denotes the Besov space, which coincides with the
Sobolev Slobodeckij space W rq (r ∈ (0, 1)) and F rq2 stands for the Lizorkin–Triebel space which coincides with
the Bessel potential space Hrq (see Triebel [41, Section 2.3.5]). In Triebel [41, Section 3.3.3], a C∞-domain
is required, but it is known that if r = m + ι with m ∈ N0 and 0 ≤ ι < 1, the embedding is still valid if
Γ ∈ Cm,1. Since in our case r < 1 we only need a Lipschitz boundary, that means Γ ∈ C0,1. By virtue of
the Sobolev embedding theorem for fractional order spaces it follows

B
r− 1

q
qq (Γ ) ↩→ Lq2(Γ ) for q ≤ q2 ≤ q∗ with q∗ =


(N − 1)q
N − rq

if rq < N,

q̃ ∈ [q,∞) if rq ≥ N,
(2.3)

(see Adams [2, Theorem 7.57]). Combining (2.1)–(2.3) we find a positive constant Ĉ1 such that

∥u∥Lq2 (Γ) ≤ Ĉ1∥u∥F rq2(Ω) with r

N
− 1
q

= −N − 1
Nq2

. (2.4)

Now we may apply Proposition 2.1 and Remark 2.2 with s = r, p = q, s1 = 1, p1 = p and p0 = s2 which
results in

∥u∥Hrq (Ω) ≤ C∥u∥θW 1,p(Ω)∥u∥
1−θ
Ls2 (Ω)

with

r − N

q
= θ


1− N

p


+ (1− θ)


−N
s2


and r ≤ θ. (2.5)

Since Hrq = F rq2 we obtain the assertion in (2) from (2.4)–(2.5) with α2 = θ. �

Remark 2.4. (i) If p ̸= Ns1
N+s1

and p ̸= Ns2
N+s2

, respectively, the exponents α1 and α2 are given by

α1 =


1
s1
− 1
q1


1
N
− 1
p

+ 1
s1

−1
,

α2 =


1
s2
− N − 1

Nq2


1
N
− 1
p

+ 1
s2

−1
.

(ii) Note that in the second part of Theorem 2.3, the choice s2 = q2 = p is not admissible, as this leads to
α2 = 1

p , so that the condition α2 >
1
q2

is violated. However, the theorem still provides a similar estimate
of the Lp(Γ )-norm from above in terms of the W 1,p(Ω)- and Lp(Ω)-norm. In fact, take q2 = p+ ε with
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small ε > 0 and simply apply Hölder’s inequality and the second part of Theorem 2.3 to see this. We
refer to a paper of the first author [44, Proof of Proposition 2.1] for a similar result.

As a consequence of Theorem 2.3 we obtain two parabolic embedding inequalities which will be useful
in later considerations. The first one should be well known, see e.g. Chapter I in DiBenedetto [22], which
contains several variants of it (e.g. in the special case of vanishing boundary traces). However, we could not
find any reference for the second one, which plays an important role in deriving optimal parabolic boundary
estimates.

Proposition 2.5. Let Ω ⊂ RN , N > 1, be a bounded domain with Lipschitz boundary Γ := ∂Ω . Let T > 0
and 1 < p <∞.

(1) There exists a constant CΩ > 0 which is independent of T such that T
0


Ω

|u(t, x)|q1dxdt ≤ Cq1Ω

 T
0


Ω

|∇u(t, x)|pdxdt+
 T

0


Ω

|u(t, x)|pdxdt


×


ess sup
0<t<T


Ω

|u(t, x)|2dx
 p
N

for all u ∈ L∞

[0, T ];L2(Ω)


∩ Lp


[0, T ];W 1,p(Ω)


with the exponent

q1 = p
N + 2
N

.

(2) There exists a constant CΓ > 0 which is independent of T such that T
0


Γ

|u(t, x)|q2dσdt ≤ Cq2Γ

 T
0


Ω

|∇u(t, x)|pdxdt+
 T

0


Ω

|u(t, x)|pdxdt


×


ess sup
0<t<T


Ω

|u(t, x)|2dx
 p−1

N

for all u ∈ L∞

[0, T ];L2(Ω)


∩ Lp


[0, T ];W 1,p(Ω)


with the exponent

q2 = p
N + 2
N
− 2
N
.

Proof. In order to prove the first part we may apply Theorem 2.3(1) to the function x → u(t, x) for
a.a. t ∈ (0, T ) for s1 = 2 and q1 = pN+2

N , which means that α1 = p
q1

. Taking the q1th-power of this
inequality and integrating over (0, T ) yields T

0


Ω

|u(t, x)|q1dxdt ≤ Cq1Ω

 T
0


Ω

|∇u(t, x)|pdx+

Ω

|u(t, x)|pdxdt


Ω

|u(t, x)|2dx
 p
N


dt

≤ Cq1Ω

 T
0


Ω

|∇u(t, x)|pdxdt+
 T

0


Ω

|u(t, x)|pdxdt


×


ess sup
0<t<T


Ω

|u(t, x)|2dx
 p
N

.

The second part can be proven similarly. We apply again Theorem 2.3(2) to the function x → u(t, x) for
a.a. t ∈ (0, T ) for s2 = 2 and q2 = pN+2

N −
2
N which gives α2 = p

q2
> 1
q2

. Taking the q2th-power of this
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inequality and integrating over (0, T ) we obtain T
0


Γ

|u(t, x)|q2dσdt ≤ Cq2Γ

 T
0


Ω

|∇u(t, x)|pdx+

Ω

|u(t, x)|pdxdt


Ω

|u(t, x)|2dx
 p−1

N


dt

≤ Cq2Γ

 T
0


Ω

|∇u(t, x)|pdxdt+
 T

0


Ω

|u(t, x)|pdxdt


×


ess sup
0<t<T


Ω

|u(t, x)|2dx
 p−1

N

. �

The following lemma concerning the geometric convergence of sequences of numbers will be needed for
the De Giorgi iteration arguments below. It can be found in Ho–Sim [31, Lemma 4.3]. The case δ1 = δ2
is contained in Ladyženskaja–Solonnikov–Ural’ceva [33, Chapter II, Lemma 5.6], see also DiBenedetto
[22, Chapter I, Lemma 4.1].

Lemma 2.6. Let {Yn}, n = 0, 1, 2, . . . , be a sequence of positive numbers, satisfying the recursion inequality

Yn+1 ≤ Kbn

Y 1+δ1
n + Y 1+δ2

n


, n = 0, 1, 2, . . . ,

for some b > 1, K > 0 and δ2 ≥ δ1 > 0. If

Y0 ≤ min


1, (2K)−
1
δ1 b
− 1
δ2

1


or

Y0 ≤ min


(2K)−
1
δ1 b
− 1
δ2

1 , (2K)−
1
δ2 b
− 1
δ1δ2
− δ2−δ1

δ2
2


,

then Yn ≤ 1 for some n ∈ N ∪ {0}. Moreover,

Yn ≤ min


1, (2K)−
1
δ1 b
− 1
δ2

1 b−
n
δ1


, for all n ≥ n0,

where n0 is the smallest n ∈ N ∪ {0} satisfying Yn ≤ 1. In particular, Yn → 0 as n→∞.

Throughout the paper by Mi, M̃j i, j = 1, 2, . . . we mean positive constants depending on the given data
and the Lebesgue measure on RN is denoted by | · |N .

3. Smoothing operators and regularized weak formulation

Let ρ ≥ 0 be in C∞0 (RN ), even,


RN ρdx = 1 and supp ρ = B(0, 1). Define for h > 0

(Shw)(x) := 1
hN


RN

ρ


x− x′

h


w(x′)dx′, x ∈ RN , w ∈ L1

loc(RN ).

Let T > 0, e1(t) = e−t, t ≥ 0 and set

(τhw)(t) := 1
h

 t
0
e1


t− t′

h


w(t′)dt′, 0 ≤ t ≤ T,w ∈ L1((0, T )),

(τ∗hw) (t) := 1
h

 T
t

e1


t′ − t
h


w(t′)dt′, 0 ≤ t ≤ T,w ∈ L1((0, T )).

Note that Fubini’s theorem implies T
0
v(t)(τ∗hw)(t) dt =

 T
0

(τhv)(t)w(t) dt, v, w ∈ L1((0, T )).

Let Ω ⊂ RN be a bounded domain with Lipschitz boundary Γ and let p ∈ C(QT ) be such that infQT p > 1
satisfying the log-Hölder condition stated in (P). By Diening–Harjulehto–Hästö–Růžička [24, Proposition
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4.1.7], p can be extended to a continuous function p̃ on [0, T ] × RN which fulfills inf [0,T ]×RN p̃ > 1 and
satisfies the log-Hölder condition (P) on [0, T ]× RN . Set

Ṽ :=

ψ ∈W 1,2 [0, T ];L2(RN )


: |∇ψ| ∈ Lp̃(·,·)([0, T ]× RN )


.

For h > 0, let Eh be a bounded linear extension operator from V into Ṽ whose range is contained
in the set of measurable functions that vanish almost everywhere outside of (0, T ) × Ωh where Ωh =
{x ∈ RN : dist(x,Ω) < hγ} with γ > 2 being fixed. Such an operator can be constructed as in
Diening–Harjulehto–Hästö–Růžička [24, Theorem 8.5.12] using the log-Hölder condition of p̃ and by means
of a suitable cut-off function. Here the construction of the operator can be made in such a way that Eh also
maps L∞((0, T ) × Ω) boundedly into L∞((0, T ) × RN ) with a corresponding norm bound that is uniform
w.r.t. h > 0.

Lemma 3.1. Under the above assumptions the operators τhShEh, τ∗hShEh map from V into Ṽ.

The proof of Lemma 3.1 can be done similarly as in Zhikov–Pastukhova [54, Theorem 1.4].
By means of the smoothing operators introduced before we next derive a regularized weak formulation

of (1.1). To this end, let u ∈ W be a weak solution (subsolution, supersolution) of (1.1) in the sense of (1.2)
and choose the test function ϕ of the form

ϕ(t, x) = (τ∗hShEhη)(t, x), (t, x) ∈ ΩT ,

where η ∈ V is nonnegative and η|t=T = 0. Observe that this test function is admissible by Lemma 3.1
and since ϕ|t=T = 0. Note that the latter property implies that ∂t(τ∗hShEhη) = τ∗hSh∂t(Ehη). In fact, for
w ∈W 1,2((0, T )) with w|t=T = 0 we have

(τ∗hw)(t) = 1
h

 T−t
0

e1

 s
h


w(s+ t) ds, t ∈ (0, T ),

and thus

∂t(τ∗hw)(t) = − 1
h
e1


T − t
h


w(T ) + 1

h

 T−t
0

e1

 s
h


ws(s+ t) ds

= 1
h

 T
t

e1


t′ − t
h


wt′(t′)dt′ = (τ∗hwt)(t), t ∈ (0, T ).

We obtain

−

Ω

u0(τ∗hShEhη)dx

t=0
−
 T

0


Ω

u τ∗hSh[(Ehη)t]dxdt+
 T

0


Ω

A(t, x, u,∇u) · ∇ (τ∗hShEhη) dxdt

= (≤, ≥)
 T

0


Ω

B(t, x, u,∇u) (τ∗hShEhη) dxdt+
 T

0


Γ

C(t, x, u) (τ∗hShEhη) dσdt.
(3.1)

The first integral in (3.1) takes the form
Ω

u0(τ∗hShEhη)dx

t=0

= 1
h

 T
0


Ω

e1


t

h


u0(x)(ShEhη)(t, x) dx dt.

The term involving the time derivative is rewritten as follows

−
 T

0


Ω

u τ∗hSh[(Ehη)t]dxdt

= −
 T

0


RN

Ehu τ
∗
hSh[(Ehη)t]dxdt+

 T
0


Ωh\Ω

Ehu τ
∗
hSh[(Ehη)t]dxdt

=
 T

0


Ωh

(τhShEhu)tEhηdxdt−
 T

0


Ωh\Ω

(τhEhu)t ShEhηdxdt.
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The remaining three terms in (3.1) are reformulated using the duality of τh and τ∗h . Since the resulting
relation does not contain a time derivative acting on the test function, the regularity assumptions on η can
be relaxed, in fact, by approximation, we may allow η to be from the space W satisfying η|t=T = 0.

Next, let 0 < t1 < t2 < T and choose η of the form η(t, x) = ψ(t, x)ω[t1,t2],ε(t), where ψ ∈ W is
nonnegative and ω := ω[t1,t2],ε is defined by

ω =



0 if t ∈ [0, t1 − ε]
1
ε

(t− t1 + ε) if t ∈ [t1 − ε, t1]

1 if t ∈ [t1, t2]

−1
ε

(t− t2 − ε) if t ∈ [t2, t2 + ε]

0 if t ∈ [t2 + ε, T ]

assuming that 0 < ε < min{t1, T − t2}. We insert such an η in the reformulated version of (3.1), send ε→ 0,
divide then by t2 − t1 and finally send t2 → t1, thereby obtaining (relabeling t1 by t)

− 1
h


Ω

e1


t

h


u0(x)(ShEhψ)(t, x) dx+


Ω

(τhShEhu)t ψdx−Rh(u, ψ)(t)

+

Ω


τhA(·, x, u,∇u)


t
· ∇(ShEhψ)dx = (≤, ≥)


Ω


τhB(·, x, u,∇u)


t
(ShEhψ)dx

+

Γ


τhC(·, x, u)


t
(ShEhψ)dσ,

(3.2)

for a.a. t ∈ (0, T ) and for all nonnegative ψ ∈ W where

Rh(u, ψ)(t) =

Ωh\Ω

(τhEhu)t ShEhψdx−

Ωh\Ω

(τhShEhu)tEhψdx.

(3.2) is an appropriate regularized version of the weak formulation (1.2). It will be used in the following
section for deriving the basic truncated energy estimates.

If p does not depend on t and we merely assume that p ∈ C(Ω) (actually, boundedness and measurability
is sufficient), the well-known Steklov averages can be used as in the constant exponent case to regularize the
weak formulation in time. Indeed, defining for v ∈ L1(QT ) its Steklov average by

vh(t, x) = 1
h

 t+h
t

v(s, x)ds,

we have the following result due to Alkhutov–Zhikov [4, Lemma 5.1].

Proposition 3.2. Let p be a bounded, measurable function on Ω satisfying p(x) ≥ 1 for all x ∈ Ω . Then
vh → v in Lp(·)(QT−δ) as h→ 0 for any v ∈ Lp(·)(QT ) and δ > 0.

4. Truncated energy estimates and proof of Theorem 1.1

We begin this section with suitable truncated energy estimates for subsolutions and supersolutions of
(1.1). First, we state the subsolution case.

Proposition 4.1. Let the assumptions in (H) and (P) be satisfied and suppose that u0 ∈ L2(Ω) is essentially
bounded above in Ω . Set q+

1 = max[0,T ]×Ω̄ q1. Then for any weak subsolution u ∈ W of (1.1) and any κ

fulfilling the condition

κ ≥ κ̃ := max


1, ess sup
Ω

u0


,
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there holds

ess sup
t∈(0,T0)


Aκ(t)

(u− κ)2dx+
 T0

0


Aκ(t)
|∇u|p(t,x)dxdt

≤M1

 T0

0


Aκ(t)

uq1(t,x)dxdt+M2

 T0

0


Γκ(t)

uq2(t,x)dσdt

for every T0 ∈ (0, T ] with

Aκ(t) = {x ∈ Ω : u(t, x) > κ}, Γκ(t) = {x ∈ Γ : u(t, x) > κ}, t ∈ (0, T0],

and with positive constants M1 = M1(q+
1 , a3, a4, a5, b0, b1, b2) as well as M2 = M2(a3, c0, c1).

Proof. (I) Regularized testing. Let u ∈ W be a weak subsolution of (1.1) and fix κ ≥ κ̃. For h > 0
we set Φh(u) = τhShEhu. Letting λ > 0 we further define the truncations Tλ(y) = min(y, λ) and
[y]+κ := max(y − κ, 0), y ∈ R. We take in (3.2) the test function ψ = Tλ([Φh(u)]+κ ), which belongs to
the spaceW, see Le [34, Lemma 3.2]. Integrating over (0, t0) where t0 ∈ (0, T0] is arbitrarily fixed, we obtain

−
 t0

0


Ω

e1(t/h)
h

u0(x)(ShEhTλ([Φh(u)]+κ ))(t, x) dxdt

+ 1
2


Ω


Tλ([Φh(u)]+κ )(t0, x)

2
dx−

 t0
0
Rh

u, Tλ([Φh(u)]+κ )


(t)dt

+
 t0

0


Ω


τhA(t, x, u,∇u)


· ∇(ShEhTλ([Φh(u)]+κ ))dxdt

= (≤, ≥)
 t0

0


Ω


τhB(t, x, u,∇u)


(ShEhTλ([Φh(u)]+κ ))dxdt

+
 t0

0


Γ


τhC(t, x, u)


(ShEhTλ([Φh(u)]+κ ))dσdt.

(4.1)

We next send h → 0 in (4.1) and make use of the approximation properties of the smoothing operators
involved.

Note first that for any w ∈ C([0, t0]) t0
0

e1(t/h)
h

w(t) dt→ w(0) as h→ 0,

and thus it is not difficult to see that the first term in (4.1) tends to

−

Ω

u0(x)Tλ((u(t, x)− κ)+) dx

t=0

= −

Ω

u0(x)Tλ((u0(x)− κ)+) dx = 0,

due to κ ≥ κ̃. Further, as h→ 0 we have
Ω


Tλ([Φh(u)]+κ )(t0, x)

2
dx→


Ω


Tλ((u− κ)+(t0, x))

2
dx, t0

0


Ω


τhA(t, x, u,∇u)


· ∇(ShEhTλ([Φh(u)]+κ )) dxdt→

 t0
0


Ω

A(t, x, u,∇u) · ∇Tλ((u− κ)+) dxdt, t0
0


Ω


τhB(t, x, u,∇u)


(ShEhTλ([Φh(u)]+κ )) dxdt→

 t0
0


Ω

B(t, x, u,∇u)Tλ((u− κ)+) dxdt, t0
0


Γ


τhC(t, x, u)


(ShEhTλ([Φh(u)]+κ )) dσdt→

 t0
0


Γ

C(t, x, u)Tλ((u− κ)+) dσdt.
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Finally, we claim that

 t0
0
Rh

u, Tλ([Φh(u)]+κ )


(t)dt→ 0 as h→ 0. (4.2)

To see this, note first that the boundedness of ψ = Tλ([Φh(u)]+κ ) and the mapping properties of Eh and Sh
imply that Ehψ as well as ShEhψ are bounded uniformly w.r.t. h > 0. Note also that for any w ∈ L1((0, T ))
we have

∂t(τhw)(t) = 1
h


w(t)− (τhw)(t)


, a.a. t ∈ (0, T ).

Thus we get an estimate of the form

|Rh(u, ψ)(t)| ≤ C

h


Ωh\Ω

Fh(t, x) dx, a.a. t ∈ (0, T ),

where

Fh = |Ehu|+ |τhEhu|+ |ShEhu|+ |τhShEhu|

and the constant C is independent of h. By Hölder’s inequality, it follows that t0
0
|Rh(u, ψ)(t)| dt ≤ C

h
|Ωh \ Ω |1/2

 t0
0
|Fh(t, ·)|L2(RN ) dt. (4.3)

Recalling the definition of Ωh we have that |Ωh \ Ω | ≤ C̃hγ , where γ > 2. Since the integral term on the
right hand side of (4.3) stays bounded for h → 0, it follows that

 t0
0 Rh(u, ψ)(t) dt tends to 0 as h → 0 as

claimed in (4.2).

Combining the previous statements and sending the truncation parameter λ → ∞ we conclude that for
all t0 ∈ (0, T0]

1
2


Ω


(u− κ)+(t0, x)

2
dx+

 t0
0


Ω

A(t, x, u,∇u) · ∇(u− κ)+ dxdt

≤
 t0

0


Ω

B(t, x, u,∇u)(u− κ)+ dxdt+
 t0

0


Γ

C(t, x, u)(u− κ)+ dσdt.

(4.4)

(II) Employing the structure. Now we may apply the structure conditions stated in (H) to the various
terms in (4.4). Using (H1) the second term on the left-hand side of (4.4) can be estimated as

 t0
0


Ω

A(t, x, u,∇u) · ∇(u− κ)+ dxdt =
 t0

0


Aκ(t)
A(t, x, u,∇u) · ∇udxdt

≥
 t0

0


Aκ(t)


a3|∇u|p(t,x) − a4|u|q1(t,x) − a5


dxdt

≥ a3

 t0
0


Aκ(t)
|∇u|p(t,x)dxdt− (a4 + a5)

 t0
0


Aκ(t)
|u|q1(t,x)dxdt,

(4.5)

since uq1(t,x) > u > 1 in Aκ(t).
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Let us next estimate the first term on the right-hand side of (4.4) by applying the structure condition
(H3) and Young’s inequality with ε ∈ (0, 1]. This gives t0

0


Ω

B(t, x, u,∇u)(u− κ)+ dxdt

≤
 t0

0


Aκ(t)


b0|∇u|p(t,x) q1(t,x)−1

q1(t,x) + b1|u|q1(t,x)−1 + b2


(u− κ)dxdt

≤ b0

 t0
0


Aκ(t)


ε
q1(t,x)−1
q1(t,x) |∇u|p(t,x) q1(t,x)−1

q1(t,x) ε
− q1(t,x)−1

q1(t,x) u


dxdt+ (b1 + b2)

 t0
0


Aκ(t)
|u|q1(t,x)dxdt

≤ b0

 t0
0


Aκ(t)

ε|∇u|p(t,x)dxdt+ b0

 t0
0


Aκ(t)

ε−(q1(t,x)−1)uq1(t,x)dxdt

+ (b1 + b2)
 t0

0


Aκ(t)
|u|q1(t,x)dxdt

≤ εb0

 t0
0


Aκ(t)
|∇u|p(t,x)dxdt+


b0ε
−(q+

1 −1) + b1 + b2

 t0
0


Aκ(t)

uq1(t,x)dxdt.

(4.6)

Finally, we use assumption (H4) to estimate the boundary term through t0
0


Γ

C(t, x, u)(u− κ)+ dσdt ≤
 t0

0


Γκ(t)

(c0|u|q2(t,x)−1 + c1)(u− κ)dσdt

≤ (c0 + c1)
 t0

0


Γκ(t)

uq2(t,x)dσdt.

(4.7)

Combining (4.4)–(4.7) results in

1
2


Ω

(u(t0, x)− κ)2
+dx+ a3

2

 t0
0


Aκ(t)
|∇u|p(t,x)dxdt

≤ M̃1

 t0
0


Aκ(t)

uq1(t,x)dxdt+ M̃2

 t0
0


Γκ(t)

uq2(t,x)dσdt,

(4.8)

for every t0 ∈ (0, T0], whereby ε was chosen such that ε = min


1, a3
2b0


and M̃1 = M̃1


q+

1 , a3, a4, a5, b0, b1, b2


as well as M̃2 = M̃2(c0, c1).

Since (4.8) holds for all t0 ∈ (0, T0] and the second term on the left-hand side of (4.8) is nonnegative, the
assertion of the proposition follows. �

Similar to Proposition 4.1 we may formulate a corresponding result for supersolutions of (1.1).

Proposition 4.2. Let the assumptions in (H) and (P) be satisfied and suppose that u0 ∈ L2(Ω) is essentially
bounded below in Ω . Then for any weak supersolution u ∈ W of (1.1) and any κ fulfilling the condition

κ ≥ κ̂ := max


1,− ess inf
Ω

u0


,

there holds

ess sup
t∈(0,T0)


Ãκ(t)

(u+ κ)2dx+
 T0

0


Ãκ(t)
|∇u|p(t,x)dxdt

≤M1

 T0

0


Ãκ(t)

(−u)q1(t,x)dxdt+M2

 T0

0


Γ̃κ(t)

(−u)q2(t,x)dσdt

for every T0 ∈ (0, T ] with
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Ãκ(t) = {x ∈ Ω : −u(t, x) > κ}, Γ̃κ(t) = {x ∈ Γ : −u(t, x) > κ}, t ∈ (0, T0],

and with the same constants M1 and M2 as in Proposition 4.1.

Proof. The proof is analogous to the subsolution case. Replacing u by −u and u0 by −u0, the same line of
arguments yields the asserted estimate. �

Now we are in the position to prove Theorem 1.1.

Proof of Theorem 1.1. Our proof is divided into several parts.

(I) Partition of unity. Since Ω̄ is compact, for any R > 0 there exists an open cover {Bj(R)}j=1,...,m
of balls Bj := Bj(R) with radius R > 0 such that Ω̄ ⊂

m
j=1 Bj(R). We further decompose the time

interval as

[0, T ] =
l
i=1

Ji with Ji := Ji(δ) = [δ(i− 1), δi],

where lδ = T .

Recall that

p(t, x) ≤ q1(t, x) < p∗(t, x), (t, x) ∈ [0, T ]× Ω = QT ,

p(t, x) ≤ q2(t, x) < p∗(t, x), (t, x) ∈ [0, T ]× Γ = ΓT .

Clearly, since p, q1 ∈ C(QT ) and q2 ∈ C(ΓT ) these functions are uniformly continuous on QT and ΓT .
Hence, we may take R > 0 and δ > 0 small enough such that

p+
i,j ≤ q

+
1,i,j < (p−i,j)

∗, p+
i,j ≤ q

+
2,i,j < (p−i,j)∗,

for i = 1, . . . , l and j = 1, . . . ,m whereby

p+
i,j = max

(t,x)∈Ji×(Bj∩Ω)
p(t, x), q+

1,i,j = max
(t,x)∈Ji×(Bj∩Ω)

q1(t, x),

p−i,j = min
(t,x)∈Ji×(Bj∩Ω)

p(t, x), q+
2,i,j = max

(t,x)∈Ji×(Bj∩Γ)
q2(t, x).

Recall that, for s ∈ [1,∞),

s∗ = s
N + 2
N

, s∗ = s
N + 2
N
− 2
N
.

Now we choose a partition of unity {ξj}mj=1 ⊂ C∞0 (RN ) with respect to the open cover {Bj(R)}i=j,...,m (see
e.g. Rudin [38, Theorem 6.20]) which means

supp ξj ⊂ Bj , 0 ≤ ξj ≤ 1, j = 1, . . . ,m, and
m
j=1

ξj = 1 on Ω .

Moreover, we denote by L a positive constant satisfying

|∇ξj | ≤ L, j = 1, . . . ,m. (4.9)

Without loss of generality we may assume that L > 1.

(II) Iteration variables and basic estimates. First, we set

κn = κ


2− 1

2n


, n = 0, 1, 2, . . . ,
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with κ ≥ max {1, ess supΩu0} specified later and put

Zn :=
 δ

0


Aκn (t)

(u− κn)q1(t,x)dxdt, Z̃n :=
 δ

0


Γκn (t)

(u− κn)q2(t,x)dσdt.

Thanks to

Zn ≥
 δ

0


Aκn+1 (t)

(u− κn)q1(t,x)dxdt

≥
 δ

0


Aκn+1 (t)

uq1(t,x)


1− κn
κn+1

q1(t,x)
dxdt

≥
 δ

0


Aκn+1 (t)

1
2q1(t,x)(n+2)u

q1(t,x)dx,

we have  δ
0


Aκn+1 (t)

uq1(t,x)dxdt ≤ 2q
+
1 (n+2)Zn. (4.10)

Analogously, one proves  δ
0


Γκn+1 (t)

uq2(t,x)dσdt ≤ 2q
+
2 (n+2)Z̃n. (4.11)

Due to Proposition 4.1 (replacing κ by κn+1 ≥ max {1, ess supΩu0} and T0 by δ) along with (4.10) and
(4.11) we obtain

ess sup
t∈(0,δ)


Aκn+1 (t)

(u− κn+1)2dx+
 δ

0


Aκn+1 (t)

|∇(u− κn+1)|p(t,x)dxdt ≤M3M
n
4 (Zn + Z̃n), (4.12)

where M3 = max

M122q+

1 ,M222q+
2


and M4 = max


2q+

1 , 2q+
2


. Additionally, it holds

 δ
0
|Aκn+1(t)|dt ≤

 δ
0


Aκn+1 (t)


u− κn

κn+1 − κn

q1(t,x)
dxdt

≤
 δ

0


Aκn (t)

2q1(t,x)(n+1)

κq1(t,x) (u− κn)q1(t,x)dxdt

≤ 2q+
1 (n+1)

κq
−
1

 δ
0


Aκn (t)

(u− κn)q1(t,x)dxdt

= 2q+
1 (n+1)

κq
−
1

Zn.

(4.13)

Furthermore, we set

Yn := Zn + Z̃n. (4.14)
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(III) Estimating the gradient term in (4.12) from below. With the aid of the partition of unity
from step (I) it follows

 δ
0


Aκn+1 (t)

|∇(u− κn+1)|p(t,x)dxdt =
 δ

0


Aκn+1 (t)

|∇(u− κn+1)|p(t,x)
m
j=1

ξjdxdt

≥
m
j=1

 δ
0


Aκn+1 (t)


|∇(u− κn+1)|p

−
1,j − 1


ξjdxdt

≥


m
j=1

 δ
0


Aκn+1 (t)

|∇(u− κn+1)|p
−
1,jξ
p−1,j
j dxdt



−


m

 δ
0
|Aκn+1(t)|dt


,

(4.15)

since ξj ≥ ξ
p−1,j
j . In particular, from (4.15) we conclude

 δ
0


Aκn+1 (t)

|∇(u− κn+1)|p(t,x)dxdt

≥
 δ

0


Aκn+1 (t)

|∇(u− κn+1)|p
−
1,jξ
p−1,j
j dxdt−m

 δ
0
|Aκn+1(t)|dt,

(4.16)

for all j = 1, . . . ,m. Combining (4.16) and (4.12) and using (4.13) yields

ess sup
t∈(0,δ)


Aκn+1 (t)

(u− κn+1)2dx+
 δ

0


Aκn+1 (t)

|∇(u− κn+1)|p
−
1,jξ
p−1,j
j dxdt ≤M5M

n
4 (Zn + Z̃n) (4.17)

for any j = 1, . . . ,m with the positive constant M5 = M3 + m2q+
1 . Recall that M4 = max


2q+

1 , 2q+
2


(see

step (II)).

(IV) Estimating the term Zn+1. Let us now estimate Zn+1 from above using the partition of unity.
First, we have

Zn+1 =
 δ

0


Aκn+1

(u− κn+1)q1(t,x)dxdt

=
 δ

0


Aκn+1 (t)

(u− κn+1)q1(t,x)


m
j=1

ξj

q+
1

dxdt

≤ mq
+
1

m
j=1

 δ
0


Aκn+1 (t)

(u− κn+1)q1(t,x)ξ
q+

1,1,j
j dxdt

≤ mq
+
1

m
j=1

 δ
0


Aκn+1 (t)

(u− κn+1)q
+
1,1,jξ

q+
1,1,j
j dxdt+

 δ
0


Aκn+1 (t)

(u− κn+1)q
−
1,1,jξ

q−1,1,j
j dxdt


,

(4.18)

where q−1,1,j = min(t,x)∈J1×(Bj∩Ω) q1(t, x). Note that p−1,j ≤ q
−
1,1,j ≤ q

+
1,1,j < (p−1,j)∗ for all j = 1, . . . ,m.

Now, we fix j ∈ {1, . . . ,m} and assume that r ∈ {q−1,1,j , q
+
1,1,j}. Then p−1,j ≤ r < (p−1,j)∗ and r ≤ q+, where

q+ = max(q+
1 , q

+
2 ).
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By combining Hölder’s inequality with Proposition 2.5(1) we obtain δ
0


Ω

(u− κn+1)r+ξrj dxdt

≤
 δ

0


Ω

(u− κn+1)
(p−1,j)

∗

+ ξ
(p−1,j)

∗

j dx

 r

(p−1,j)∗

|Aκn+1(t)|
1− r

(p−1,j)∗


dt

≤

 δ
0


Ω

(u− κn+1)
(p−1,j)

∗

+ ξ
(p−1,j)

∗

j dxdt

 r

(p−1,j)∗
 δ

0
|Aκn+1(t)|dt

1− r

(p−1,j)∗

≤ C̃q
+

 δ
0


Ω

|∇[(u− κn+1)+ξj ]|p
−
1,j dxdt+

 δ
0


Ω

(u− κn+1)
p−1,j
+ ξ

p−1,j
j dxdt

 r

(p−1,j)∗

×


ess sup
0<t<δ


Ω

(u− κn+1)2
+dx

 r
N+2

 δ
0
|Aκn+1(t)|dt

1− r

(p−1,j)∗

,

(4.19)

where C̃ = max(1, CΩ (p−1,1, N), . . . , CΩ (p−1,m, N)) with CΩ (p−1,j , N) being the constant of the energy esti-
mate given in Proposition 2.5(1), j = 1, . . . ,m. Thus C̃ is independent of j. Furthermore, the right-hand
side of (4.19) can be estimated to obtain δ

0


Ω

(u− κn+1)r+ξrj dxdt ≤M6

 δ
0


Aκn+1 (t)

|∇(u− κn+1)|p
−
1,jξ
p−1,j
j dxdt+

 δ
0


Aκn+1 (t)

uq1(t,x)dxdt

+ ess sup
0<t<δ


Ω

(u− κn+1)2
+dx

r 1
p
−
1,j

N
N+2 + 1

N+2

  δ
0
|Aκn+1(t)|dt

1− r

(p−1,j)∗

(4.20)

with M6 = M6(p+, q+, C̃, L). Applying (4.17), (4.10), (4.9), (4.13) and (4.14) to the right-hand side of (4.20)
yields

 δ
0


Ω

(u− κn+1)r+ξrj dxdt ≤M6


M5M

n
4 (Zn + Z̃n) + 2q

+
1 (n+2)Zn

r 1
p
−
1,j

N
N+2 + 1

N+2

 
2q+

1 (n+1)

κq
−
1

Zn

1− r

(p−1,j)∗

≤M62q
+

Mq

+

5


Mq

+

4

n 
Yn + Y q

+

n


+


2q
+
1 q

+
n+2 

Yn + Y q
+

n

2q+
1 (n+1)

κq
−
1

Zn

1− r

(p−1,j)∗

≤M7M
n
8


Yn + Y q

+

n

2q+
1 (n+1)

κq
−
1

Zn

1− r

(p−1,j)∗

,

(4.21)

where we have used the estimate

r


1
p−1,j

N

N + 2 + 1
N + 2


≤ q+N + 1

N + 2 ≤ q
+.

Set η = max

q+

1,1,1

(p−1,1)∗ , . . . ,
q+

1,1,m

(p−1,m)∗


. Then, we can estimate the last term on the right-hand side of (4.21) as

follows 
2q+

1 (n+1)

κq
−
1

Zn

1− r

(p−1,j)∗

≤ 2q
+
1 (n+1)


1
κq
−
1

1−η
(Yn + Y 1−η

n ) (4.22)

for r ∈ {q+
1,1,j , q

−
1,1,j}.
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Now we may apply (4.21) and (4.22) with r = q+
1,1,j and r = q−1,1,j , respectively, to (4.18) which results in

Zn+1 ≤ mq
+
1

m
j=1

 δ
0


Aκn+1 (t)

(u− κn+1)q
+
1,1,jξ

q+
1,1,j
j dxdt+

 δ
0


Aκn+1 (t)

(u− κn+1)q
−
1,1,jξ

q−1,1,j
j dxdt



≤ mq
+
1

m
j=1


2M7M

n
8


Yn + Y q

+

n


2q

+
1 (n+1) 1

κq
−
1 (1−η)

(Yn + Y 1−η
n )


≤M9M

n
10

1
κq
−
1 (1−η)


Y 2
n + Y 2−η

n + Y 1+q+

n + Y 1+q+−η
n


(4.23)

with positive constants M9 and M10 depending on the data.

(V) Estimating the term Z̃n+1. Similar to step (V) we are going to estimate the term Z̃n+1. First, we
have

Z̃n+1 =
 δ

0


Γκn+1

(u− κn+1)q2(t,x)dσdt

=
 δ

0


Γκn+1 (t)

(u− κn+1)q2(t,x)


m
j=1

ξj

q+
2

dσdt

≤ mq
+
2

m
j=1

 δ
0


Γκn+1 (t)

(u− κn+1)q2(t,x)ξ
q2(t,x)
j dσdt

≤ mq
+
2

m
j=1

 δ
0


Γκn+1 (t)

(u− κn+1)q
+
2,1,jξ

q+
2,1,j
j dσdt+

 δ
0


Γκn+1 (t)

(u− κn+1)q
−
2,1,jξ

q−2,1,j
j dσdt


,

(4.24)

with q−2,1,j = min(t,x)∈J1×(Bj∩Γ) q2(t, x). Recall that p−1,j ≤ q
−
2,1,j ≤ q

+
2,1,j < (p−1,i)∗ for j = 1, . . . ,m.

Then, we fix an index j ∈ {1, . . . ,m} and assume that r ∈ {q−2,1,j , q
+
2,1,j} meaning that p−1,j ≤ r < (p−1,j)∗

and r ≤ q+. Defining a number s = s1,j(r) through

s∗ =
r + (p−1,j)∗

2 ,

we have that s < p−1,j ≤ r < s∗ < (p−1,j)∗. Taking into account Proposition 2.5(2) and twice Hölder’s
inequality we obtain δ

0


Γ

((u− κn+1)+ξj)rdσdt

≤ Ĉq
+

 δ
0


Ω

|∇[(u− κn+1)+ξj ]|sdxdt+
 δ

0


Ω

|(u− κn+1)+ξj |sdxdt



×


ess sup
0<t<δ


Ω

(u− κn+1)2
+dx

 s−1
N

≤ Ĉq
+

 δ
0


Ω

|∇[(u− κn+1)+ξj ]|p
−
1,jdxdt

 s

p
−
1,j

 δ
0
|Aκn+1(t)|dt

1− s

p
−
1,j

+
 δ

0


Ω

|(u− κn+1)+ξj |p
−
1,jdxdt

 s

p
−
1,j

 δ
0
|Aκn+1(t)|dt

1− s

p
−
1,j


×


ess sup
0<t<δ


Ω

(u− κn+1)2
+dx

 s−1
N

,

(4.25)
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where Ĉ = max(1, CΓ (p−1,1, N), . . . , CΓ (p−1,m, N)) with CΓ (p−1,j , N) being the constant of the energy estimate
given in Proposition 2.5(2) for j = 1, . . . ,m ensuring that Ĉ is independent of j. The right-hand side of
(4.25) can be estimated through

 δ
0


Γ

((u− κn+1)+ξj)rdσdt ≤M11

 δ
0


Ω

|∇(u− κn+1)+|p
−
1,jξ
p−1,j
j dxdt+

 δ
0


Ω

uq1(t,x)dxdt

+ ess sup
0<t<δ


Ω

(u− κn+1)2
+dx

 s

p
−
1,j

+ s−1
N

 δ
0
|Aκn+1(t)|dt

1− s

p
−
1,j

(4.26)

with M11 = M11(p+, q+, Ĉ, L). Applying (4.17), (4.10), (4.9) and (4.13) to the right-hand side of (4.26) yields

 δ
0


Γ

((u− κn+1)+ξj)rdσdt ≤M11


M5M

n
4 (Zn + Z̃n) + 2q

+
1 (n+2)Zn

 s

p
−
1,j

+ s−1
N


2q+

1 (n+2)

κq
−
1

Zn

1− s

p
−
1,j

≤M12M
n
13(Yn + Y 2q+

n )


2q+
1 (n+2)

κq
−
1

Zn

1− s

p
−
1,j
,

(4.27)

where
s

p−1,j
+ s− 1

N
≤ 2q+.

Now, putting η̃ = max

s1,1(q+

2,1,1)
p−1,1

, . . . ,
s1,m(q+

2,1,m)
p−1,m


we obtain for the last term in (4.27)


2q+

1 (n+2)

κq
−
1

Zn

1− s

p
−
1,j
≤ 2q

+
1 (n+2)


1
κq
−
1

1−η̃ 
Yn + Y 1−η̃

n


. (4.28)

Finally, combining (4.27) and (4.28) results in δ
0


Γ

((u− κn+1)+ξj)rdσdt ≤M12M
n
13(Yn + Y 2q+

n )2q
+
1 (n+2)


1
κq
−
1

1−η̃ 
Yn + Y 1−η̃

n


≤M14M

n
15

1
κq
−
1 (1−η̃)


Y 2
n + Y 2−η̃

n + Y 2q++1
n + Y 2q++1−η̃

n


.

(4.29)

From (4.24) and (4.29) we conclude for r ∈ {q−2,1,j , q
+
2,1,j}

Z̃n+1 ≤M16M
n
15

1
κq
−
1 (1−η̃)


Y 2
n + Y 2−η̃

n + Y 2q++1
n + Y 2q++1−η̃

n


. (4.30)

(VI) The iterative inequality for Yn. Since Yn = Zn + Z̃n, we derive from (4.23) and (4.30)

Yn+1 ≤ Kbn
1

κq
−
1 (1−η̂)


Y 2
n + Y 2−η

n + Y 1+q+

n + Y 1+q+−η
n + Y 2

n + Y 2−η̃
n + Y 2q++1

n + Y 2q++1−η̃
n


≤ 8Kbn 1

κq
−
1 (1−η̂)


Y 1+δ1
n + Y 1+δ2

n


with K = max(M9,M16), b = max(M10,M15), η̂ = max(η, η̃) and where 0 < δ1 ≤ δ2 are given by

δ1 = min

1, 1− η, q+, q+ − η, 1− η̃, 2q+, 2q+ − η̃


,

δ2 = max

1, 1− η, q+, q+ − η, 1− η̃, 2q+, 2q+ − η̃


.
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We can assume, without loss of generality, that b > 1. Hence, we may apply Lemma 2.6 which ensures that
Yn → 0 as n→∞ provided

Y0 =
 δ

0


Ω

(u− κ)q1(t,x)
+ dxdt+

 δ
0


Γ

(u− κ)q2(t,x)
+ dσdt

≤ min


16K
κq
−
1 (1−η̂)

− 1
δ1
b
− 1
δ2

1 ,


16K

κq
−
1 (1−η̂)

− 1
δ2
b
− 1
δ1δ2
− δ2−δ1

δ2
2


.

(4.31)

If we have  δ
0


Ω

u
q1(t,x)
+ dxdt+

 δ
0


Γ

u
q2(t,x)
+ dσdt

≤ min


16K
κq
−
1 (1−η̂)

− 1
δ1
b
− 1
δ2

1 ,


16K

κq
−
1 (1−η̂)

− 1
δ2
b
− 1
δ1δ2
− δ2−δ1

δ2
2


,

(4.32)

then (4.31) is obviously satisfied. Thus, choosing κ such that

κ = max

max(1, ess sup
Ω

u0), (16K)
1

q
−
1 (1−η̂) b

1
δ1q
−
1 (1−η̂)

+ δ2−δ1
δ2q
−
1 (1−η̂)

×


1 +

 δ
0


Ω

u
q1(t,x)
+ dxdt+

 δ
0


Γ

u
q2(t,x)
+ dσdt

 δ2
q
−
1 (1−η̂)

 ,

(4.33)

it follows that (4.32) and in particular (4.31) are fulfilled. Since κn → 2κ as n→∞ we obtain

ess sup
(0,δ)×Ω

u ≤ 2κ and ess sup
(0,δ)×Γ

u ≤ 2κ,

where κ is defined in (4.33). That means that u ∈ L∞(Qδ), L∞(Γδ) with Qδ = (0, δ) × Ω as well as
Γδ = (0, δ)× Γ .

(VII) Repeating the iteration. Note that the subsequent constants are independent of δ:

C1 := ess sup
Ω

u0, C := (16K)
1

q
−
1 (1−η̂) b

1
δ1q
−
1 (1−η̂)

+ δ2−δ1
δ2q
−
1 (1−η̂) , β := δ2

q−1 (1− η̂)
.

Thus, step (VI) has shown that

max


ess sup
(0,δ)×Ω

u, ess sup
(0,δ)×Γ

u


≤ 2 max

C1, C


1 +

 δ
0


Ω

u
q1(t,x)
+ dxdt+

 δ
0


Γ

u
q2(t,x)
+ dσdt

β
≤ 2 max

C1, C


1 +

 T
0


Ω

u
q1(t,x)
+ dxdt+

 T
0


Γ

u
q2(t,x)
+ dσdt

β
=: κ̃1,

where κ̃1 is independent of δ. Now we may proceed as in (II)–(VI) replacing δ by 2δ and starting with
κ ≥ κ̃1. Then, the same calculations as above ensure an estimate of the form

max


ess sup
(0,2δ)×Ω

u, ess sup
(0,2δ)×Γ

u



≤ 2 max

κ̃1, C


1 +

 2δ

0


Ω

u
q1(t,x)
+ dxdt+

 2δ

0


Γ

u
q2(t,x)
+ dσdt

β
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≤ 2 max

κ̃1, C


1 +

 T
0


Ω

u
q1(t,x)
+ dxdt+

 T
0


Γ

u
q2(t,x)
+ dσdt

β
= 2κ̃1 =: κ̃2.

Recalling [0, T ] =
l
i=1[δ(i− 1), δi] and following this pattern gives the global upper bound

max


ess sup
(0,T )×Ω

u, ess sup
(0,T )×Γ

u


≤ κ̃l = 2κ̃l−1 = · · · = 2l−1κ̃1

meaning that

max


ess sup
(0,T )×Ω

u, ess sup
(0,T )×Γ

u



≤ 2lmax

C1, C


1 +

 T
0


Ω

u
q1(t,x)
+ dxdt+

 T
0


Γ

u
q2(t,x)
+ dσdt

β .

This proves the first assertion of the theorem.

In order to verify the global lower bound for a supersolution, we may argue similarly replacing u by −u,
Aκ(t) by Ãκ(t) and Γκ(t) by Γ̃κ(t). Additionally, instead of Proposition 4.1, we have to use Proposition 4.2.
That finishes the proof of the theorem. �
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