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1. Introduction

We consider the functional | : W'?(£2) — R defined by

1 1
Jw = f/ |Vu|"dx+f/ |u|"dx+fjl(x, u)dx+/ Ja(t, yuyda (1.1)
PJo PJe 2 IR

with 1 < p < oo. The domain £2 C RV is supposed to be bounded with Lipschitz boundary 952 and the nonlinearities
j1: 82 xR — Raswellasj, : 92 x R — R are measurable in the first argument and locally Lipschitz in the second one.
Byy : Wh(2) — LN(382) for 1 < g1 < ps (px = (N — 1)p/(N — p) if p < N and p, = +o0 if p > N), we denote the
trace operator which is known to be linear, bounded and even compact. Note that J : W'P(£2) — R does not have to be
differentiable and that it corresponds to the following elliptic inclusion

—Apu+ [ulP"?u+3j;(x,u) 30 in £,

au
P + djo(x, yu) > 0 onads,
v
where —Apu = — div(|VulP=2Vu), 1 < p < oo, is the negative p-Laplacian. The symbol % denotes the outward pointing

conormal derivative associated with —A, and 9j(x, u), k = 1, 2, stands for Clarke’s generalized gradient given by

djk(x,8) ={& eR:jp(x,s;1) > Er,Vr € R}.
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The term j;(x, s; ) denotes the generalized directional derivative of the locally Lipschitz function s — ji(x, s) at s in the
direction r defined by

jp(x,s; 1) = limsup By +tr) — kX, ¥)
k\Ns 9 s .

)

(cf. [1, Chapter 2]). It is clear that j}(x, s; 1) € R because ji(x, -) is locally Lipschitz.

The main goal of this paper is the comparison of local C!(£2) and local W'-P(£2)-minimizers. That means that if uy €
WUP(£2) is a local C'(£2)-minimizer of J, then ug is also a local WP (£2)-minimizer of J. This result is stated in our main
Theorem 3.1.

Such a result was first proven for functionals corresponding to elliptic equations with Dirichlet boundary values by Brezis
and Nirenberg in [2] if p = 2. They consider potentials of the form

q>(u):/ 1|Vu|2—/ F(x, u),
2 2 2

where F(x, u) = fou f(x, s)ds with some Carathéodory function f : 2 x R — R. An extension to the more general case
1 < p < oo can be found in the paper of Garcia Azorero et al. in [3]. We also refer the reader to [4] if p > 2. As regards
nonsmooth functionals defined on Wol’p(.Q) with 2 < p < oo, we point to the paper [5]. A very inspiring paper about local
minimizers of potentials associated with nonlinear parametric Neumann problems was published by Motreanu et al. in [6].
Therein, the authors study the functional

Po®) = %”D"”E - /Fo(z,X(Z))dz, Vx € WP ()
z
with
W, P(2) = {y eWP(2): ax _ o} ,
on

where g—z is the outer normal derivative of u and Fy(z, x) = fg‘ fo(z, s)ds,aswellas 1 < p < oo. A similar result correspond-

ing to nonsmooth functionals defined on W,}’p (£2) for the case 2 < p < oo was proved in [7]. We also refer the reader to
the paperin[8]for 1 < p < oo.

Arecent paper about the relationship between local C!(£2)-minimizers and local WP (§2)-minimizers of C!-functionals
has been treated by the author in [9]. The idea of the present paper was the generalization to the more general case of
nonsmooth functionals defined on W'-P(£2) with 1 < p < oo involving boundary integrals which in general do not vanish.

2. Hypotheses

We suppose the following conditions on the nonsmooth potentials j; : 2 x R — Randj, : 92 x R — R.

(H1) (i) x = j;1(x, s) is measurable in §2 for all s € R.
(ii) s — jy(x,s) is locally Lipschitz in R for almost all x € 2.
(iii) There exists a constant c; > 0 such that for almost all x € £2 and for all £&; € 9j;(x, s) it holds that

&1 < (14 [s]07h) (2.1)
with 1 < gy < p*, where p* is the Sobolev critical exponent
N|
. ]2 ifp<n,
PP=3yN-p
+00 ifp>N.
(H2) (i) x = ja(x, s) is measurable in 92 for all s € R.
(ii) s = ja(x, s) is locally Lipschitz in R for almost all x € 9£2.
(iii) There exists a constant c; > 0 such that for almost all x € 02 and for all &, € 9j,(x, s) it holds that
|62 < 21+ 5|7 (2.2)
with 1 < g1 < p,, where p, is given by
(N—"Dp
P« = N-—p
+00 ifp>N.
(iv) Letu € W'P(£2). Then every &; € dj,(x, u) satisfies the condition

1E3(x1) — &3(x2)| < Lixy — x5%,
for all xq, x, in 062 with @ € (0, 1].

ifp <N,

Remark 2.1. Note that the conditions above imply that the functional ] : W'P(£2) — R is locally Lipschitz (see [10]
or [11, p. 313]). That guarantees, in particular, that Clarke’s generalized gradient s — 9] (s) exists.
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3. C1(2) versus WP ($2)
Our main result is the following.

Theorem 3.1. Let the conditions (H1) and (H2) be satisfied. If uq € W'P(£2) is a local C'(£2)-minimizer of J, that is, there
exists r1 > 0 such that

J(uo) < J(ug+h) forallh e C'(2) with bl <1
then uq is a local minimizer of | in WP (£2), that is, there exists r, > 0 such that

J(uo) <J(uo +h) forallh € W"P(2) with ||hlly1p(g) < T2

Proof. Let h € C!(£2) and let 8 > 0 small. Then we have

_ Juo + Bh) — J (o)
— ﬁ b

which means that
0 <J%ug; h) forallh e C'(2).
The continuity of J°(up; -) on W1P(£2) and the density of C!($2) in W'P(£2) imply
0 <J°®ug; h) forallh e W'P(£2).
Hence, we get
0 € 9J(uo).
The inclusion above implies the existence of hy € L% (£2) with hy(x) € 3j;(x, ug(x)) and hy € L9 (382) with hy(x) € dj2(x,

v (Up(x))) satisfying 1/qo + 1/q; = 1as well as 1/q; + 1/¢; = 1 such that

/ |Vuo|P~2VueVdx + / [uo P 2updx + / hipdx + / hyyedo =0, VYo € WP (). (3.1)
2 2 2 a2
Note that Eq. (3.1) is the weak formulation of the Neumann boundary value problem

72 .
—Apup = hy — |ug/’“up  in 2,
8110

=hy onos2,
ov

where d“" means the outward pointing conormal and — A, is the negative p-Laplacian. The regularity results in [12, Theorem
4.1 and Remark 2.2] along with [13, Theorem 2] ensure the existence of « € (0, 1) and M > 0 such that

up € CH*(2) and |ugllcre <M. (3.2)

In order to prove the theorem, we argue indirectly and suppose that the theorem is not valid. Hence, for any ¢ > 0 there
exists y. € B, (ug) such that

Joo) = min [J) 1y € BoCuo) | < J o), (33)
where B, (ug) = {y € W"P(2) : |ly — Uollw1r(g) < €}. More precisely, y. solves
minJ(y)

R 1
y € Boluo) o) = (ly = ol 1) — 8°) < 0.

The usage of the nonsmooth multiplier rule of Clarke in [ 14, Theorem 1 and Proposition 13] yields the existence of a multi-
plier A, > 0 such that

0 € 3J(ye) + AeF ().
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This means that we find g; € L% (£2) with g1(x) € 9j1(x,y.(x)) aswell as g, € L% (082) with g5 (x) € djo(x, y (¥.(X))) to
obtain

/ |Vye P2 Vy, Vodx + / Ve P~ %yepdx + / gipdx + / g y¢do
2 2 2 2

e / Ve — o) P2V (s — o) Vpdx + s / e — tolP (s — ug)pdx = 0, (3.4)
2 2

for all € WTP(£2). Next, we have to show that y, belongs to L°(£2) and hence to C1*(£2).

Case 1: Ao, = Owith e € (0, 1].
From (3.4) we see that y, solves the Neumann boundary value problem

—Apye = —81 — |yeI" %y, in £2,
0Yye
Jv

= —g onas2,

As before, the regularity results in [12,13] yield (3.2) for y,.

Case2:0 < A, < 1withe € (0, 1].
Multiplying (3.1) with A, and adding (3.4) yields

f VY. P72 Vy, Vodx + A, f |VuoP 2 Vg Vpdx + A / V(e — ug) P2V (ye — up) Vpdx
2 2 2
S / (hahr + 81 + heluo P o) pdlx — / (elye — UoP2 (e — tio) + e P2y )pdlx
2 2

- / (hehz + )y 9do. (35)
982

With (3.5) in mind, we introduce the operator T, : 2 x RN — RN given by
T.(x.§) = 5P + A [HP?H + A€ —HP"*(§ — H),

where H(x) = Vuy(x) and H € (C%(2))" for some « € (0, 1].Itis clear that T, (x, £) € C(£2 x RN, RV). For x € £2 we have
(Te(X. &), )pnv = &P + 2e(1€ —HPP (6 —H) — | —HP"?(=H), & —H — (=H))zn

lEIIP foralleé e RN, (3.6)

v

where (-, -)pn is the inner product in RN. The estimate (3.6) shows that T, satisfies a strong ellipticity condition. Hence, the
equation in (3.5) is the weak formulation of the elliptic Neumann boundary value problem

—divT.(x, Vy,) = —(hehi + g1 + Ao (luoP2ug + lye — uol” (e — o)) + e /P 2y.) ing2,
dv,
v

= —(Achy +g2) on df.

Using again the regularity results in [12] in combination with (3.6) and the growth conditions (H1)(iii) as well as (H2)(iii)
proves y, € L*°(£2). Note that

IDsTe (x, £)lgn < by + by | P72, (3.7)
where by, b, are some positive constants. We also obtain

(DeTo (%, &)y, Yan = EP 21>+ 0 — 2)IEPHE Yin + Aol —HP 2y + 2:(p — 2)|1E —HPP (€ — H,y)%n

&P~ |y|? ifp>2
(p—DIEP 2l ifl<p<2

v

min{1, p — 1}|§[P*|y/*. (3.8)

Because of (3.7) and (3.8), the assumptions of Lieberman in [13] are satisfied and, thus, Theorem 2 in [13] ensures the exis-
tence of @ € (0, 1) and M > 0, both independent of ¢ € (0, 1], such that

Ye €CY(2) and |yellcre@ <M, foralle € (0, 1]. (3.9)
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Case 3: A, > 1withe € (0, 1].
Multiplying (3.1) with —1, setting v, = y. — up in (3.4) and adding these new equations yields

/ |V (ug + ve) P72V (ug + ve) Vpdx — / |Vug|P~2VugVedx + A, / |V, P72V, Vodx
2 2 2

= / (luolP %o — |ve + [P (ve + Ug) — Aelve [P0, ) dx +/ (hy —gl)qoder/ (hy — &)y edo. (3.10)
2 2 082
Defining again
1
T (x,§) = T(lH +EP(H+ &) — [HP?H) + P2
&

and rewriting (3.10) yields the equation

1
—div TS(X, VUE) = )\7(|u0|p_2u0 - |U€ + u0|p_2(vs + Uo) - )\5|U5|p_21)€ + hl - g]) in -Q,

&

0 _ 1 oy 90
- —(h — on 4s2.
30 e 2 — &

As above, we have the following estimates:

(To(x, &), &)an = [E]IP forall& € RY, (3.11)
IDeTe (%, &) llgn < a1 + az]&1P2, (3.12)
(DT (x, )y, y)ev > min{1, p — 1} [P72|y|?, (3.13)

with some positive constants ay, a,. Due to (3.11) along with [12], we obtain v, € L*°(£2). The statements (3.12) as well as
(3.13) allow us to apply again the regularity results of Lieberman which implies the existence of« € (0, 1) and M > 0, both
independent of ¢ € (0, 1], such that (3.9) holds for v,. Because of y. = v, + ug and (3.2), we obtain (3.9) in the case A, > 1.
Summarizing, we have proved that y, € L*°(£2) and y, € C'*(2) forall e € (0, 1] with o € (0, 1).

Let & | 0. We know that the embedding C*(£2) < C!(£2) is compact (cf. [15, p. 38] or [16, p. 11]). Hence, we find a
subsequence y,, of y, such thaty,, — ¥in C'(£2). By construction we have y,, — uo in W!P(£2) which yieldsy = uy. So,
for n sufficiently large, say n > ng, we have

Ve, — uollcra@y <11,

which provides

J(wo) <J¥e,)- (3.14)

However, the choice of the sequence (y,,) implies

JWe,) <J(uo), Vn=ng
(see (3.3)) which is a contradiction to (3.14). This completes the proof of the theorem. O
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