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Abstract
We consider a nonlinear Lienard-type system driven by a nonlinear, nonhomogeneous
differential operator and a maximal monotone map. On the Carathéodory perturbation
we do not impose any global growth condition. Instead we employ a Hartman-type
hypotheses. Using tools from fixed point theory and the theory of operators of mono-
tone type, we prove two existence theorems.
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1 Introduction

In 1960,Hartman [4], see alsoHartman [5], proved that the semilinearDirichlet system

u′′(t) = f (t, u(t)) on T = [0, b], u(0) = u(b) = 0

with f : T × R
N → R

N being continuous, admits a solution provided that there
exists M > 0 such that

( f (t, x), x)RN ≥ 0 for all t ∈ T and for all x ∈ R
N with |x | = M .
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Later, Knobloch [6] extended the result to semilinear periodic systems under the
assumption that the vector field f : T ×R

N → R
N is locally Lipschitz.More recently,

Mawhin [8] extended the results of Hartman andKnobloch to nonlinear systems driven
by the vector p-Laplacian and having a continuous vector field f : T × R

N → R
N .

In this paper we go well beyond the aforementioned works and deal with the fol-
lowing nonlinear system:

a
(
u′(t)

)′ + d

dt
∇G(u(t)) ∈ A(u(t)) + f (t, u(t)) for a.a. t ∈ T = [0, b],

u ∈ BC,

(1.1)

where we mean by u ∈ BC that u satisfies one of the following boundary conditions

• Dirichlet condition: u(0) = u(b) = 0;
• Neumann condition: u′(0) = u′(b) = 0;
• Periodic condition: u(0) = u(b), u′(0) = u′(b).

We will do the proof for the periodic problem and the same reasoning, in fact in a
simpler form, applies also to the other two boundary conditions.

In problem (1.1), the mapping a : RN → R
N is a suitable homeomorphism, in

general nonhomogeneous, which includes many differential operators of interest as
special cases such as the vector p-Laplacian. For G we suppose G ∈ C2(RN ,R) and
on the right-hand side of (1.1), A : R

N → 2R
N
is a maximal monotone map and

f : T ×R
N → R

N is a Carathéodory perturbation, that is, t → f (t, x) is measurable
for all x ∈ R

N and x → f (t, x) is continuous for a.a. t ∈ T .We do not assume that the
domain of A is all ofRN and this incorporates in our framework systemswith unilateral
constraints, namely differential variational inequalities. Moreover, we do not impose
any global growth condition on the perturbation term f (t, ·). Instead we employ the
Hartman-type condition mentioned in the beginning of the paper. The particular form
of (1.1) classifies the problem as a nonlinear Lienard system, see Hartman [5, p. 179].

Our approach uses tools from fixed point theory and from the theory of nonlinear
operators of monotone type.

2 Preliminaries and hypotheses

Let X be a reflexive Banach space, let X∗ be its topological dual and denote by 〈·, ·〉
the duality brackets for the pair (X∗, X). We say that a map A : X → 2X

∗
is monotone

if

〈
u∗ − x∗, u − x

〉 ≥ 0 for all (u, u∗), (x, x∗) ∈ Gr A,

where

Gr A = {
(v, v∗) ∈ X × X∗ : v∗ ∈ A(v)

}
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Nonlinear systems with Hartman-type perturbations 391

denotes the graph of A. If A satisfies

〈
u∗ − x∗, u − x

〉
> 0 for all (u, u∗), (x, x∗) ∈ Gr A with u 
= x,

then we say that A is strictly monotone. Finally we say that A : X → 2X
∗
is maximal

monotone if

〈
u∗ − x∗, u − x

〉 ≥ 0 for all (u, u∗) ∈ Gr A implies (x, x∗) ∈ Gr A.

This means that Gr A is maximal with respect to inclusion among the graphs of all
monotone maps. By D(A) we denote the domain of A, that is,

D(A) = {u ∈ X : A(u) 
= ∅} .

For a maximal monotone map A we have that Gr A is sequentially closed in Xw × X∗
and in X × X∗

w.
Now, let H be a Hilbert space. We identify H with its dual by the Fréchet–Riesz

theorem, that is, H = H∗. Let A : H → 2H be a maximal monotone map. For λ > 0
we define the following single-valued maps

Resolvent of A : Jλ = (I + λA)−1 ,

Yosida approximation of A : Aλ = 1

λ
[I − Jλ].

The next proposition summarizes the main properties of these two operators.

Proposition 2.1 If A : H → 2H is a maximal monotone map and λ > 0, then the
following hold:

(a) Jλ : H → H is nonexpansive, that is ‖Jλ(u)− Jλ(x)‖ ≤ ‖u−x‖ for all u, x ∈ H;
(b) Aλ(u) ∈ A(Jλ(u)) for all u ∈ H;
(c) Aλ is monotone and ‖Aλ(u) − A(x)‖ ≤ 1

λ
‖u − x‖ for all u, x ∈ H;

(d) ‖Aλ(u)‖ ≤ ‖A0(u)‖ = min {‖u∗‖ : u∗ ∈ A(u)} and Aλ(u) → A0(u) as λ → 0+
for all u ∈ D(A);

(e) D(A) is convex and Jλ(u) → proj
(
u; D(A)

)
for all u ∈ H.

Remark 2.2 The maximal monotonicity of A implies that A(u) ⊆ H is nonempty,
closed and convex for all u ∈ D(A). Therefore, the minimal norm element A0(u)

exists. Moreover, D(A) is convex and so the metric projection proj(·, D(A)) is well-
defined. For more about maps of monotone type we refer to Papageorgiou–Winkert
[9].

Suppose that V , Z are Banach spaces and let K : V → Z . We introduce the
following two notions:

• We say that K is completely continuous if

vn
w→ v in V implies K (vn) → K (v) in Z .
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392 N. S. Papageorgiou, P. Winkert

• We say that K is compact if it is continuous and maps bounded sets in V to
relatively compact sets in Z .

From the fixed point theory, we will use the Leray–Schauder Alternative Principle
which says the following.

Theorem 2.3 If V is a Banach space, K : V → V is a compact map and

S = {v ∈ V : v = μK (v) for some 0 < μ < 1} ,

then one of the following two statements is true:

(a) S is unbounded;
(b) K has a fixed point.

By ρM : RN → R
N with M > 0 with denote the map

ρM (u) =
{
u if |u| ≤ M,
Mu
|u| if M < |u|,

for all u ∈ R
N , where we denote by |u| the Euclidean norm of u for every u ∈ R

N . It
is easy to see that the map ρm is nonexpansive.

For notational simplicity, we will write W 1,p with 1 < p < ∞ for the space
W 1,p((0, b),RN ) and by ‖ · ‖ we will denote the norm of W 1,p defined by

‖u‖ = (‖u‖p
p + ‖u′‖p

p
) 1
p for all u ∈ W 1,p.

Given a function f : T × R
N → R

N we denote by N f the Nemytskij operator
corresponding to f defined by

N f (u)(·) = f (·, u(·)) for all u ∈ W 1,p.

Now we introduce the hypotheses on the data of (1.1).

H(a): a : RN → R
N is a strictly monotone, continuous map such that a(0) = 0,

a(y) = c(|y|)y for all y ∈ R
N\{0}

with a continuous function c : (0,+∞) → (0,+∞) and there exist c0 > 0
and 1 < p < ∞ such that

c0|y|p ≤ (a(y), y)RN for all y ∈ R
N .

Remark 2.4 Evidently, a is maximal monotone. Furthermore, a is a homeomorphism
onto R

N and |a−1(y)| → +∞ as |y| → +∞. We stress that no growth condition is
imposed on a.
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Nonlinear systems with Hartman-type perturbations 393

Example 2.5 The following maps satisfy hypotheses H(a):

• a(y) = |y|p−2y with 1 < p < ∞,

• a(y) = |y|p−2y + |y|q−2y with 1 < q < p < ∞,

• a(y) = [
1 + |y|2]

p−2
2 y with 1 < p < ∞,

• a(y) = [
ce|y|p − 1

] |y|p−2y with 1 < p < ∞ and c > 1,

for all y ∈ R
N . The first map corresponds to the vector p-Laplacian and the second

one to the vector (p, q)-Laplacian.

The assumptions on G read as follows:

H(G): G ∈ C2(RN ,R) and ∇G(x) = g0(|x |)x for all x ∈ R
N with g0(r) > 0 for all

r > 0.

Remark 2.6 As mentioned before, we do not assume any global growth condition on
the function G.

Example 2.7 The following maps fulfill H(G):

• G(x) = 1
r |x |r with 2 ≤ r < ∞,

• G(x) = 1
r |x |r + 1

q |x |q with 2 ≤ q < r < ∞,

• G(x) = 1
2

[
e|x |2 − 1

]
,

for all x ∈ R
N .

Finally, we can state our assumptions on A : RN → 2R
N
and f : T ×R

N → R
N .

H(A): A : RN → 2R
N
is a maximal monotone map with 0 ∈ A(0);

H(f): f : T × R
N → R

N is a Carathéodory function such that

(i) for every η > 0 there exists aη ∈ L2(T )+ such that

| f (t, x)| ≤ aη(t) for a.a. t ∈ T and for all |x | ≤ η;

(ii) there exists M > 0 such that

( f (t, x), x)RN ≥ 0

for a.a. t ∈ T and for all x ∈ R
N with |x | = M .

3 Existence of solutions

For h ∈ L1(T ,RN ) we consider the following system

−a
(
u′(t)

)′ + |u(t)|p−2u′(t) = h(t) for a.a. t ∈ T ,

u(0) = u(b), u′(0) = u′(b).
(3.1)
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394 N. S. Papageorgiou, P. Winkert

Proposition 3.1 If hypotheses H(a) hold, then problem (3.1) has a unique solution
K (h) ∈ C1(T ,RN ) for every h ∈ L1(T ,RN ).

Proof Note that

∫ b

0

[
h(t) − |u(t)|p−2u(t)

]
dt = 0.

The existence of a solution K (h) ∈ C1(T ,RN ) follows from Theorem 5.3 of
Manásevich–Mawhin [7]. The uniqueness of this solution is a consequence of the
strict monotonicity of the maps

R
N � y → a(y) and R

N � x → |x |p−2x .

��
Remark 3.2 The above proposition is stated in a little more general form than we will
need it here. Indeed, it is enough to consider h ∈ L2(T ,RN ), see hypothesis H(f)(i).
However, when D(A) = R

N , then we can have aη ∈ L1(T )+ in hypothesis H(f)(i)
and so we use Proposition 3.1. For the Dirichlet problem, on account of the Poincaré
inequality, we consider instead of (3.1) the following problem

−a
(
u′(t)

)′ = h(t) for a.a. t ∈ T ,

u(0) = u(b) = 0.

Then, the existence and uniqueness of a solution K (h) ∈ C1(T ,RN ) follows from
Theorem 5.1 of Manásevich–Mawhin [7].

Now we can define the solution map K : L1(T ,RN ) → C1(T ,RN ) and obtain
the following property of this map.

Proposition 3.3 If hypotheses H(a) hold, then K is completely continuous.

Proof Let hn
w→ h in L1(T ,RN ) and set un = K (hn) for all n ∈ N. We have for

n ∈ N

−a
(
u′
n(t)

)′ + |un(t)|p−2un(t) = hn(t) for a.a. t ∈ T ,

un(0) = un(b), u′
n(0) = u′

n(b).
(3.2)

We take the inner productwith un(t), integrate over T = [0, b] and perform integration
by parts. This leads to

∫ b

0
(a(u′

n), u
′
n)RN dt + ‖un‖p

p ≤ c1‖un‖ for some c1 > 0 and for all n ∈ N.

Taking hypotheses H(a) into account gives

c0‖u′
n‖p

p + ‖un‖p
p ≤ c1‖un‖ for all n ∈ N.
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Nonlinear systems with Hartman-type perturbations 395

Therefore, the sequence {un}n≥1 ⊆ W 1,p is bounded and since W 1,p ↪→ C(T ,RN )

is compactly embedded, we conclude that

{un}n≥1 ⊆ C(T ,RN ) is relatively compact. (3.3)

From (3.2) we have

a(u′
n(t)) = a(u′

n(0)) +
∫ t

0

[
hn(s) − |un(s)|p−2un(s)

]
ds (3.4)

for all t ∈ T and for all n ∈ N. This gives

u′
n(t) = a−1

[
a(u′

n(0)) +
∫ t

0

[
hn(s) − |un(s)|p−2un(s)

]
ds

]

for all t ∈ T and for all n ∈ N. If

kn(t) =
∫ t

0

[
hn(s) − |un(s)|p−2un(s)

]
ds

for n ∈ N, then {kn}n∈N ⊆ C(T ,RN ) is bounded. Moreover, note that
∫ t
0 u

′
n(t)dt = 0

for n ∈ N. Therefore, Lemma 3.1 of Manásevich–Mawhin [7] implies that

{a(un(0))}n∈N ⊆ R
N is bounded.

Then, from (3.4) and the Arzela–Ascoli theorem, we infer that

{a(u′
n(·))}n∈N ⊆ C(T ,RN ) is relatively compact. (3.5)

Let â−1 : C(T ,RN ) → C(T ,RN ) be defined by

â−1(u)(·) = a−1(u(·)) for all u ∈ C(T ,RN ).

Evidently, â−1 is continuous and bounded, that is, it maps bounded sets to bounded
sets. Hence, from (3.5) we have

{u′
n}n∈N ⊆ C(T ,RN ) is relatively compact. (3.6)

From (3.3) and (3.6) it follows that

{un}n∈N ⊆ C1(T ,RN ) is relatively compact.

We may assume, at least for a subsequence, that

un → u in C1(T ,RN ). (3.7)
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396 N. S. Papageorgiou, P. Winkert

We have

∫ b

0
(a(u′

n), v
′)RN dt +

∫ b

0
|un|p−2(un, v)RN dt =

∫ b

0
(hn, v)RN dt (3.8)

for all v ∈ W 1,p and for all n ∈ N. From (3.7) and the continuity of a, we obtain

|a(u′
n(t))| ≤ c2

for some c2 > 0, for all t ∈ T and for all n ∈ N. So, if we pass to the limit in (3.8) as
n → ∞, then one has

∫ b

0
(a(u′), v′)RN dt +

∫ b

0
|u|p−2(u, v)RN dt =

∫ b

0
(h, v)RN dt

for all v ∈ W 1,p. Hence, u = K (h).
Therefore, we obtain for the original sequence that

un = K (hn) → K (h) = u in C1(T ,RN ),

which shows that K : L1(T ,RN ) → C1(T ,RN ) is completely continuous. ��
Remark 3.4 In particular, we obtain that K : L2(T ,RN ) → C1(T ,RN ) is completely
continuous and then, due to the reflexivity of L2(T ,RN ), we have that K is compact,
see Papageorgiou–Winkert [9, Proposition 3.7.7].

For every λ > 0, let Âλ : W 1,p → L2(T ,RN ) be defined by Âλ(u)(·) = Aλ(u(·)).
In fact, Âλ is L∞(T ,RN )-valued. Then, let Nλ : W 1,p → L2(T ,RN ) be defined by

Nλ(u) = − Âλ(u) − N f (ρM (u)) + |ρM (u)|p−2ρM (u) + ∇G(ρM (u)).

The following proposition is an immediate consequence of the properties of Aλ, see
Proposition 2.1, and of the hypotheses H(G) and H(f).

Proposition 3.5 If hypotheses H(A), H(G) and H(f) hold, then Nλ : W 1,p →
L2(T ,RN ) is continuous.

From Propositions 3.3 and 3.5 we easily conclude that the map K ◦ Nλ : W 1,p →
W 1,p is compact. We define

Sλ =
{
u ∈ W 1,p : u = μ(K ◦ Nλ)(u), 0 < μ < 1

}
.

Proposition 3.6 If hypotheses H(a), H(A), H(G), H(f) hold and λ > 0, then Sλ ⊆ W 1,p

is bounded.
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Nonlinear systems with Hartman-type perturbations 397

Proof Let u ∈ Sλ. Then 1
μ
u = K (Nλ(u)) and so

− a

(
1

μ
u′

)′
+ 1

μp−1 |u|p−2u

= − Âλ(u) − N f (ρM (u)) + |ρM (u)|p−2ρM (u) + d

dt
∇G(ρM (u)) (3.9)

with u(0) = u(b) and u′(0) = u′(b).
Claim: |u(t)| ≤ M for all t ∈ T

Let r(t) = 1
2 |u(t)|2 for all t ∈ T . Thenwe canfind t0 ∈ T such that r(t0) = maxT r .

Arguing by contradiction, suppose that

r(t0) >
1

2
M2.

First we assume that t0 ∈ (0, b). Then

r ′(t0) = (u′(t0), u(t0))RN = 0. (3.10)

Let t1 ∈ [0, t0) be such that |u(t1)| = M and |u(t)| > M for all (t1, t0]. Then

− a

(
1

μ
u′(t)

)′
+ 1

μp−1 |u(t)|p−2u(t)

= − Âλ(u(t)) − f (t, ρM (u(t))) + |ρM (u(t))|p−2ρM (u(t)) + d

dt
∇G(ρM (u(t)))

for a.a. t ∈ T . This implies

− d

dt

(
a

(
1

μ
u′(t)

)
, u(t)

)

RN
+

(
a

(
1

μ
u′(t)

)
, u′(t)

)

RN
+ 1

μp−1 |u(t)|p

= − (Aλ(u(t)), u(t))RN − |u(t)|
M

( f (t, ρM (u(t))), ρM (u(t)))RN

+ |u(t)|Mp−1 +
(
d

dt
∇G(ρM (u(t))), u(t)

)

RN
(3.11)

for a.a. t ∈ [t1, t0]. Since Aλ ismaximalmonotone, seeProposition2.1, and Aλ(0) = 0,
see hypotheses H(a), we have

− (Aλ(u(t)), u(t))RN ≤ 0 for all t ∈ T . (3.12)

Furthermore, taking hypothesis H(f)(ii) into account, we obtain

−|u(t)|
M

( f (t, ρM (u(t))), ρM (u(t)))RN ≤ 0 for all t ∈ [t1, t0]. (3.13)
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398 N. S. Papageorgiou, P. Winkert

Finally, applying hypotheses H(G), we have

(
d

dt
∇G(ρM (u(t))), u(t)

)

RN

= |u(t)|
M

(
d

dt
∇G(ρM (u(t))), ρM (u(t))

)

RN

= |u(t)|
M

[
d

dt
(∇G(ρM (u(t))), ρM (u(t)))RN

−
(

∇G(ρM (u(t))),
d

dt
ρM (u(t))

)

RN

]

= |u(t)|
dt

[
d

dt

(
g0(M)M2

)
− g0(M)

d

dt
|ρM (u(t))|2

]
= 0

(3.14)

for all t ∈ [t1, t0]. We return to (3.11) and apply (3.12), (3.13), (3.14) and hypotheses
H(a). This gives

|u(t)|
[

1

μp−1 |u(t)|p−1 − Mp−1
]

≤ d

dt

(
a

(
1

μ
u′(t)

)
, u(t)

)

RN

for a.a. t ∈ (t1, t0] and so, since 0 < μ < 1,

0 <
d

dt

(
a

(
1

μ
u′(t)

)
, u(t)

)

RN
for a.a. t ∈ (t1, t0].

Therefore, the function

t →
(
a

(
1

μ
u′(t)

)
, u(t)

)

RN

is strictly increasing on (t1, t0]. Hence, we have
(
a

(
1

μ
u′(t)

)
, u(t)

)

RN
<

(
a

(
1

μ
u′(t0)

)
, u(t0)

)

RN
for all t ∈ (t1, t0).

Based on hypotheses H(a) and (3.10) we obtain

c

(
1

μ
|u′(t)|

) (
u′(t), u(t)

)
RN < c

(
1

μ
|u′(t0)|

) (
u′(t0), u(t0)

)
RN = 0.

Thus, r ′(t) < 0 for all t ∈ (t1, t0).
Finally we have

M2 < r(t0) < r(t1) = M2,

a contradiction.
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Nonlinear systems with Hartman-type perturbations 399

If t0 = 0 or t0 = b, then r(0) = r(b) and r ′(0) ≤ 0 ≤ r ′(b). But

r ′(t) = (
u′(t), u(t)

)
RN for all t ∈ T ,

which implies r ′(0) = r ′(b) = 0 and so the previous argument applies. This proves
the Claim.

Next we act on (3.9) with u, perform integration by parts and use hypotheses H(a),
H(G), H(f)(i) and the Claim. This gives

1

μp−1

[
c0

∥∥u′∥∥p
p + ‖u‖p

p

]
≤ c3 for some c3 > 0 and for all u ∈ S.

Recall that 0 < μ < 1, we see that S ⊆ W 1,p is bounded. ��
For λ > 0 we consider the following approximation to problem (1.1)

a
(
u′(t)

)′ + d

dt
∇G(u(t)) = Aλ(u(t)) + f (t, u(t)) for a.a. t ∈ T = [0, b],

u(0) = u(b), u′(0) = u′(b). (3.15)

Proposition 3.7 If hypotheses H(a), H(G), H(A), H(f) hold and let λ > 0, then problem
(3.15) has a unique solution ûλ ∈ C1(T ,RN ).

Proof The compactness of K ◦Nλ : W 1,p → W 1,p and Proposition 3.6 permit the use
of the Leray–Schauder Alternative Principle stated as Theorem 2.3. So, there exists
ûλ ∈ W 1,p such that

û = (K ◦ Nλ)
(
ûλ

)
.

This gives

ûλ ∈ C1(T ,RN ) and
∣∣ûλ(t)

∣∣ ≤ M for all t ∈ T ,

see the proof of Proposition 3.6. Then ρM (ûλ(t)) = ûλ(t) and so we conclude that
ûλ ∈ C1(T ,RN ) is a solution of (3.15), see (3.9) with μ = 1. ��

Let a : L2(T ,RN ) → 2L
2(T ,RN ) be defined by

a(u) =
{
ϑ ∈ L2(T ,RN ) : ϑ(t) ∈ A(u(t)) for a.a. t ∈ T

}
.

Since 0 ∈ A(0) we see that D(a) 
= ∅. From Brézis [2, p. 21] we have the following
result.

Proposition 3.8 If hypotheses H(A) hold, then a is maximal monotone.

Now we are ready to produce a solution for problem (1.1).
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400 N. S. Papageorgiou, P. Winkert

Theorem 3.9 If hypotheses H(a), H(G), H(A), H(f) hold, then problem (1.1) has a
solution û ∈ C1(T ,RN ).

Proof Let λn → 0+ and let ûn = ûλn ∈ C1(T ,RN ) for n ∈ N be a solution of (3.15)
based on Proposition 3.7. From the proof of Proposition 3.6, see the Claim in that
proof, we have

∣
∣ûn(t)

∣
∣ ≤ M for all t ∈ T and for all n ∈ N. (3.16)

From (3.15) it follows that

∫ b

0

(
a

(
â′
n

)
, û′

n

)
RN dt ≤

∫ b

0

∣
∣ f

(
t, ûn

)∣∣ Mdt +
∫ b

0

∣∣
∣∣
d

dt
∇G

(
ûn

)
∣∣
∣∣ Mdt,

wherewe recall that Aλn ismonotone, Aλn (0) = 0 and see (3.16).Applying hypotheses
H(a), H(G) and H(f)(i) leads to

c0
∥∥û′

n

∥∥p
p ≤ c3 for some c3 > 0 and for all n ∈ N.

Therefore, the sequence {û′
n}n∈N ⊆ L p(T ,RN ) is bounded and so it is {ûn}n∈N ⊆

W 1,p, see (3.16). So, by passing to a subsequence if necessary, we can say that

ûn
w→ û in W 1,p and ûn → û in C(T ,RN ).

Nowwe take the inner product with Aλn (ûn(t)) in (3.15) and integrate over T = [0, b].
After integration by parts and by applying hypotheses H(G), H(f)(i) and (3.16), we
obtain

∫ b

0

(
a

(
û′
n

)
,
d

dt
Aλn (un)

)

RN
dt + ∥∥Aλn (un)

∥∥2
2 ≤ c4

∥∥Aλn (un)
∥∥
2 (3.17)

for some c4 > 0 and for all n ∈ N.
The map x → Aλn (x) for n ∈ N is Lipschitz continuous from R

N into R
N .

So, by the Rademacher theorem, see Evans–Gariepy [3, p. 81], we know that Aλn is
differentiable at all x ∈ R

N\Dn with |Dn|N = 0, where | · |N denotes the Lebesgue
measure on R

N . Then, since Aλn is monotone, we have for all x ∈ R
N\Dn and for

every h ∈ R
N ,

(
Aλn (x + τh) − Aλn (x)

τ
, h

)

RN
≥ 0.

This implies

(
A′

λn
(x)h, h

)
RN ≥ 0. (3.18)
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Then, from the chain rule for Sobolev functions, see Papageorgiou–Winkert [9, The-
orem 4.5.18], we have

d

dt
Aλn

(
ûn(t)

) = A′
λn

(
ûn(t)

)
û′
n(t) for a.a. t ∈ T . (3.19)

Applying (3.19), hypotheses H(a) and (3.18) gives

∫ b

0

(
a

(
û′
n(t)

)
,
d

dt
Aλn

(
ûn

)
)

RN
dt

=
∫ b

0

(
a

(
û′
n(t)

)
, A′

λn

(
ûn

)
û′
n

)
RN dt

=
∫ b

0
c
(∣∣û′

n

∣∣)
(
û′
n, Âλn (un)ûn

)

RN
dt ≥ 0.

Returning to (3.17) and using (3.19) we obtain

∥∥Aλn (un)
∥∥2
2 ≤ c4

∥∥Aλn (un)
∥∥
2 for all n ∈ N,

which shows that
{
Âλn (un)

}

n∈N = {
Aλn (un(·))

}
n∈N ⊆ L2(T ,RN ) is bounded.

So, we may assume that

Âλn

(
ûn

) w→ y in L2(T ,RN ). (3.20)

From (3.15) we have

u′
n(t) = a−1

(
a(u′

n(0)) +
∫ t

0

[
Aλn

(
ûn(s)

) + f
(
s, ûn(s)

) − d

dt
∇G

(
ûn(s)

)]
ds

)

(3.21)

for all n ∈ N. We set

gn(t) =
∫ t

0

[
Aλn

(
ûn(s)

) + f
(
s, ûn(s)

) − d

dt
∇G

(
ûn(s)

)]
ds

for all t ∈ T and for all n ∈ N. The Arzela–Ascoli theorem implies that

{gn}n∈N ⊆ C(T ,RN ) is relatively compact.

Therefore, invoking Lemma 3.1 of Manásevich–Mawhin [7], we infer that

{a(u′
n(0))}n≥1 ⊆ R

N is relatively compact.
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Recall that the map â−1 : C(T ,RN ) → C(T ,RN ) defined by â−1(u)(·) = a−1(u(·))
is continuous. Thus, from (3.21) it follows that

{
û′
n

}
n∈N ⊆ C(T ,RN ) is relatively compact

and because of the compact embedding W 1,p ↪→ C(T ,RN ),

{
ûn

}
n∈N ⊆ C1(T ,RN ) is relatively compact.

So, we have

ûn → û in C1(T ,RN ). (3.22)

In the limit as n → ∞, we obtain

−
∫ b

0

(
a

(
û′) , v′)

RN dt +
∫ b

0

(
d

dt
∇G

(
û
)
, v

)

RN
dt

=
∫ b

0
(y, v)RN dt +

∫ b

0

(
f
(
t, û

)
, v

)
RN dt for all v ∈ W 1,p,

see (3.20) and (3.22). Therefore,

a
(
û′(t)

)′ + d

dt
∇G(û(t)) = y(t) + f (t, û(t)) for a.a. t ∈ T ,

û(0) = û(b), û′(0) = û′(b).

We will be done if we can show that y(t) ∈ A(û(t)) for a.a. t ∈ T .
Let Ĵλn (ûn)(·) = Jλn (ûn(·)) for all n ∈ N. From Proposition 2.1 and the chain rule

for Sobolev functions we have that Ĵλn (ûn) ∈ W 1,2 for all n ∈ N and

{
Ĵλn

(
ûn

)}

n∈N ⊆ W 1,2 is bounded.

So, wemay assume that Ĵλn (ûn)
w→ w inW 1,2 and because of the compact embedding

W 1,2 ↪→ C(T ,RN ),

Ĵλn
(
ûn

) → w in C(T ,RN ). (3.23)

We know that

Ĵλn
(
ûn

) + λ̂n Âλn

(
ûn

) = ûn for all n ∈ N,

which implies w = û, see (3.23) and (3.22). Also, from (3.23) we see that

Ĵλn
(
ûn

) → û in C(T ,RN ). (3.24)
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Moreover, we have

Âλn (un) ∈ a
(
Ĵλn (un)

)
for all n ∈ N, (3.25)

see Proposition 2.1. From Proposition 3.7 we know that a is maximal monotone. So,
the graph of a is sequentially closed in L2(T ,RN )×L2(T ,RN )w. From (3.20), (3.24)
and (3.25) we have y ∈ a(û). This means that

y(t) ∈ A
(
û(t)

)
for a.a. t ∈ T .

Therefore, û ∈ C1(T ,RN ) is a solution of problem (1.1). ��
When D(A) = R

N we can avoid the approximation by problem (3.15) and can
also relax a little hypothesis H(f)(i).

Now, the hypotheses on the map A are the following.

H(A)’: A : R
N → 2R

N
is a maximal monotone map such that D(A) = R

N and
0 ∈ A(0).

Remark 3.10 In this case we know that A has nonempty, compact and convex values
and as amultifunction it is upper semicontinuous fromR

N intoRN , see Papageorgiou–
Winkert [9, Proposition 6.1.13].

The more general conditions on the perturbation f : T × R
N → R

N read as
follows.

H(f)’: f : T × R
N → R

N is a Carathéodory function such that

(i) for every η > 0 there exists aη ∈ L1(T )+ such that

| f (t, x)| ≤ aη(t) for a.a. t ∈ T and for all |x | ≤ η;

(ii) same as hypothesis H(f)(ii).

The method of the proof remains the same. Only since we work directly on the
inclusion problem (1.1) and do not pass first from its single-valued approximation
(3.15), we do not use Theorem 2.3, but its multivalued counterpart due to Bader [1].
Then we can have the following existence theorem.

Theorem 3.11 If hypotheses H(a), H(G), H(A)′ and H(f)′ hold, then problem (1.1)
admits a solution û ∈ C1(T ,RN ).
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