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Abstract This work is concerned with the existence of solutions to parametric ellip-
tic equations driven by a nonhomogeneous differential operator with a nonhomoge-
neous Neumann boundary condition. The assumptions on the operator involve the
p-Laplacian, the (p, q)-Laplacian, and the generalized p-mean curvature differen-
tial operator. Based on variational tools combined with truncation and comparison
techniques we prove the existence of at least three nontrivial solutions provided the
parameter is sufficiently large whereby the first solution is positive, the second one is
negative and the third one has changing sign (nodal).
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1 Introduction

Let Ω ⊆ R
N be a bounded domain with a C2-boundary ∂Ω and let 1 < q ≤ p. We

study the following nonlinear nonhomogeneous Neumann problem
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− div a(∇u) = −χ |u|p−2u − f (x, u) in Ω,

∂u

∂na
= λ|u|q−2u − h(x, u) on ∂Ω,

(1.1)

where ∂u/∂na denotes the conormal derivative with respect to the mapping a : RN →
R

N which is supposed to be continuous and strictly monotone with (p − 1)-growth.
The nonlinearities f : Ω × R → R and h : ∂Ω × R → R are assumed to be
Carathéodory functions being (p−1)-superlinear near ±∞ and bounded on bounded
sets while χ, λ are real parameters to be specified. The aim of this paper is to establish
the existence of at least three nontrivial solutions provided λ > 0 is sufficiently large
depending on the first two eigenvalues of the negative q-Laplacian −Δq with Steklov
boundary condition. In addition we give complete sign information of the solutions
obtained, that is, the first solution is positive, the second one is negative and finally,
the third one has changing sign.

Such results are known for quasilinear elliptic equations involving the p-Laplacian
and were obtained by a number of authors in the last years with different meth-
ods. Without guarantee of completeness we refer to the papers of Abreu-Marcos do
Ó-Medeiros [1], Fernández Bonder-Rossi [6], Fernández Bonder [7,8], Li-Li [14],
Liu-Zheng [16], Martínez-Rossi [18], Winkert [23,25], Zhao-Zhao [27], and the ref-
erences therein. To the best of our knowledge, the results presented here are the first
one concerning multiplicity of solutions for equations involving a nonhomogeneous
operator with nonhomogeneous Neumann boundary condition.

Our paper extends the results ofWinkert [23] in different ways. On the one hand we
can replace the p-Laplacian used in [23] by a more general nonhomogeneous operator
and on the other hand we can drop a hypothesis on the function f : Ω × R → R

required in [23], namely:

(H) There exists a number δ f > 0 such that
f (x, s)

|s|p−2s
≥ 0 for all 0 < |s| ≤ δ f and for

a.a. x ∈ Ω .

Assumption (H) implies that the function f must change sign near zero. Now, we
do not need this condition on f . It is also worth pointing out that we do not need
differentiability, polynomial growth or some integral conditions on the mappings f
and h. Our approach is based on variational methods coupled with truncation and
comparison techniques.

2 Preliminaries and hypotheses

In this section we recall some basic facts about critical point theory which will be
needed in Sect. 3. For this purpose, let X be a Banach space with norm ‖ · ‖X and
denote by X∗ its dual space equipped with the dual norm ‖ · ‖X∗ , that is

‖ξ‖X∗ = sup
{〈ξ, v〉(X∗,X) : v ∈ X, ‖v‖X ≤ 1

}
,

where 〈·, ·〉(X∗,X) stands for the duality paring of (X∗, X).
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Parametric nonlinear nonhomogeneous Neumann 205

Definition 2.1 The functional ϕ ∈ C1(X) fulfills the Palais-Smale condition at the
level c ∈ R (the PSc-condition for short) if every sequence (un)n≥1 ⊆ X satisfying
ϕ(un) → c and ϕ′(un) → 0 in X∗, admits a strongly convergent subsequence. We say
that ϕ satisfies the Palais-Smale condition (the PS-condition for short) if it satisfies
the PSc-condition for every c ∈ R.

This compactness-type condition on ϕ leads to a deformation theorem which is the
main ingredient in the minimax theory of the critical values of ϕ. A basic result in that
theory is the so-called mountain pass theorem.

Theorem 2.2 If ϕ ∈ C1(X), u1, u2 ∈ X, ‖u2 − u1‖X > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf {ϕ(u) : ‖u − u1‖X = ρ} =: mρ

and ϕ satisfies the PSc-condition where

c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ (t))

with Γ = {γ ∈ C ([0, 1], X) : γ (0) = u1, γ (1) = u2}, then c ≥ mρ and c is a
critical value of ϕ.

Given ϕ ∈ C1(X) and c ∈ R, we introduce the following sets:

ϕc = {u ∈ X : ϕ(u) ≤ c} (the sublevel set of ϕ at c),

Kϕ = {u ∈ X : ϕ′(u) = 0} (the critical set of ϕ),

Kc
ϕ = {u ∈ Kϕ : ϕ(u) = c} (the critical set of ϕ at the level c).

The following result is the so-called second deformation theorem (see, for example,
Gasiński and Papageorgiou [11, p. 628]).

Theorem 2.3 If ϕ ∈ C1(X), a ∈ R, a < b ≤ +∞, ϕ satisfies the PSc-condition for
every c ∈ [a, b), ϕ has no critical values in (a, b) and ϕ−1(a) contains at most a
finite number of critical points of ϕ, then there exists a continuous map ĥ : [0, 1] ×(
ϕb\Kb

ϕ

) → ϕb such that

(a) ĥ(0, u) = u for all u ∈ ϕb\Kb
ϕ;

(b) ĥ(1, ϕb\Kb
ϕ) ⊆ ϕa;

(c) ĥ(t, u) = u for all (t, u) ∈ [0, 1] × ϕa;
(d) ϕ(ĥ(t, u)) ≤ ϕ(ĥ(s, u)) for all t, s ∈ [0, 1], s ≤ t , and all u ∈ ϕb\Kb

ϕ .

By L p(Ω)
(
or L p

(
Ω;RN

))
, L p(∂Ω), andW 1,p(Ω)wedenote theusualLebesgue

and Sobolev spaces with their norms ‖ · ‖p,Ω, ‖ · ‖p,∂Ω , respectively, ‖ · ‖1,p, which
is given by

‖u‖1,p =
(
‖∇u‖p

p,Ω + ‖u‖p
p,Ω

) 1
p

for all u ∈ W 1,p(Ω).
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206 S. El Manouni et al.

The norm ofRN is denoted by ‖ · ‖RN and (·, ·)RN stands for the inner product inRN .
In addition to the Sobolev spaceW 1,p(Ω), we will also use the ordered Banach space
C1(Ω) with norm ‖ · ‖C1(Ω) and its positive cone

C1(Ω)+ =
{
u ∈ C1(Ω) : u(x) ≥ 0 for all x ∈ Ω

}
,

which has a nonempty interior given by

int
(
C1(Ω)+

)
=
{
u ∈ C1(Ω)+ : u(x) > 0 for all x ∈ Ω

}
.

Now let ω ∈ C1(0,+∞) be a function satisfying

0 < c0 ≤ tω′(t)
ω(t)

≤ c1 and c2t
p−1 ≤ ω(t) ≤ c3(1 + t p−1)

for all t > 0 and with some constants c0, c1, c2, c3 > 0. The hypotheses on a : RN →
R

N read as follows.

H(a): a(ξ) = a0
(‖ξ‖RN

)
ξ for all ξ ∈ R

N with a0(t) > 0 for all t > 0 and
(i) a0 ∈ C1(0,∞), t �→ ta0(t) is strictly increasing, limt→0+ ta0(t) = 0, and

lim
t→0+

ta′
0(t)

a0(t)
> −1;

(ii) ‖∇a(ξ)‖RN ≤ c4
ω
(‖ξ‖RN

)

‖ξ‖RN
for all ξ ∈ R

N\{0} and some c4 > 0;

(iii) (∇a(ξ)y, y)RN ≥ ω
(‖ξ‖RN

)

‖ξ‖RN
‖y‖2

RN for all ξ ∈ R
N\{0} and all y ∈ R

N .

It is easy to see that conditionH(a)(i) implies that a ∈ C1
(
R

N\{0},RN
)∩C (RN ,RN

)

and so, the assumptions in hypotheses H(a)(ii), (iii) are reasonable.
Let G0(t) = ∫ t

0 sa0(s)ds and let G(ξ) = G0
(‖ξ‖RN

)
for all ξ ∈ R

N . Then

∇G(ξ) = G ′
0

(‖ξ‖RN

) ξ

‖ξ‖RN
= a0

(‖ξ‖RN

)
ξ = a(ξ) for all ξ ∈ R

N\{0},

which means that G(·) is the primitive of a(·). Obviously, G(·) is convex and since
G(0) = 0 we have the estimate

G(ξ) ≤ (a(ξ), ξ)RN for all ξ ∈ R
N . (2.1)

The following lemma gives some basic properties of the mapping a : RN → R
N .

Lemma 2.4 Under the hypotheses H(a) there holds

(i) ξ → a(ξ) is maximal monotone and strictly monotone;

(ii) ‖a(ξ)‖RN ≤ c5
(
1 + ‖ξ‖p−1

RN

)
for all ξ ∈ R

N and some c5 > 0;
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Parametric nonlinear nonhomogeneous Neumann 207

(iii) (a(ξ), ξ)RN ≥ c2
p−1 ‖ξ‖p

RN for all ξ ∈ R
N .

Taking into account Lemma 2.4 combined with (2.1) we infer the following growth
estimates for the primitive G(·).

Corollary 2.5 If hypotheses H(a) hold, then

c2
p(p − 1)

‖ξ‖p
RN ≤ G(ξ) ≤ c6

(
1 + ‖ξ‖p

RN

)
for all ξ ∈ R

N and some c6 > 0.

It should be mentioned that the operator a : RN → R
N defined through hypotheses

H(a) contains several interesting differential operators as special cases.

(i) Let 1 < p < ∞ and let a(ξ) = ‖ξ‖p−2
RN ξ with 1 < p < ∞. Then a(·) represents

the well-known p-Laplace differential operator defined by

Δpu = div
(
‖∇u‖p−2

RN ∇u
)

for all u ∈ W 1,p(Ω).

The corresponding potential is given by G(ξ) = 1
p‖ξ‖p

RN for all ξ ∈ R
N .

(ii) Let 1 < q < p and let a(ξ) = ‖ξ‖p−2
RN ξ + ‖ξ‖q−2

RN ξ . Then a(·) becomes the
(p, q)-differential operator defined by

Δpu + Δqu = div
(
‖∇u‖p−2

RN ∇u
)

+ div
(
‖∇u‖q−2

RN ∇u
)

for all u ∈ W 1,p(Ω). The associated potential is G(ξ) = 1
p‖ξ‖p

RN + 1
q ‖ξ‖q

RN

for all ξ ∈ R
N .

(iii) Let 1 < p < ∞ and let a(ξ) =
(
1 + ‖ξ‖2

RN

) p−2
2

ξ . In this case a(·) represents
the generalized p-mean curvature differential operator which is defined by

div

[
(
1 + ‖∇u‖2

RN

) p−2
2 ∇u

]

for all u ∈ W 1,p(Ω).

The potential is G(ξ) = 1
p

[(
1 + ‖ξ‖2

RN

) p
2 − 1

]
for all ξ ∈ R

N .

Now, let f0 : Ω×R → R, h0 : ∂Ω×R → R be Carathéodory functions satisfying
the subsequent growth conditions

| f0(x, s)| ≤ c f0

(
1 + |s|r1−1

)
for a.a. x ∈ Ω and all s ∈ R,

|h0(x, s)| ≤ ch0
(
1 + |s|r2−1

)
for a.a. x ∈ ∂Ω and all s ∈ R,
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208 S. El Manouni et al.

with c f0 , ch0 > 0 and 1 < r1 < p∗, 1 < r2 < p∗, where p∗, p∗ denote the critical
exponents of p given by

p∗ =
{

Np
N−p if p < N

+∞ if p ≥ N
and p∗ =

{
(N−1)p
N−p if p < N

+∞ if p ≥ N
.

Setting F0(x, s) = ∫ s
0 f0(x, t)dt, H0(x, s) = ∫ s

0 h0(x, t)dt we define the C1-
functional ϕ0 : W 1,p(Ω) → R through

ϕ0(u) =
∫

Ω

G(∇u)dx −
∫

Ω

F0(x, u)dx −
∫

∂Ω

H0(x, u)dσ.

The following result concerning localminimizers is originally due toBrezis-Nirenberg
[2] and was extended by García Azorero-Peral Alonso-Manfredi [9], Motreanu-
Papageorgiou [20], Winkert [24], and Khan-Motreanu [12].

Proposition 2.6 Let the assumptions in H(a) be satisfied. If u0 ∈ W 1,p(Ω) is a local
C1(Ω)-minimizer of ϕ0, i.e., there exists ρ0 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ C1(Ω) with ‖h‖C1(Ω) ≤ ρ0,

then u0 is also a local W 1,p(Ω)-minimizer of ϕ0, i.e., there exists ρ1 > 0 such that

ϕ0(u0) ≤ ϕ0(u0 + h) for all h ∈ W 1,p(Ω) with ‖h‖1,p ≤ ρ1.

Proof The theorem follows directly from the abstract result obtained by Khan-
Motreanu [12]. Indeed, let X = C1(Ω),Y = W 1,p(Ω), and let

J (u) =
∫

Ω

G(∇u)dx and E(u) =
∫

Ω

F0(x, u)dx +
∫

∂Ω

H0(x, u)dσ.

Setting

Φ(u) =
(
‖u‖r1r1,Ω + ‖u‖r2r2,∂Ω

)max(r1,r2)
,

it is straightforward to verify that the assumptions in [12, Theorem 2.1] are satisfied.
This completes the proof. ��

Now, let A : W 1,p(Ω) → (
W 1,p(Ω)

)∗
be the nonlinear map defined by

〈A(u), v〉 =
∫

Ω

(a(∇u),∇v)RN dx for all u, v ∈ W 1,p(Ω). (2.2)

The next proposition gives the main properties of A (see, for example, Gasiński-
Papageorgiou [10, p. 562]).
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Parametric nonlinear nonhomogeneous Neumann 209

Proposition 2.7 Let hypothesesH(a) be satisfied. Then A : W 1,p(Ω) → (
W 1,p(Ω)

)∗

defined by (2.2) is continuous, monotone (hence maximal monotone) and of type (S)+,
i.e., if un ⇀ u in W 1,p(Ω) and lim supn→∞ 〈A(un), un − u〉 ≤ 0, then un → u in
W 1,p(Ω).

Given 1 < r < ∞, we denote by Δr : W 1,r (Ω) → (
W 1,r (Ω)

)∗
the r -Laplacian

which is defined by

〈Δr u, v〉 =
∫

Ω

‖∇u‖r−2
RN (∇u,∇v)RN dx for all u, v ∈ W 1,r (Ω).

If r = 2, then Δr = Δ becomes the well-known Laplace operator and we have
Δ ∈ L (H1

0 (Ω), H−1(Ω)
)
, where L (H1

0 (Ω), H−1(Ω)
)
denotes the vector space of

all bounded linear operators from H1
0 (Ω) into H−1(Ω).

A main role in our treatment plays the spectrum of the r -Laplacian with a Steklov
boundary condition. To this end, we consider the following eigenvalue problem

−Δr u = −|u|r−2u in Ω,

‖∇u‖r−2
RN

∂u

∂n
= λ̂|u|r−2u on ∂Ω,

(2.3)

where ∂u/∂n is the outer normal derivative of u at ∂Ω . A number λ̂ ∈ R is an
eigenvalue of

(−Δr ,W 1,r (Ω)
)
if problem (2.3) admits a nontrivial weak solution

û ∈ W 1,p(Ω) which is called an eigenfunction corresponding to the eigenvalue λ̂.
The set of eigenvalues is denoted by σ̂ (r) which has a smallest element λ̂1(r). The
spectrumof (2.3)were intensively studied byLê [13] andMartínez-Rossi [17]whereby
the main facts read as follows:

• λ̂1(r) is positive, isolated, and simple;
•

λ̂1(r) = inf
u∈W 1,p(Ω)

⎧
⎨

⎩

∫

Ω

‖∇u‖r
RN dx +

∫

Ω

|u|r dx : ‖u‖rr,∂Ω = 1

⎫
⎬

⎭
;

• σ̂ (r) is closed.

We further point out that every eigenfunction corresponding to the first eigenvalue
λ̂1(r) does not change sign inΩ . In fact it turns out that every eigenfunction associated
to an eigenvalue λ̂ �= λ̂1(r) changes sign on ∂Ω .

In what follows we denote by û1(r) the normalized (i.e., ‖û1(r)‖r,∂Ω = 1) positive
eigenfunction corresponding to λ̂1(r). As shown in Lê [13], thanks to the nonlinear
regularity theory and the nonlinear maximum principle, we can suppose that û1(r) ∈
int
(
C1(Ω)+

)
. Additionally, due to the fact that λ̂1(r) is isolated, the second eigenvalue

λ̂2(r) is well-defined by

λ̂2(r) = inf
[
λ̂ ∈ σ̂ (r) : λ̂ > λ̂1(r)

]
.
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210 S. El Manouni et al.

Now, let ∂Br,∂Ω
1 = {u ∈ Lr (∂Ω) : ‖u‖r,∂Ω = 1} and Sr = W 1,r (Ω) ∩ ∂Br,∂Ω

1 .
Then, due to Martínez-Rossi [19], we have the following variational characterization
of λ̂2(r).

Proposition 2.8 There holds

λ̂2(r) = inf
γ̂∈Γ̂ (r)

max−1≤t≤1

⎡

⎣
∫

Ω

‖∇γ̂ (t)‖r
RN dx +

∫

Ω

|γ̂ (t)|r dx
⎤

⎦ ,

where Γ̂ (r) = {
γ̂ ∈ C ([−1, 1], Sr ) : γ̂ (−1) = −û1(r), γ̂ (1) = û1(r)

}
.

Recall that if a functional satisfies the PS-condition (or the C-condition) and it
is bounded below, then it is coercive (see Čaklović-Li-Willem [3] and Gasiński-
Papageorgiou [11, p. 614]). The converse assertion is in general not true, but in our
setting we can give a positive answer.

Indeed, let f̂ : Ω×R → R, ĥ : ∂Ω×R → R beCarathéodory functions satisfying

| f̂ (x, s)| ≤ c f̂

(
1 + |s|r1−1

)
for a.a. x ∈ Ω and all s ∈ R,

|ĥ(x, s)| ≤ cĥ

(
1 + |s|r2−1

)
for a.a. x ∈ ∂Ω and all s ∈ R,

with c f̂ , cĥ > 0, 1 < r1 < p∗, and 1 < r2 < p∗. We set F̂(x, s) = ∫ s
0 f̂ (x, t)dt,

Ĥ(x, s) = ∫ s
0 ĥ(x, t)dt and consider the C1-functional ϕ̂ : W 1,p(Ω) → R defined

by

ϕ̂(u) =
∫

Ω

G(∇u)dx −
∫

Ω

F̂(x, u)dx −
∫

∂Ω

Ĥ(x, u)dσ.

Proposition 2.9 If ϕ̂ is coercive, then it satisfies the PS-condition.

Proof Let (un)n≥1 ⊆ W 1,p(Ω) be a PS-sequence, that is

|ϕ̂(un)| ≤ M̂ for some M̂ > 0, for all n ≥ 1, (2.4)
(
ϕ̂
)′

(un) → 0 in
(
W 1,p(Ω)

)∗
. (2.5)

Since ϕ̂ is coercive and due to (2.4) we easily verify that (un)n≥1 is bounded in
W 1,p(Ω). Because of that we may assume

un ⇀ u in W 1,p(Ω) un → u in L p(Ω) and un → u in L p(∂Ω). (2.6)

The assertion in (2.5) implies that

∣
∣
∣
∣
∣
∣

∫

Ω

(a(∇un),∇v)RN dx −
∫

Ω

f̂ (x, un)vdx −
∫

∂Ω

ĥ(x, un)vdσ

∣
∣
∣
∣
∣
∣
≤ εn‖v‖1,p,
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Parametric nonlinear nonhomogeneous Neumann 211

for all v ∈ W 1,p(Ω) with εn → 0+. Now, choosing v = un − u, passing to the limit
as n → ∞, and using the convergence properties in (2.6), we have

lim
n→∞ 〈A(un), un − u〉 = lim

n→∞

∫

Ω

(a(∇un),∇ (un − u))RN dx = 0,

which by the (S)+-property of A (see Proposition 2.7) gives un → u in W 1,p(Ω)

proving that ϕ̂ satisfies the PS-condition. ��
Finally, for s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,p(Ω) we define

u±(·) = u(·)±. Recall that

u± ∈ W 1,p(Ω), |u| = u+ + u−, u = u+ − u−.

The Lebesgue measure on RN is given by | · |N .

3 Three solutions depending on Steklov eigenvalues

We are now interested in the existence of weak solutions to Eq. (1.1) depending on
Steklov eigenvalues of the q-Laplacian with 1 < q ≤ p < ∞. In order to prove this
we need some additional assumptions on the map a : RN → R

N .

H(a)1: a(ξ) = a0
(‖ξ‖RN

)
ξ for all ξ ∈ R

N with a0(t) > 0 for all t > 0, hypotheses
H(a)1(i)–(iii) are the same as the corresponding hypotheses H(a)(i)–(iii) and

(iv) ifG0(t) = ∫ t
0 sa0(s)ds for all t > 0, then t �→ G0

(
t
1
q

)
is convex in (0,+∞)

and

lim sup
t→0+

G0(t)

tq
< +∞.

Remark 3.1 The examples presented in Sect. 2 still satisfy hypotheses H(a)1. Note
that by hypothesis H(a)1(iv) we find c7 > 0 such that

G(ξ) ≤ c7
(
‖ξ‖q

RN + ‖ξ‖p
RN

)
for all ξ ∈ R

N . (3.1)

The hypotheses on the Carathéodory functions f : Ω ×R → R, h : ∂Ω ×R → R

and the number χ read as follows.

(H1) f is bounded on bounded sets;

(H2) lims→±∞
f (x, s)

|s|p−2s
= +∞ uniformly for a.a. x ∈ Ω;

(H3) lims→0
f (x, s)

|s|p−2s
= 0 uniformly for a.a. x ∈ Ω;

(H4) h is bounded on bounded sets;

(H5) lims→±∞
h(x, s)

|s|p−2s
= +∞ uniformly for a.a. x ∈ ∂Ω;
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212 S. El Manouni et al.

(H6) lims→0
h(x, s)

|s|q−2s
= 0 uniformly for a.a. x ∈ ∂Ω;

(H7) h satisfies the condition

|h(x1, s1) − h(x2, s2)| ≤ L
[
|x1 − x2|α + |s1 − s2|α

]
,

for all pairs (x1, s1), (x2, s2) in ∂Ω × [−K , K ], where K is a positive constant
and α ∈ (0, 1];

(H8) χ is a real fixed number such that

0 < χ

{
< +∞ if q < p

≤ 2pc7 if q = p
,

where c7 is the positive constant given in Remark 3.1.

Remark 3.2 Note that hypothesis (H7) is needed for the usage of the C1-regularity
results of Lieberman [15]. It is obvious that s �→ λ|s|q−2s fulfills condition (H7) for
λ > 0 and 1 < q ≤ p. We also point out that no growth condition is imposed on f, h
and thanks to (H3), (H6) we easily verify that f (x, 0) = h(x, 0) = 0 for a.a. x ∈ Ω ,
resp., x ∈ ∂Ω . Hence, u = 0 is a solution of problem (1.1).

A function u ∈ W 1,p(Ω) is said to be a (weak) solution of (1.1) if it satisfies the
equation

∫

Ω

(a(∇u),∇ϕ)RN dx

=
∫

Ω

(
−χ |u|q−2u − f (x, u)

)
ϕdx +

∫

∂Ω

(
λ|u|q−2u − h(x, u)

)
ϕdσ

for all test functions ϕ ∈ W 1,p(Ω) while dσ denotes the usual (N − 1)-surface
measure.

The conditions in (H2), (H5) imply the existenceof constantsM1, M2 = M2(λ) > 1
such that

f (x, s)s ≥ |s|p for a.a. x ∈ Ω and all |s| ≥ M1,

h(x, s)s ≥ λ|s|p for a.a. x ∈ Ω and all |s| ≥ M2.
(3.2)

Let M3 = max (M1, M2). Taking u ≡ ς ∈ [M3,+∞) and applying (3.2), q ≤ p, and
M3 > 1, we conclude

0 ≥ − f (x, u) a.e. in Ω and 0 ≥ λuq−1 − h(x, u) a.e. in ∂Ω. (3.3)

In the same way, choosing v ≡ −ς , we obtain

0 ≤ − f (x, v) a.e. in Ω and 0 ≤ λ|v|q−2v − h(x, v) a.e. in ∂Ω.
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Now, we introduce the truncation functions

b+(x, s) =

⎧
⎪⎨

⎪⎩

0 if s < 0

− f (x, s) if 0 ≤ s ≤ u

− f (x, u) if u < s

,

b+
λ (x, s) =

⎧
⎪⎨

⎪⎩

0 if s < 0

λsq−1 − h(x, s) if 0 ≤ s ≤ u

λuq−1 − h(x, u) if u < s

,

(3.4)

and

b−(x, s) =

⎧
⎪⎨

⎪⎩

− f (x, v) if s < v

− f (x, s) if v ≤ s ≤ 0

0 if 0 < s

,

b−
λ (x, s) =

⎧
⎪⎨

⎪⎩

λ|v|q−2v − h(x, v) if s < v

λ|s|q−2s − h(x, s) if v ≤ s ≤ 0

0 if 0 < s

,

which arewell-known tobeCarathéodory functions. Setting B±(x, s)=∫ s
0 b±(x, t)dt ,

B±
λ (x, s) = ∫ s

0 b±
λ (x, t)dt , we consider the C1-functionals ϕ±

λ : W 1,p(Ω) → R

defined by

ϕ±
λ (u) =

∫

Ω

G(∇u)dx + χ

p

∫

Ω

|u|pdx −
∫

Ω

B±(x, u)dx −
∫

∂Ω

B±
λ (x, u)dσ.

Furthermore, we write F(x, s) = ∫ s
0 f (x, t)dt and H(x, s) = ∫ s

0 h(x, t)dt . Recall
that û1(q) ∈ int

(
C1(Ω)+

)
denotes the normalized eigenfunction (i.e. ‖û1(q)‖q,∂Ω =

1) corresponding to the first eigenvalue λ̂1(q) of the Steklov eigenvalue problem of
the q-Laplacian given in (2.3).

We start with the existence of constant sign solutions to problem (1.1) provided
λ > 0 is sufficiently large.

Proposition 3.3 Let the assumptions inH(a)1 and (H1)–(H8) be satisfied and suppose
that

λ >

{
qc7λ̂1(q) if q < p

2pc7λ̂1(p) if q = p
(3.5)

with the positive constant c7 given in Remark 3.1. Then problem (1.1) has at least two
nontrivial constant sign solutions

u0 ∈ [0, u] ∩ int
(
C1(Ω)+

)
and v0 ∈ [v, 0] ∩

(
− int

(
C1(Ω)+

))
.

123



214 S. El Manouni et al.

Proof Let us begin the proof with the existence of the positive solution. By means of
the truncation in (3.4) standard arguments ensure that ϕ+

λ is coercive and sequentially
weakly lower semicontinuous. Therefore, theWeierstrass theorem yields the existence
of u0 ∈ W 1,p(Ω) such that

ϕ+
λ (u0) = inf

[
ϕ+

λ (u) : u ∈ W 1,p(Ω)
]

= m+
λ . (3.6)

Given ε1, ε2 > 0, from Hypotheses (H3), (H6) we find δ1 = δ1(ε1), δ2 = δ2(ε2) ∈
(0, u) such that

F(x, s) ≤ ε1

p
|s|p for a.a. x ∈ Ω and for all |s| ≤ δ1,

H(x, s) ≤ ε2

q
|s|q for a.a. x ∈ ∂Ω and for all |s| ≤ δ2.

(3.7)

Let δ := min(δ1, δ2). Since û1(q) ∈ int
(
C1(Ω)+

)
, we may choose t ∈ (0, 1) small

enough such that t û1(q)(x) ∈ [0, δ] for all x ∈ Ω . Because of (3.1), (3.4), (3.7) along
with ‖û1(q)‖q,∂Ω = 1 and δ < u it follows

ϕ+
λ (t û1(q)) =

∫

Ω

G(∇(t û1(q)))dx + χ

p

∫

Ω

|t û1(q)|pdx −
∫

Ω

B+(x, t û1(q))dx

−
∫

∂Ω

B+
λ (x, t û1(q))dσ

=
∫

Ω

G(∇(t û1(q)))dx + t pχ

p
‖û1(q)‖pp,Ω +

∫

Ω

F
(
x, t û1(q)

)
dx

− λtq

q
+
∫

∂Ω

H
(
x, t û1(q)

)
dσ

≤ c7
(
tq‖∇(û1(q))‖qq,Ω + t p‖∇(û1(q))‖pp,Ω

)
+ t pχ

p
‖û1(q)‖pp,Ω

+ ε1t
p

p
‖û1(q)‖pp,Ω − λtq

q
+ ε2t

q

q

≤ c7
(
−tq‖û1(q)‖qq,Ω +tq λ̂1(q)+t p‖∇(û1(q))‖pp,Ω

)

+ t pχ

p
‖û1(q)‖pp,Ω + ε1t

p

p
‖û1(q)‖pp,Ω − λtq

q
+ ε2t

q

q

= tq
(−c7q

q

)
‖û1(q)‖qq,Ω + tq

(
qc7λ̂1(q) − λ + ε2

q

)

+ t p
(
c7‖∇(û1(q))‖pp,Ω + χ + ε1

p
‖û1(q)‖pp,Ω

)
.

(3.8)
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If q < p we may choose ε1, ε2 such that

0 < ε1 < ∞ and 0 < ε2 < λ − qc7λ̂1(q)

(see (3.5)), then (3.8) becomes

ϕ+
λ (t û1(q)) ≤ −tqM4 + t pM5 (3.9)

with some M4, M5 > 0. Since q < p, (3.9) implies

ϕ+
λ (t û1(q)) < 0 for all sufficiently small t > 0. (3.10)

If q = p, (3.8) reduces to

ϕ+
λ (t û1(p)) ≤ t p

(−2pc7 + χ + ε1

p

)
‖û1(p)‖p

p,Ω

+ t p
(
2pc7λ̂1(p) − λ + ε2

p

)

.

(3.11)

If 2pc7 > χ we may choose

0 < ε1 < 2pc7 − χ and 0 < ε2 < λ − 2pc7λ̂1(p)

(see (H8) and (3.5)) to obtain again (3.10). Finally, if 2pc7 = χ , (3.11) becomes

ϕ+
λ (t û1(p)) ≤ t p

(
ε1

p
‖û1(p)‖p

p,Ω + 2c7 pλ̂1(p) − λ + ε2

p

)

.

Choosing 0 < ε2 < λ − 2pc7λ̂1(p) we find a constant M6 = M6(λ) > 0 such that

ϕ+
λ (t û1(p)) ≤ t p

(
ε1

p
‖û1(p)‖p

p,Ω − M6

)
.

Taking 0 < ε1 <
M6 p

‖û1(p)‖p
p,Ω

provides inequality (3.10) again in this case. In summary

the choices of ε1, ε2 above lead to (see also (3.6))

ϕ+
λ (u0) < 0 = ϕ+

λ (0),
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implying u0 �≡ 0. Moreover, as u0 is the global minimizer of ϕ+
λ , there holds

(
ϕ+

λ

)′
(u0) = 0 meaning that

∫

Ω

(a(∇u0),∇ϕ)RN dx + χ

∫

Ω

|u0|p−2u0ϕdx

=
∫

Ω

b+(x, u0)ϕdx +
∫

∂Ω

b+
λ (x, u0)ϕdσ,

(3.12)

for all ϕ ∈ W 1,p(Ω). We take ϕ = −u−
0 ∈ W 1,p(Ω) as test function in (3.12) and

by virtue of Lemma 2.4(iii) in combination with the definition of the truncations (see
(3.4)), we obtain

min

(
c2

p − 1
, χ

)(
‖∇u−

0 ‖p
p,Ω + ‖u−

0 ‖p
p,Ω

)
≤ 0,

which means that u0 ≥ 0. Choosing ϕ = (u0 −u)+ ∈ W 1,p(Ω) in (3.12) and making
use of (3.3) as well as (3.4), it follows

∫

Ω

(
a(∇u0),∇(u0 − u)+

)
RN dx + χ

∫

Ω

u p−1
0 (u0 − u)+ dx

=
∫

Ω

b+(x, u0)(u0 − u)+dx +
∫

∂Ω

b+
λ (x, u0)(u0 − u)+dσ

=
∫

Ω

(− f (x, u)) (u0 − u)+dx +
∫

∂Ω

(
λuq−1 − h(x, u)

)
(u0 − u)+dσ

≤ 0.

This gives, due to Lemma 2.4(iii),

0 ≥
∫

{u0>u}
(a(∇u0),∇u0)RN dx + χ

∫

{u0>u}
u p−1
0 (u0 − u) dx

≥ c2
p − 1

∫

{u0>u}
‖∇u0‖p

RN dx +
∫

{u0>u}
(u0 − u)p dx

≥
∫

Ω

(
(u0 − u)+

)p
dx

≥ 0.
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Hence |{u0 > u}|N = 0, that is u0 ≤ u. We conclude that u0 ∈ [0, u] with u0 �≡ 0.
Then, by means of the truncations in (3.4), Eq. (3.12) becomes

∫

Ω

(a(∇u0),∇ϕ)RN dx + χ

∫

Ω

u p−1
0 ϕdx

=
∫

Ω

(− f (x, u0)) ϕdx +
∫

∂Ω

(
λuq−1

0 − h(x, u0)
)

ϕdσ

which means that u0 ∈ W 1,p(Ω) solves the problem

− div a(∇u0) = −χu p−1
0 − f (x, u0) in Ω,

∂u

∂na
= λuq−1

0 − h(x, u0) on ∂Ω.
(3.13)

Since u0 ∈ [0, u]we have u0 ∈ L∞(Ω) (see alsoWinkert-Zacher [26, Corollary 1.2])
and from the regularity results of Lieberman [15] it follows that u0 ∈ C1(Ω)\{0}.
Taking into account (H1), (H3) we find a constant M7 > 0 such that

f (x, s) ≤ M7s
p−1 for a.a. x ∈ Ω and for all 0 ≤ s ≤ u. (3.14)

Combining (3.13) and (3.14) yields

div a(∇u0) ≤ (χ + M7) u
p−1
0 a.e. in Ω.

Now, we may apply the strong maximum principle (see Pucci-Serrin [21, Theorem
2.5.1]) to obtain u0(x) > 0 for all x ∈ Ω .

Let x0 ∈ ∂Ω be such that u0(x0) = 0. Applying the boundary point lemma (see
again Pucci-Serrin [21, Theorem 5.5.1]) gives

∂u0
∂na

(x0) = a0
(‖∇u0‖RN

) ∂u0
∂n

(x0) < 0, (3.15)

where (∂u0/∂n)(x0) stands for the outer normal derivative of u0 at x0 ∈ ∂Ω . Since
h(x0, u0(x0)) = h(x0, 0) = 0 we get a contradiction from (3.13) and (3.15). Hence,
u0(x) > 0 for all x ∈ Ω and consequently u0 ∈ int

(
C1(Ω)+

)
. That finishes the first

part of the theorem.
The second assertion can be shown similarly using ϕ−

λ instead of ϕ+
λ to obtain the

existence of a nontrivial negative solution v0 ∈ [v, 0] ∩ (− int
(
C1(Ω)+

))
. ��

Now we are going to prove the existence of extremal constant sign solutions of
(1.1) provided λ > 0 is large enough as before.

To this end, letS+(λ)(S−(λ)) be the set of all nontrivial positive (negative) solutions
of problem (1.1). Thanks to the monotonicity of a (see Lemma 2.4(i)) one can show
that S+(λ) (S−(λ)) is downward (upward) directed, that means if u1, u2 ∈ S+(λ)
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(S−(λ)), then there is an element v̂ ∈ S+(λ) (S−(λ)) such that v̂ ≤ (≥)u1, v̂ ≤ (≥)u2.
Therefore, without loss of generality, we can focus on the sets

Ŝ+(λ) = S+(λ) ∩ [0, u], Ŝ−(λ) = S−(λ) ∩ [v, 0].

As a consequence of Proposition 3.3 we know that both sets are nonempty, i.e.,
Ŝ+(λ) �= ∅ and Ŝ−(λ) �= ∅. We can further suppose, without loss of generality, that

| f (x, s)| ≤ M8 for a.a. x ∈ Ω and all s ∈ R,

|h(x, s)| ≤ M9 for a.a. x ∈ ∂Ω and all s ∈ R,
(3.16)

with positive constants M8, M9 which can be seen by truncation of f (x, ·), h(x, ·)
at v (from below) and u (from above) combined with (H1), (H4). Then, taking into
account hypotheses (H3), (H6) along with (3.16) we find for given ε1, ε2 > 0 and
r1 ∈ (p, p∗) , r2 ∈ (p, p∗) numbers M10 = M10(ε1, r1), M11 = M11(ε2, r2) > 0
such that

f (x, s)s ≤ ε1|s|p + M10|s|r1 for a.a. x ∈ Ω and all s ∈ R,

h(x, s)s ≤ ε2|s|q + M11|s|r2 for a.a. x ∈ Ω and all s ∈ R.
(3.17)

In order to prove the existence of a smallest positive and a greatest negative solution
to (1.1) we will consider an auxiliary problem. To this end, let λ > 0, ε1 > 0, ε2 ∈
(0, λ) and consider the subsequent equation

− div(a(∇u)) = −(χ + ε1)|u|p−2u − M10|u|r1−2u in Ω,

∂u

∂na
= (λ − ε2)|u|q−2u − M11|u|r2−2u on ∂Ω.

(3.18)

We are going to prove the uniqueness of constant sign solutions of problem (3.18).

Proposition 3.4 Let hypotheses H(a)1 and (H8) be satisfied and suppose

λ >

{
qc7λ̂1(q) if q < p,

2pc7λ̂1(p) if q = p.

Then, problem (3.18) has a unique positive solution u∗ ∈ int
(
C1(Ω)+

)
and a unique

negative solution v∗ ∈ int
(
C1(Ω)+

)
.

Proof Due to the oddness of (3.18) it suffices to prove the existence of a unique
positive solution u∗ ∈ int

(
C1(Ω)+

)
, the existence of a unique negative solution

follows directly by setting v∗ = −u∗ ∈ − int
(
C1(Ω)+

)
.
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Let Ψ +
λ : W 1,p(Ω) → R be the C1-functional defined by

Ψ +
λ (u) =

∫

Ω

G(∇u)dx + χ

p
‖u‖p

p,Ω + ε1

p
‖u+‖p

p,Ω + M10

r1
‖u+‖r1r1,Ω

− λ − ε2

q
‖u+‖qq,∂Ω + M11

r2
‖u+‖r2r2,∂Ω .

Since q ≤ p < r1 < p∗, q ≤ p < r2 < p∗ we note that Ψ +
λ is coercive and sequen-

tiallyweakly lower semicontinuous. Hence, its globalminimizer u∗ ∈ W 1,p(Ω) exists
and as in Proposition 3.3, the choice of λ > 0 yields

Ψ +
λ (u∗) < 0 = Ψ +

λ (0)

guaranteeing u∗ �= 0. Since u∗ is a global minimizer of Ψ +
λ we have

(
ψ+

λ

)′
(u∗) = 0,

that is
∫

Ω

(a(∇u∗),∇ϕ)RN dx + χ

∫

Ω

|u∗|p−2u∗ϕdx

= −ε1

∫

Ω

(
u+∗
)p−1

ϕdx − M10

∫

Ω

(
u+∗
)r1−1

ϕdx

+ (λ − ε2)

∫

∂Ω

(
u+∗
)q−1

ϕdσ − M11

∫

∂Ω

(
u+∗
)r2−1

ϕdσ,

(3.19)

for all ϕ ∈ W 1,p(Ω). Taking ϕ = −u−∗ ∈ W 1,p(Ω) and applying Lemma 2.4(iii), we
get u∗ ≥ 0 (cf. the proof of Proposition 3.3). Then, (3.19) becomes

∫

Ω

(a(∇u∗),∇ϕ)RN dx + χ

∫

Ω

u p−1∗ ϕdx

= −ε1

∫

Ω

u p−1∗ ϕdx−M10

∫

Ω

ur1−1∗ ϕdx−(λ−ε2)

∫

∂Ω

uq−1∗ ϕdσ −M11

∫

∂Ω

ur2−1∗ ϕdσ,

meaning that u∗ is a nontrivial positive solution of (3.18). Moreover, the nonlinear
regularity theory (see Winkert-Zacher [26] and Lieberman [15]) combined with the
nonlinear maximum principle (see Pucci-Serrin [21]) yields u∗ ∈ int

(
C1(Ω)+

)
(sim-

ilar to the proof of Proposition 3.3).
We are done with the proof provided u∗ is shown to be the unique positive solution

of (3.18). Let Υ+ : L1(Ω) → R ∪ {∞} be the integral functional defined by

Υ+(u) =

⎧
⎪⎨

⎪⎩

∫

Ω

G
(
∇u

1
q

)
dx + M11

r2

∫

∂Ω

|u| r2q dσ if u ≥ 0, u
1
q ∈ W 1,p(Ω),

+∞ otherwise.
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Letu1, u2 be in the domain ofΥ+, i.e.u1, u2∈dom(Υ+)={u∈ L1(Ω) :Υ+(u)<+∞}

and let further u = (tu1+(1− t)u2)
1
q with t ∈ [0, 1]. Applying Lemma 1 in Díaz-Saá

[4] there holds

‖∇u(x)‖RN ≤
(
t
∥
∥
∥∇u1(x)

1
q

∥
∥
∥
q

RN
+ (1 − t)

∥
∥
∥∇u2(x)

1
q

∥
∥
∥
q

RN

) 1
q

a.e. in Ω.

Since G0 is increasing and thanks to condition H(a)1(iv) it follows

G0
(‖∇u(x)‖RN

)

≤ G0

((
t
∥
∥
∥∇u1(x)

1
q

∥
∥
∥
q

RN
+ (1 − t)

∥
∥
∥∇u2(x)

1
q

∥
∥
∥
q

RN

) 1
q
)

≤ tG0

(∥∥
∥∇u1(x)

1
q

∥
∥
∥
RN

)
+ (1 − t)G0

(∥∥
∥∇u2(x)

1
q

∥
∥
∥
RN

)
a.e. in Ω.

By definition G(ξ) = G0(‖ξ‖) for all ξ ∈ R
N , hence

G(∇u(x)) ≤ tG
(
∇u1(x)

1
q

)
+ (1 − t)G

(
∇u2(x)

1
q

)
a.e. in Ω.

Therefore, Υ+ is convex and due to Fatou’s lemma it is also lower semicontinuous.
Now, taking two positive solutions u, v ∈ W 1,p(Ω) of (3.18) and recalling that

u, v ∈ int
(
C1(Ω)+

)
(see the first part of the proof) we have u, v ∈ dom(Υ+). For h ∈

C1(Ω) and t ∈ (0, 1) sufficiently small we see that uq + th, vq + th ∈ int
(
C1(Ω)+

)
.

Thus, Υ+ is Gateaux differentiable at uq and vq in the direction h. Applying the
chain rule and the nonlinearGreen’s identity (see, for example,Gasiński-Papageorgiou
[11, p. 210]) yields

Υ ′+
(
uq
)
(h) = 1

q

∫

Ω

− div a(∇u)

uq−1 hdx + λ − ε2

q

∫

∂Ω

hdσ, (3.20)

Υ ′+
(
vq
)
(h) = 1

q

∫

Ω

− div a(∇v)

vq−1 hdx + λ − ε2

q

∫

∂Ω

hdσ. (3.21)

Since Υ ′+ is monotone (follows from the convexity of Υ+) and thanks to (3.20) as well
as (3.21), we obtain

0 ≤ 〈
Υ ′+

(
uq
)− Υ ′+

(
vq
)
, uq − vq

〉
L1(Ω)

= 1

q

∫

Ω

(− div a(∇u)

uq−1 − − div a(∇v)

vq−1

)
(
uq − vq

)
dx
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= 1

q

∫

Ω

(−(χ+ε1)u p−1−M10ur1−1

uq−1 − −(χ+ε1)v
p−1−M10v

r1−1

vq−1

)
(
uq−vq

)
dx

= M10

q

∫

Ω

(
vr1−q−ur1−q) (uq−vq

)
dx+ χ+ε1

q

∫

Ω

(
v p−q−u p−q) (uq−vq

)
dx .

Since s �→ sr1−q and s �→ s p−q are strictly increasing in (0,∞) we obtain that u = v

and therefore, u∗ ∈ int
(
C1(Ω)+

)
is the unique positive solution of (3.18). ��

With the aid of these solutions obtained in the last proposition we are now in the
position to prove the existence of extremal constant sign solutions of our original
problem (1.1) provided λ > 0 is sufficiently large.

Proposition 3.5 Let the assumptions in H(a)1 and (H1)–(H8) be satisfied and assume

λ >

{
qc7λ̂1(q) if q < p,

2pc7λ̂1(p) if q = p.

Then problem (1.1) has a smallest positive solution u+ ∈ int
(
C1(Ω)+

)
and a greatest

negative solution v− ∈ − int
(
C1(Ω)+

)
.

Proof As mentioned before it is enough to prove the existence of these extremal
solutions in the sets Ŝ+(λ) = S+(λ) ∩ [0, u] ⊆ int

(
C1(Ω)+

)
and Ŝ−(λ) = S−(λ) ∩

[v, 0] ⊆ − int
(
C1(Ω)+

)
.

First, we are going to prove that u∗ ≤ u for all u ∈ Ŝ+(λ). For this purpose, let v̂ ∈
Ŝ+(λ) and define the Carathéodory functions ζ+ : Ω × R → R, ζ+

λ : ∂Ω × R → R

through

ζ+(x, s) =

⎧
⎪⎨

⎪⎩

0 if s < 0

−ε1s p−1 − M10sr1−1 if 0 ≤ s ≤ v̂(x)

−ε1v̂(x)p−1 − M10v̂(x)r1−1 if v̂(x) < s

, (3.22)

and

ζ+
λ (x, s) =

⎧
⎪⎨

⎪⎩

0 if s < 0

(λ − ε2)sq−1 − M11sr2−1 if 0 ≤ s ≤ v̂(x)

(λ − ε2)v̂(x)q−1 − M11v̂(x)r2−1 if v̂(x) < s

. (3.23)

Moreover, we define the C1-functional �+
λ : W 1,p(Ω) → R given by

�+
λ (u) =

∫

Ω

G(∇u)dx + χ

p

∫

Ω

|u|pdx −
∫

Ω

Z+(x, u)dx −
∫

∂Ω

Z+
λ (x, u)dσ
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with Z+(x, s) = ∫ s
0 ζ+(x, t)dt and Z+

λ (x, s) = ∫ s
0 ζ+

λ (x, t)dt . Thanks to the trunca-
tions we easily verify that �+

λ is coercive and sequentially weakly lower semicontin-
uous. Hence, there exists the global minimizer of �+

λ on W 1,p(Ω), i.e.

�+
λ (û∗) = inf

[
�+

λ (u) : u ∈ W 1,p(Ω)
]
. (3.24)

As in the proof of Proposition 3.3 we can show that

�+
λ

(
û∗
)

< 0 = �+
λ (0),

meaning û∗ �= 0. Moreover, due to (3.24), there holds

∫

Ω

(
a(∇û∗),∇ϕ

)
RN dx + χ

∫

Ω

|û∗|p−2û∗ϕdx

=
∫

Ω

ζ+ (x, û∗
)
ϕdx +

∫

∂Ω

ζ+
λ

(
x, û∗

)
ϕdσ,

(3.25)

for all ϕ ∈ W 1,p(Ω). Taking ϕ = −û−∗ ∈ W 1,p(Ω) in (3.25) and applying Lemma
2.4(iii) we derive

min

(
c2

p − 1
, χ

)(
‖∇û−∗ ‖p

p,Ω + ‖û−∗ ‖p
p,Ω

)
≤ 0,

which implies û∗ ≥ 0. Since v̂ is a positive solution of (1.1) it satisfies

∫

Ω

(
a
(∇v̂

)
,∇ϕ

)
RN dx + χ

∫

Ω

v̂ p−1ϕdx

=
∫

Ω

(− f
(
x, v̂

))
ϕdx +

∫

∂Ω

(
λv̂q−1 − h

(
x, v̂

))
ϕdσ,

(3.26)

for all ϕ ∈ W 1,p(Ω). Choosing
(
û∗ − v̂

)+ ∈ W 1,p(Ω) in (3.25) and (3.26), sub-
tracting (3.26) from (3.25), and making use of (3.17), (3.22) as well as (3.23) we
derive
∫

Ω

(
a
(∇û∗

)−a
(∇v̂

)
,∇ (

û∗ − v̂
)+)

RN
dx+χ

∫

Ω

(
(û∗)p−1−v̂ p−1

) (
û∗−v̂

)+
dx

=
∫

Ω

(
ζ+(x, û∗) + f

(
x, v̂

)) (
û∗ − v̂

)+
dx

+
∫

∂Ω

(
ζ+
λ (x, û∗) − λv̂q−1 + h

(
x, v̂

)) (
û∗ − v̂

)+
dσ
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=
∫

Ω

(
−ε1v̂

p−1 − M10v̂
r1−1 + f

(
x, v̂

)) (
û∗ − v̂

)+
dx

+
∫

∂Ω

(
(λ − ε2) v̂q−1 − M11v̂

r2−1 − λv̂q−1 + h
(
x, v̂

)) (
û∗ − v̂

)+
dσ

≤ 0.

This implies for û∗ > v̂, due to Lemma 2.4(i),

0 ≥
∫

Ω

(
a
(∇û∗

)− a
(∇v̂

)
,∇ (

û∗ − v̂
)+)

RN
dx

+χ

∫

Ω

((
û∗
)p−1 − v̂ p−1

) (
û∗ − v̂

)+
dx

> 0,

which is a contradiction. Therefore û∗ ≤ v̂. To sum up, we have shown that û∗ ∈ [0, v̂]
and û∗ �≡ 0. Then, by definition of the truncations, we obtain that û∗ is a positive
solution of (3.18) which by Proposition 3.4 implies that û∗ = u∗ ∈ int

(
C1(Ω)+

)
.

Hence

u∗ ≤ u for all u ∈ Ŝ+(λ). (3.27)

Now let C ⊆ Ŝ+(λ) be a chain, that means, a totally ordered subset of Ŝ+(λ). Then
there exists a sequence (un)n≥1 ⊆ Ŝ+(λ) (see Dunford-Schwartz [5, p. 336]) such
that inf C = infn≥1 un . As un is a positive solution of (1.1) we have

∫

Ω

(a(∇un),∇ϕ)RN dx

=
∫

Ω

(
−χu p−1

n − f (x, un)
)

ϕdx +
∫

∂Ω

(
λuq−1

n − h(x, un)
)

ϕdσ,

(3.28)

for all ϕ ∈ W 1,p(Ω) with u∗ ≤ un ≤ u for all n ≥ 1 (see (3.27)). Since f and h are
bounded on bounded sets we obtain the boundedness of un in W 1,p(Ω). Therefore,
we may assume that

un ⇀ u in W 1,p(Ω), un → u in L p(Ω), un → u in L p(∂Ω). (3.29)

Taking ϕ = un − u ∈ W 1,p(Ω) in (3.28) and passing to the limit as n → ∞, one
gets, thanks to the convergence properties in (3.29),

lim
n→∞ 〈A(un), un − u〉 = lim

n→∞

∫

Ω

(a(∇un),∇(un − u))RN dx = 0. (3.30)
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Since A satisfies the (S+)-property (see Proposition 2.7), (3.29) and (3.30) imply
un → u in W 1,p(Ω). Using this fact we can pass again to the limit in (3.28) which
gives

∫

Ω

(a(∇u),∇ϕ)RN dx =
∫

Ω

(−χu p−1 − f (x, u))ϕdx +
∫

∂Ω

(λuq−1 − h(x, u)ϕdσ

with u∗ ≤ u ≤ u. That means u ∈ Ŝ+(λ) and u = inf C. Then, the Kuratowski-Zorn
Lemma implies that Ŝ+(λ) has a minimal element u+ ∈ Ŝ+(λ) and since Ŝ+(λ) is
downward directed, we infer that u+ is the smallest positive solution of (1.1).

The existence of a greatest negative solution v− ∈ − int
(
C1(Ω)+

)
of (1.1) can be

shown in the same way, working with the set Ŝ−(λ) instead of Ŝ+(λ). The proof is
complete. ��

Now, we are going to prove the existence of a nontrivial solution y0 of (1.1) which
turns out to be a sign changing solution.

Proposition 3.6 If hypotheses H(a)1 and (H1)–(H8) hold and if

λ >

{
qc7λ̂2(q) if q < p

2pc7λ̂2(p) if q = p

is satisfied, then problem (1.1) has a nodal solution y0 ∈ C1
(
Ω
)
.

Proof Recall that u+ ∈ int
(
C1(Ω)+

)
and v− ∈ − int

(
C1(Ω)+

)
are the two extremal

constant sign solutions of (1.1) obtained by Proposition 3.5. Let ϑ : Ω ×R → R, ϑλ :
∂Ω × R → R, be truncation functions defined by

ϑ(x, s) =

⎧
⎪⎨

⎪⎩

− f (x, v−(x)) if s < v−(x)

− f (x, s) if v−(x) ≤ s ≤ u+(x)

− f (x, u+(x)) if u+(x) < s

(3.31)

and

ϑλ(x, s) =

⎧
⎪⎨

⎪⎩

λ |v−(x)|q−2 v−(x) − h (x, v−(x)) if s < v−(x)

λ |s|q−2 s − h (x, s) if v−(x) ≤ s ≤ u+(x)

λu+(x)q−1 − h (x, u+(x)) if u+(x) < s

. (3.32)
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Furthermore, let ϑ±(x, s) = ϑ
(
x,±s±) , ϑ±

λ (x, s) = ϑλ

(
x,±s±) and define

Θ (x, s) =
s∫

0

ϑ (x, t) dt, Θλ (x, s) =
s∫

0

ϑλ (x, t) dt,

Θ± (x, s) =
s∫

0

ϑ± (x, t) dt, Θ±
λ (x, s) =

s∫

0

ϑ±
λ (x, t) dt.

We consider the C1-functionals Φλ,Φ
±
λ : W 1,p(Ω) → R defined by

Φλ(u) =
∫

Ω

G (∇u) dx + χ

p

∫

Ω

|u|pdx −
∫

Ω

Θ(x, u)dx −
∫

∂Ω

Θλ(x, u)dσ,

Φ±
λ (u) =

∫

Ω

G(∇u)dx + χ

p

∫

Ω

|u|pdx −
∫

Ω

Θ±(x, u)dx −
∫

∂Ω

Θ±
λ (x, u)dσ.

First, we will prove that

KΦλ ⊆ [v−, u+], KΦ+
λ

= {0, u+} , KΦ−
λ

= {v−, 0} . (3.33)

To this end, let u ∈ KΦλ , that is

∫

Ω

(a(∇u),∇ϕ)RN dx + χ

∫

Ω

|u|p−2uϕdx

=
∫

Ω

ϑ(x, u)ϕdx +
∫

∂Ω

ϑλ(x, u)ϕdσ for all ϕ ∈ W 1,p(Ω).

(3.34)

Since u+ is a positive solution of (1.1), we have

∫

Ω

(a(∇u+),∇ϕ)RN dx + χ

∫

Ω

u p−1
+ ϕdx

=
∫

Ω

(− f (x, u+))ϕdx +
∫

∂Ω

(
λu p−1

+ − h(x, u+)
)

ϕdσ,

(3.35)
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for all ϕ ∈ W 1,p(Ω). Choosing ϕ = (u − u+)+ ∈ W 1,p(Ω) in (3.34) and (3.35) and
subtracting (3.35) from (3.34) results in

∫

Ω

(
a(∇u)−a(∇u+),∇ (u − u+)+

)
RN dx+χ

∫

Ω

(
|u|p−2u−u p−1

+
)

(u − u+)+ dx

=
∫

Ω

(ϑ(x, u) + f (x, u+)) (u − u+)+ dx

+
∫

∂Ω

(
ϑλ(x, u) − λu p−1

+ + h(x, u+)
)

(u − u+)+ dσ

= 0,

due to the definition of the truncations in (3.31) and (3.32). Since a : RN → R
N is

strictly monotone (see Lemma 2.4(i)), we derive for u > u+

0=
∫

Ω

(
a(∇u)−a(∇u+),∇ (u − u+)+

)
RN +χ

∫

Ω

(
|u|p−2u − u p−1

+
)

(u − u+)+ dx

> 0,

which is a contradiction. This gives u ≤ u+.
Acting on (3.34) and (3.35) with ϕ = (v− −u)+ ∈ W 1,p(Ω) and subtracting again

we obtain v− ≤ u. Hence

KΦλ ⊆ [v−, u+].

Following the same ideas we can prove that

KΦ+
λ

⊆ [0, u+] and KΦ−
λ

⊆ [v−, 0].

By Proposition 3.5 we have that u+ and v− are the extremal constant sign solutions
of (1.1). Therefore

KΦ+
λ

= {0, u+} and KΦ−
λ

= {v−, 0}.

This proves (3.33).
Next, we are going to show that

u+ ∈ int
(
C1(Ω)+

)
and v− ∈ − int

(
C1(Ω)+

)
are local

minimizers of Φλ.
(3.36)

We easily verify that the functional Φ+
λ is coercive and sequentially weakly lower

semicontinuous. Then, by the Weierstrass theorem, there exists û ∈ W 1,p(Ω) such
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that

Φ+
λ

(
û
) = inf

{
Φ+

λ (u) : u ∈ W 1,p(Ω)
}

.

Applying the same arguments as in the proof of Proposition 3.3, we can show that
Φ+

λ

(
û
)

< 0 = Φ+
λ (0) which implies û �= 0. Hence, because of (3.33), û = u+ ∈

int
(
C1(Ω)+

)
. Since Φλ

∣
∣
C1(Ω)+ = Φ+

λ

∣
∣
C1(Ω)+ we know that u+ ∈ int

(
C1(Ω)+

)
is

a local C1(Ω)-minimizer of Φλ and thanks to Proposition 2.6 it follows that u+ is a
local W 1,p(Ω)-minimizer of Φλ. The assertion for Φ−

λ can be shown using similar
arguments. This proves (3.36).

Now, we may assume, without loss of generality, that Φλ(v−) ≤ Φλ(u+) and that
u+ is an isolated element of KΦλ , otherwise we would have a whole sequence of
distinct nontrivial solutions of (1.1). Then, we can find a number ρ ∈ (0, 1) such that
‖v− − u+‖1,p > ρ and

Φλ (v−) ≤ Φλ (u+) < inf
[
Φλ(u) : ‖u − u+‖1,p = ρ

] = mλ
ρ. (3.37)

From Proposition 2.9 we have thatΦλ satisfies the PS-condition because it is coercive.
This fact alongwith (3.37) allow us the application of themountain pass theorem stated
in Theorem 2.2 which guarantees the existence of y0 ∈ W 1,p(Ω) such that

y0 ∈ KΦλ and mλ
ρ ≤ Φλ(y0). (3.38)

Note that the first assertion in (3.38) combined with (3.33) and the definition of the
truncations in (3.31), (3.32) implies that y0 is a solution of problem (1.1). The second
assertion in (3.38) along with (3.37) gives y0 �∈ {v−, u+} and the nonlinear regularity
theory yields that y0 ∈ C1(Ω). Since v− and u+ are the extremal constant sign
solutions of (1.1) we know that y0 ∈ [v−, u+]\{v−, u+} has changing sign provided
y0 �= 0.

Moreover, since y0 is of mountain pass type, we obtain, due to Theorem 2.2,

Φλ(y0) = inf
γ∈Γ

max
0≤t≤1

Φλ(γ (t)), (3.39)

where Γ = {
γ ∈ C

([0, 1],W 1,p(Ω)
) : γ (0) = v−, γ (1) = u+

}
. In order to com-

plete the proof we have to show that y0 is unequal zero which is satisfied if there exists
a path γ∗ ∈ Γ such that (see (3.39))

Φλ(γ∗(t)) �= 0 for all t ∈ [0, 1].

Takinghypotheses (H3), (H6) into account, for given ε1, ε2 > 0, there exist numbers
δ1 = δ1(ε1), δ2 = δ2(ε2) > 0 such that

| f (x, s)| ≤ ε1|s|p−1 for a.a. x ∈ Ω and all |s| ≤ δ1,

|h(x, s)| ≤ ε2|s|q−1 for a.a. x ∈ ∂Ω and all |s| ≤ δ2,
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which implies that

F(x, s) ≤ ε1

p
|s|p for a.a. x ∈ Ω and all |s| ≤ δ1,

H(x, s) ≤ ε2

q
|s|q for a.a. x ∈ ∂Ω and all |s| ≤ δ2.

(3.40)

Let Sq = W 1,q(Ω) ∩ ∂Bq,∂Ω
1 and Scq = Sq ∩ C1(Ω) be equipped with the rel-

ative W 1,p(Ω)-topology and the relative C1(Ω)-topology, respectively. Recall that
∂Bq,∂Ω

1 = {
u ∈ Lq(∂Ω) : ‖u‖q,∂Ω = 1

}
and

Γ̂ (q) = {
γ̂ ∈ C

([−1, 1], Sq
) : γ̂ (−1) = −û1(q), γ̂ (1) = û1(q)

}
.

Moreover, we consider the set of continuous paths

Γ̂c(q) =
{
γ̂ ∈ C

(
[−1, 1], Scq

)
: γ̂ (−1) = −û1(q), γ̂ (1) = û1(q)

}
.

Let δ := min {δ1, δ2}. From the variational characterization of the second eigen-
value λ̂2(q) (see Proposition 2.8), we find γ̂ ∈ Γ̂ (q) such that

max−1≤t≤1

∥
∥γ̂ (t)

∥
∥q
1,q < λ̂2(q) + δ

2
. (3.41)

It is well known that Scq is dense in Sq . This implies the density of Γ̂c(q) in Γ̂ (q) (see,
for example, Winkert [22, Proof of Theorem 3.1.16]). Therefore, for a given ε > 0,
there exists γ̂0 ∈ Γ̂c(q) such that

max−1≤t≤1

∥
∥γ̂ (t) − γ̂0(t)

∥
∥
1,q < ε. (3.42)

Selecting ε ∈
(
0,
(
λ̂2(q) + δ

) 1
q −

(
λ̂2(q) + δ

2

) 1
q
)
we derive from (3.41) and (3.42)

∥
∥γ̂0(t)

∥
∥
1,q ≤ ∥

∥γ̂0(t) − γ̂ (t)
∥
∥
1,q + ∥

∥γ̂ (t)
∥
∥
1,q

< ε +
(

λ̂2(q) + δ

2

) 1
q

<
(
λ̂2(q) + δ

) 1
q

for all t ∈ [−1, 1],

which results in

max−1≤t≤1

∥
∥γ̂0(t)

∥
∥q
1,q < λ̂2(q) + δ. (3.43)
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Recall that u+ ∈ int
(
C1(Ω)+

)
and v− ∈ − int

(
C1(Ω)+

)
. Then, since γ̂0 ([−1, 1]) ⊆

C1(Ω) is compact, there exists a number ξ ∈ (0, 1) such that

|ξu(x)| ≤ δ for all x ∈ Ω, for all u ∈ γ̂0 ([−1, 1]) , (3.44)

and

ξu ∈ [v−, u+] for all u ∈ γ̂0 ([−1, 1]) .

Due to (3.1) along with ‖u‖q,∂Ω = 1, (3.31), (3.32), (3.40), (3.43), (3.44), and
u ∈ γ̂0 ([−1, 1]), it follows

Φλ(ξu) =
∫

Ω

G(∇(ξu))dx + χ

p

∫

Ω

|ξu|pdx −
∫

Ω

Θ(x, ξu)dx −
∫

∂Ω

Θλ(x, ξu)dσ

≤ c7
(
ξq‖∇u‖qq,Ω + ξ p‖∇u‖p

p,Ω

)
+ χξ p

p
‖u‖p

p,Ω

+
∫

Ω

F(x, ξu)dx − λξq

q
+
∫

∂Ω

H(x, ξu)dσ

≤ c7
(
ξq‖∇u‖qq,Ω + ξq‖u‖qq,Ω + ξ p‖∇u‖p

p,Ω

)
− ξqc7‖u‖qq,Ω

+ χξ p

p
‖u‖p

p,Ω + ε1ξ
p

p
‖u‖p

p,Ω − λξq

q
+ ε2

q
ξq

≤ ξq

⎡

⎣
qc7

(
λ̂2(q) + δ

)
− λ + ε2

q

⎤

⎦− ξqc7‖u‖qq,Ω

+ ξ p
(
c7‖∇u‖p

p,Ω + χ + ε1

p
‖u‖p

p,Ω

)
.

(3.45)

Furthermore, since γ̂0 ([−1, 1]) ⊆ C1(Ω) is compact, we find a number ξ∗ > 0 such
that

‖u‖p
1,p ≤ ξ∗ for all u ∈ γ̂0([−1, 1]). (3.46)

First, suppose that q < p. We choose ε1 ∈ (0,∞), ε2 > 0 and δ ∈ (0, ε2) such that
qc7δ + ε2 < λ − qc7λ̂2(q). Taking (3.46) into account, (3.45) becomes

Φλ(ξu) ≤ −ξqM12 + ξ pM13 for some M12, M13 > 0.

Since q < p, by choosing ξ ∈ (0, 1) small enough, we obtain

Φλ(ξu) < 0 for all u ∈ γ̂0([−1, 1]). (3.47)
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If q = p, by applying (3.46) and again (3.43), estimate (3.45) becomes

Φλ(ξu) ≤ ξ p

⎡

⎣
pc7

(
λ̂2(p) + δ

)
− λ + ε2

p

⎤

⎦− ξ pc7‖u‖p
p,Ω

+ ξ p
(
c7
(
‖∇u‖p

p,Ω +‖u‖p
p,Ω

)
−c7‖u‖p

p,Ω + χ+ε1

p
‖u‖p

p,Ω

)

≤ ξ p

⎡

⎣
2pc7

(
λ̂2(p) + δ

)
− λ + ε2

p

⎤

⎦+ ξ p χ + ε1 − 2pc7
p

ξ∗.

(3.48)

If 2pc7 > χ , we choose 0 < ε1 < 2pc7 − χ as well as ε2 > 0 and δ ∈ (0, ε2) such
that pc7δ + ε2 < λ − pc7λ̂2(p) which proves (3.47). If 2pc7 = χ , then we select
again ε2 > 0 and δ ∈ (0, ε2) such that pc7δ + ε2 < λ − pc7λ̂2(p) for which (3.48)
results in

Φλ(ξu) ≤ ξ p
[
−M14 + ε1

p
ξ∗
]

(3.49)

with some M14 > 0. Choosing 0 < ε1 <
pM14
ξ∗ proves (3.47) in this case, too.

Now, we set γ0 = ξ γ̂0 which is a continuous path in W 1,p(Ω) connecting −ξ û1(q)

and ξ û1(q) and which fulfills

Φλ

∣
∣
γ0

< 0. (3.50)

Recall that, due to (3.33), KΦ+
λ

= {0, u+}. Moreover, the proof of (3.36) shows
that

Φ+
λ (u+) = inf

u∈W 1,p(Ω)
Φ+

λ (u) < 0 = Φ+
λ (0). (3.51)

Now we may apply the second deformation theorem stated in Theorem 2.3 with
ϕ = Φ+

λ , a = Φ+
λ (u+) < 0 = Φ+

λ (0) = b to find a continuous map ĥ : [0, 1] ×((
Φ+

λ

)0 \{0}
)

→ (
Φ+

λ

)0
such that, because of (3.51) and (3.33),

ĥ
(
1,
(
Φ+

λ

)0 \{0}
)

= {u+} (3.52)

and

Φ+
λ (ĥ(t, u)) ≤ Φ+

λ (u) for all t ∈ [0, 1] and all u ∈ (Φ+
λ

)0 \{0}. (3.53)
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Defining γ+(t) :=
(
ĥ(t, ξ û1(q))

)+
for all t ∈ [0, 1], it is clear that γ+ is a continuous

path in W 1,p(Ω) satisfying

γ+(0) =
(
ĥ(0, ξ û1(q))

)+ = ξ û1(q)

and, due to (3.52),

γ+(1) =
(
ĥ(1, ξ û1(q)

)+ = u+.

In addition, thanks to (3.53) and (3.50), one gets

Φ+
λ (γ+(t)) ≤ Φ+

λ (ξ û1(q)) < 0 for all t ∈ [0, 1]

implying Φ+
λ

∣
∣
γ+ < 0. Moreover, since

Φλ

∣
∣
W p

+
= Φ+

λ

∣
∣
W p

+
and im γ+ ⊆ W p

+,

with W p
+ = {u ∈ W 1,p(Ω) : u(x) ≥ 0 a.e. in Ω}, we have

Φλ

∣
∣
γ+ < 0. (3.54)

Following the same ideas we can construct a continuous path γ− in W 1,p(Ω) which
joins v− and −ξ û1(q) satisfying

Φλ

∣
∣
γ− < 0. (3.55)

The union of the curves γ−, γ0, and γ+ forms a continuous path γ∗ ∈ Γ such that,
because of (3.50), (3.54), and (3.55),

Φλ

∣
∣
γ∗ < 0.

This implies that y0 ∈ C1(Ω) ∩ [v−, u+] is a nodal solution of (1.1). ��
Combining the results in Propositions 3.3, 3.5, and 3.6 we have the following

multiplicity result.

Theorem 3.7 Let hypotheses H(a)1 and (H1)–(H8) be satisfied and assume

λ >

{
qc7λ̂2(q) if q < p,

2pc7λ̂2(p) if q = p.

Then problem (1.1) has at least three nontrivial solutions u0 ∈ int
(
C1(Ω)+

)
, v0 ∈

− int
(
C1(Ω)+

)
and a nodal solution y0 ∈ [v0, u0] ∩ C1(Ω). Additionally, (1.1) has
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a smallest nontrivial positive solution u+ ∈ int
(
C1(Ω)+

)
and a greatest nontrivial

negative solution v− ∈ − int
(
C1(Ω)+

)
.

Remark 3.8 As mentioned in the Introduction recall that the results in Theorem 3.7
recover those ones obtained in Winkert [23]. Indeed, if q = p and a(ξ) = ‖ξ‖p−2

RN ξ

for all ξ ∈ R
N is the p-Laplacian, then c7 = 1

2p and 2pc7λ̂2(p) = λ̂2(p) being the
second eigenvalue of the p-Laplacian with Steklov boundary condition. In this case
problem (1.1) becomes

−Δpu = −χ |u|p−2u − f (x, u) in Ω,

‖∇u‖p−2
RN

∂u

∂n
= λ|u|p−2u − h(x, u) on ∂Ω.

with

0 < χ ≤ 1.

In contrast to [23] we have on the one hand a more general operator being possibly
nonhomogeneous and on the other hand we do not need a sign-changing condition on
f near the origin.
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