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On Kirchhoff Double Phase Problems with
Logarithmic Perturbation and Variable
Exponents
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Abstract. In this paper, we are interested in Kirchhoff problems driven
by a double phase operator with a logarithmic perturbation and with
variable exponents. Employing variational methods, we first establish
the existence of at least one nontrivial weak solution for the problem
under consideration, supposed that the nonlinearity satisfies very gen-
eral assumptions. Moreover, via modifying slightly the hypotheses on
the reaction term and making use of a variant of the symmetric moun-
tain pass theorem, we also produce infinitely many solutions for our
problem.
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1. Introduction

Let Ω ⊆ R
N (N ≥ 2) be a bounded domain with Lipschitz boundary ∂Ω

and let C0,1(Ω) be the space of all Lipschitz continuous functions u : Ω → R.
In the present article, the functions p, q and μ are supposed to satisfy the
following assumptions:
(H1) p, q ∈ C0,1(Ω) are such that 1 < p(x) < N and

p(x) < q(x) < 2 q+ < (p∗)− ≤ p∗(x) :=
Np(x)

N − p(x)

for all x ∈ Ω, where for m ∈ C(Ω) with m(x) > 1 for all x ∈ Ω we put

m− := min
x∈Ω

m(x) and m+ := max
x∈Ω

m(x);

μ ∈ L∞(Ω) \ {0} is such that

μ(x) ≥ 0 for a.a. x ∈ Ω.
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Also, e stands for Euler’s number and we consider a > 0 such that ap− ≥ 1.
In this paper, we focus on problems driven by logarithmic operators with
variable exponents and a-logarithmic perturbation given by

div L(u) := div
[(

|∇u|p(x)−2 + μ(x)|∇u|q(x)−2

)
∇u log(e + a|∇u|)

+
(

1
p(x)

|∇u|p(x)−2 +
μ(x)
q(x)

|∇u|q(x)−2

)
∇u

|∇u|
e + a|∇u|

]
,

(1.1)

for any function u belonging to an appropriate Musielak–Orlicz–Sobolev
space W 1,HL

0 (Ω), which will be defined in Section 2. This operator and the re-
lated Musielak–Orlicz–Sobolev space were recently introduced by Lu–Vetro–
Zeng [24], who studied existence and uniqueness of equations involving such
an operator in the context of a nonlinear problem with convection (that is,
the nonlinearity depends on the weak gradient of the solution). We point out
that the operator in (1.1) is connected to integral functionals of the form

u �→
∫

Ω

(|∇u|p(x) + μ(x)|∇u|q(x)) log(e + a|∇u|) dx,

which originates from functionals with nearly linear growth of type

u �→
∫

Ω

|∇u| log(1 + |∇u|) dx. (1.2)

Functionals as in (1.2) have been considered by Fuchs–Mingione [18] and
Marcellini–Papi [25]. We stress that such type of functional appears in the
context of plasticity with logarithmic hardening, as one can see for example
by Seregin–Frehse [28].

In the present work, we focus on the following Kirchhoff type problem

−K
[ ∫

Ω

Φ(u) log(e + a|∇u|) dx

]
div L(u) = f(x, u) in Ω,

u = 0 on ∂Ω
(1.3)

with

Φ(u) =
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x),

where the operator div L is as in (1.1), a is such that ap− ≥ 1, while K = K ′

with a function K : [0,+∞) → [0,+∞) satisfying the following assumptions:

(H2) K ∈ C1([0,+∞)) is such that

(i) there exists ϑ ∈
[
1, (p∗)−

2 q+

)
so that the function

K(t)
tϑ

is nonincreasing on (0,+∞);

(ii) there exists k > 0 such that

K(t) ≥ k for all t ≥ 1.
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Example 1.1. For k > 0 and ϑ ∈
[
1, (p∗)−

2 q+

)
fixed, we consider the function

K : [0,+∞) → [0,+∞) defined by

K(t) := kt + tϑ for all t ≥ 0.

We point out that K(·) satisfies all the assumptions in hypotheses (H2).

We recall that in the case p(x) = q(x) = 2 for all x ∈ Ω and a = 0,
equation (1.3) can be directly linked to a stationary analogue (the corre-
sponding elliptic equation) of the classical governing (parabolic) equation of
nonlinear beam vibration posed by Kirchhoff [21], where a nonlocal term of
type K(t) = kt + b is involved. There the real parameters k and b summarize
physical features of the beam such as mass density, area of the cross-section,
and length. Now, the idea of considering a general multiplicative function
K in equation (1.3) is aimed to better model situations when for instance
shape and area of the cross-section may change along beam’s length, or when
precise inertia effects are investigated (see, for example, Andrianov–Koblik
[1] and the references cited therein). It is noted that such investigations are
performed using experiments, and so the controllability of the physical set-
ting is crucial for a successful process. From a mathematical perspective, this
is realized by imposing a suitable set of assumptions on K to ensure that its
influence is well-controlled throughout the analysis (see hypothesis (H2)). Fi-
nally, we remark that the attention of scholars was directed to nonlocal type
problems by the Lions’ approach (that is the Lions’ representation theorem to
generalize the Lax-Milgram theorem) with applications to physical systems
(see Lions [22]). Furthermore, the hypothesis (H2) can be considered mini-
mal, hence it is dictated by the specific needs of our proofs. In detail, (H2)
gives well-posedness of the energy functional associated to problem (1.3) to
fulfill the mountain-pass geometry (see Lemmas 3.2–3.4), and (H2)(ii) avoids
the degeneracy of the main operator as well.

Our aim is to investigate the existence of nontrivial weak solutions (see
(3.3)) of problem (1.3) by applying variational tools. To be more precise,
we make use of the classical mountain pass theorem to derive the existence
of at least one nontrivial weak solution for problem (1.3), supposed that
the nonlinearity f satisfies very general conditions (see hypothesis (H3) and
Theorem 3.5). Then, we produce infinitely many weak solutions for problem
(1.3) (see Theorem 4.3) using a variant of the symmetric mountain pass
theorem, namely, the Fountain theorem which can be found in Willem (see
[33, Theorem 3.6]). Here, we obtain such multiplicity result under different
hypotheses on the nonlinearity f , (see hypotheses (H3)(ii) and (H4)).

A special feature of the problem (1.3) is the fact that it combines the
operator with variable exponents and a-logarithmic perturbation given in
(1.1) along with a Kirchhoff term. As far as we know, this is the first pa-
per that treats such a type of operator together with a Kirchhoff term. We
point out that a Kirchhoff type problem driven by the classical double phase
operator with variable exponents and with a nonlinearity which is just lo-
cally defined was considered recently by Ho–Winkert [20]. Differently from
our study, the authors established the existence of infinitely many solutions
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via an abstract critical point result due to Kajikiya. For Kirchhoff prob-
lems in the double phase setting but with constant exponents we refer to the
papers by Arora–Fiscella–Mukherjee–Winkert [4,5], Borer–Pimenta–Winkert
[7], Cen–Vetro–Zeng [13], Colasuonno–Perera [9], Crespo-Blanco–Gasiński–
Winkert [14], Fiscella–Marino–Pinamonti–Verzellesi [16], Fiscella–Pinamonti
[17], and Yang–Liu–Meng [32]. We also recall that nonlocal problems in the
context of equations driven by the Laplacian or the p-Laplacian have been
studied by a number of authors. We mention the papers by Alves–Figueiredo
[2], Bueno–Ercole–Ferreira–Zumpano [8], Corrêa [10], and Corrêa–Figueiredo
[11]. Further, existence results on degenerate and nondegenerate Kirchhoff
problems can be found in the papers of Autuori–Pucci–Salvatori [6] and
Xiang–Zhang–Rǎdulescu [34], see also Vetro [29] for p(x)-Kirchhoff type prob-
lems with convection.

Finally, we note that another logarithmic double phase operator dif-
ferent from the one in (1.1) has been recently introduced by Arora–Crespo-
Blanco–Winkert [3] which has the form

div
[
|∇u|p(x)−2∇u + μ(x)

(
log(e + |∇u|) +

|∇u|
q(x)(e + |∇u|)

)
|∇u|q(x)−2∇u

]

(1.4)

with u ∈ W 1,Hlog(Ω), where Hlog : Ω × [0,+∞) → [0,+∞) is given by

Hlog(x, t) = tp(x) + μ(x)tq(x) log(e + t).

The operator defined in (1.4) also appears in recent works by Carranza–
Pimenta–Vetro–Winkert [12], Vetro [30] and Vetro–Winkert [31]. Note that
in [12] the authors focused on a problem with a right-hand side consisting
of a Carathéodory perturbation defined only locally and of a critical term.
Therein, making use of appropriate truncation techniques and a suitable aux-
iliary problem, they produced a whole sequence of sign-changing solutions to
the problem which converges to 0 in L∞(Ω) as well as in the logarithmic
Musielak–Orlicz–Sobolev space W 1,Hlog(Ω). In [30], the author explores a
similar problem to that under consideration here, namely, in the equation
studied in [30] we have a multiplicative function K as well. But there the
function K has to satisfy a condition which links it to its integral function,
while here we claim a monotonicity condition on K. Further, in [30] the growth
condition on the nonlinearity f also depends on a constant η that we do not
consider here. Lastly, in [31] the authors obtained existence and uniqueness
results for a problem involving a nonlinearity which also depends on the gra-
dient of the solution. Further, they proved the boundedness, closedness and
compactness of the related solution set to the problem under consideration.

The paper is organized as follows. In Sect. 2 we recall the basic proper-
ties of Sobolev spaces with variable exponents and of logarithmic Musielak–
Orlicz–Sobolev spaces. Furthermore, we mention the properties of the oper-
ator (1.1) and fix some notation. Section 3 states and proves an existence
results on very mild assumptions on the data (see Theorem 3.5) while Sect.
4 shows the existence of infinitely many solutions to problem (1.3) (see The-
orem 4.3).



MJOM Kirchhoff Problems With Logarithmic Perturbation Page 5 of 20   185 

2. Preliminaries

In this section, we collect some facts on Lebesgue spaces and Musielak–Orlicz–
Sobolev spaces with variable exponents which will be needed later. One can
find these topics in the books of Harjulehto–Hästö [19] and Musielak [26],
see also the papers by Crespo-Blanco–Gasiński–Harjulehto–Winkert [15] and
Lu–Vetro–Zeng [24] for more information.

To this end, let Ω ⊆ R
N (N ≥ 2) be a bounded domain with Lipschitz

boundary ∂Ω and let m ∈ C(Ω) be such that m(x) > 1 for all x ∈ Ω. We
write m′(·) to denote the conjugate variable exponent of m(·), which means
that

1
m(x)

+
1

m′(x)
= 1 for all x ∈ Ω.

By Lm(·)(Ω) we denote the variable exponent Lebesgue space defined by

Lm(·)(Ω) =
{
u ∈ M(Ω): ρm(·)(u) < +∞}

,

where M(Ω) stands for the set of all measurable functions u : Ω → R and the
modular ρm(·) is given by

ρm(·)(u) :=
∫

Ω

|u|m(x) dx.

As usual, we equip Lm(·)(Ω) with the Luxemburg norm defined by

‖u‖m(·) = inf
{

α > 0: ρm(·)

(
u

α

)
≤ 1

}

for all u ∈ Lm(·)(Ω). With such norm the space Lm(·)(Ω) becomes a separable,
uniformly convex and hence reflexive Banach space whose dual space is given
by Lm′(·)(Ω). In addition, we know that the Hölder-type inequality∫

Ω

|uv|dx ≤
[

1
r− +

1
(r′)−

]
‖u‖m(·) ‖v‖m′(·)

holds for all u ∈ Lm(·)(Ω) and for all v ∈ Lm′(·)(Ω). Also, if m1,m2 ∈ C(Ω)
are such that 1 ≤ m1(x) ≤ m2(x) for all x ∈ Ω, then we have the continuous
embedding

Lm2(·)(Ω) ↪→ Lm1(·)(Ω).

Now, we focus on the nonlinear function HL : Ω× [0,+∞) → [0,+∞) defined
by

HL(x, t) =
(
tp(x) + μ(x)tq(x)

)
log(e + at)

for all x ∈ Ω and for all t ≥ 0, where a ≥ 0 and the exponents as well as the
weight function verify hypothesis (H1). We stress that HL(·, t) is a locally
integrable, generalized N -function satisfying the Δ2-condition (see Lu–Vetro–
Zeng [24, Section 2]). Thus, the corresponding Musielak–Orlicz space LHL(Ω)
is given by

LHL(Ω) = {u ∈ M(Ω): ρHL
(u) < +∞} ,
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with the modular ρHL
(·) defined by

ρHL
(u) :=

∫
Ω

HL(x, |u|) dx =
∫

Ω

(
|u|p(x) + μ(x)|u|q(x)

)
log(e + a|u|) dx.

We consider on LHL(Ω) the Luxemburg norm, that is,

‖u‖HL
:= inf

{
β > 0: ρHL

(
u

β

)
≤ 1

}
,

for all u ∈ LHL(Ω). This norm makes LHL(Ω) to be a separable and reflexive
Banach space (see Lu–Vetro–Zeng [24, Proposition 2.13]). Also, from Propo-
sition 2.21 of [24] we know that the norm ‖ · ‖HL

and the modular ρHL
are

related to each other. In fact, let a1 be the positive constant given by

a1 :=
t1

log(e + at1)
log(e + at2)

t2
, (2.1)

where t1 and t2 are a local maximum point and a local minimum point,
respectively, for the function defined by h(t) := t

log(e+at) for all t ≥ 0. Then,
we have the following result.

Proposition 2.1. Let hypothesis (H1) be satisfied. Then the following hold:

(i) ‖u‖HL
< 1 (resp. > 1,= 1) if and only if ρHL

(u) < 1 (resp. > 1,= 1);
(ii) min{‖u‖p−

HL
, a1 ‖u‖q++1

HL
} ≤ ρHL

(u) ≤ max{‖u‖p−
HL

, a1 ‖u‖q++1
HL

}, being
a1 as given in (2.1);

(iii) ‖u‖HL
→ 0 if and only if ρHL

(u) → 0;
(v) ‖u‖HL

→ +∞ if and only if ρHL
(u) → +∞;

(vi) ‖u‖HL
→ 1 if and only if ρHL

(u) → 1.

Next, the Musielak–Orlicz–Sobolev space corresponding to LHL(Ω), de-
noted by W 1,HL(Ω), is given by

W 1,HL(Ω) =
{
u ∈ LHL(Ω): |∇u| ∈ LHL(Ω)

}
endowed with the norm

‖u‖1,HL
:= ‖u‖HL

+ ‖∇u‖HL
,

where ‖∇u‖HL
:= ‖ |∇u| ‖HL

. Then, we define W 1,HL

0 (Ω) by the completion
of C∞

0 (Ω) in W 1,HL(Ω). From Propositions 2.13, 2.23 and 2.24 of [24] we
see that W 1,HL(Ω) and W 1,HL

0 (Ω) are separable, reflexive Banach spaces
satisfying the following embeddings.

Proposition 2.2. Let hypothesis (H1) be satisfied. Then the following hold:

(i) W 1,HL(Ω) ↪→ Lm(·)(Ω) and W 1,HL

0 (Ω) ↪→ Lm(·)(Ω) are compact for
m ∈ C(Ω) with 1 ≤ m(x) < p∗(x) for all x ∈ Ω;

(ii) W 1,HL(Ω) ↪→ LHL(Ω) is compact and there exists a constant b > 0 such
that

‖u‖HL
≤ b ‖∇u‖HL

for all u ∈ W 1,HL

0 (Ω).
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As the Poincaré inequality holds, we can endow the space W 1,HL

0 (Ω)
with the equivalent norm given by

‖u‖ := ‖∇u‖HL
for all u ∈ W 1,HL

0 (Ω).

Finally, we introduce the nonlinear operator VL : W 1,HL

0 (Ω) →
W 1,HL

0 (Ω)∗ defined by

〈VL(u), w〉 :=
∫

Ω

L(u) · ∇w dx (2.2)

for all u,w ∈ W 1,HL

0 (Ω), where L is as in (1.1) and 〈·, ·〉 stands for the dual
pairing between W 1,HL

0 (Ω) and its dual space W 1,HL

0 (Ω)∗. From Theorems
3.5 and 3.6 of [24] we know that such operator is characterized by several
notable properties. In particular, we stress that the following results hold.

Proposition 2.3. Let hypothesis (H1) be satisfied. Then, the operator VL is
bounded (that is, it maps bounded sets into bounded sets), continuous, strictly
monotone, coercive and of (S+)-type, that is,

un ⇀ u in W 1,HL

0 (Ω) and lim sup
n→+∞

〈VL(un), un − u〉 ≤ 0

imply

un → u in W 1,HL

0 (Ω).

We conclude this section by recalling that a C1-functional ψ : W 1,HL

0 (Ω)
→ R satisfies the Palais–Smale condition if any sequence {un}n∈N

⊂ W 1,HL

0 (Ω) such that

{ψ(un)}n∈N ⊂ R is bounded and

ψ′(un) → 0 in W 1,HL

0 (Ω)∗ as n → +∞
admits a convergent subsequence in W 1,HL

0 (Ω). Also, we fix some notations
which will be needed later. We denote by |Ω| the Lebesgue measure of Ω in
R

N and for any s ∈ R we put s± := max{±s, 0} which means that s = s+−s−
and |s| = s+ + s−. For any function u : Ω → R we write u±(·) := [u(·)]±.
With the purpose to lighten the notation, from now on we will use C as a
generic constant, which may change from line to line, but does not depend
on the crucial quantities.

3. An Existence Result

In this section, we suppose the following assumptions on the reaction term f
while ϑ is as given in hypothesis (H2)(i):
(H3) f : Ω × R → R is a Carathéodory function satisfying the following con-

ditions:
(i) there exists r1 ∈ ((q+ + 1)ϑ, (p∗)−) such that for all ε > 0 there

exists δε > 0 such that

|f(x, t)| ≤ (q+ + 1)ϑ ε |t|(q++1) ϑ−1 + r1 δε |t|r1−1

for a.a. x ∈ Ω and for all t ∈ R;
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(ii) there exist r2 ∈ (2 q+ ϑ, (p∗)−) and t0 ≥ 0 such that

c ≤ r2 F (x, t) ≤ tf(x, t)

for some c > 0, for a.a. x ∈ Ω and for any |t| ≥ t0 with F (x, t) =∫ t

0
f(x, s) ds.

For the sake of reader convenience, an example of the function verifying
the aforementioned condition is provided next.

Example 3.1. Let ϑ ∈ [
1, (p∗)−

2 q+

)
and r1 ∈ ((q+ + 1)ϑ, (p∗)−) be fixed. The

odd function f : Ω × R → R defined by

f(x, t) :=
r1

2
tr1−1 for a.a. x ∈ Ω and for all t ≥ 0

satisfies all the assumptions in (H3). In fact, we have that condition (H3)(i)
holds for all ε > 0 if we take δε = 1, while condition (H3)(ii) holds for t0 = 1
and r2 ∈ (2q+ϑ, r1).

Our aim is to show that problem (1.3) admits at least one nontriv-
ial weak solution in W 1,HL

0 (Ω). To do this, the idea is to use the classical
mountain pass theorem. For this purpose, we introduce the C1-functional
φ : W 1,HL

0 (Ω) → R defined by

φ(u) := K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx

]

−
∫

Ω

F (x, u) dx (3.1)

for all u ∈ W 1,HL

0 (Ω). We point out that the derivative of φ is given by

〈φ′(u), w〉 = K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx

]

×
∫

Ω

L(u) · ∇w dx −
∫

Ω

f(x, u)w dx (3.2)

for all u,w ∈ W 1,HL

0 (Ω). Also, we recall that u ∈ W 1,HL

0 (Ω) is a weak solution
of problem (1.3) if the following equality

K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx

]

×
∫

Ω

L(u) · ∇w dx =
∫

Ω

f(x, u)w dx (3.3)

holds for all w ∈ W 1,HL

0 (Ω). Thus, according to (3.2) and (3.3) we have
that the weak solutions of problem (1.3) coincide with the critical points
of φ. Taking this into account, if we show that the functional φ satisfies the
geometric features of the classical mountain pass theorem, then we are able to
apply such theorem to obtain the existence of a nontrivial critical value of φ

and consequently of a nontrivial weak solution of problem (1.3) in W 1,HL

0 (Ω).
Therefore, we are going to prove that φ satisfies the geometry of the

mountain pass theorem. We will do this in three steps. We start by the
following result.
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Lemma 3.2. Let hypotheses (H1), (H2) and (H3)(i) be satisfied. Then, there
exist ν ∈ (0, 1] and ζ := ζ(ν) > 0 such that

φ(u) ≥ ζ for all u ∈ W 1,HL

0 (Ω) with ‖u‖ = ν.

Proof. First, we point out that hypothesis (H2) ensures that the following
inequality

K(t) ≥ K(1) tϑ

holds for all t ∈ [0, 1]. Moreover, from Proposition 2.1(ii) we see that for all
u ∈ W 1,HL

0 (Ω) with ‖u‖ ≤ 1, we have

a1‖u‖q++1 ≤ ρHL
(∇u) ≤ ‖u‖p− ≤ 1

with a1 > 0 as given in (2.1). This implies
∫

Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx < 1,

according to the fact that
∫

Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx ≤ 1

p− ρHL
(∇u).

Also, we point out that hypothesis (H3)(i) assures that, for any ε > 0, it is
possible to find δε > 0 such that

|F (x, t)| ≤ ε |t|(q++1) ϑ + δε |t|r1

for a.a. x ∈ Ω and for all t ∈ R. Keeping this in mind, we are able to affirm
that

φ(u) ≥ K(1)
[ ∫

Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx

]ϑ

−
∫

Ω

ε|u|(q++1) ϑ dx −
∫

Ω

δε|u|r1 dx

≥ aϑ
1 K(1)
(q+)ϑ

‖u‖(q++1) ϑ − ε ‖u‖(q++1) ϑ
(q++1) ϑ − δε ‖u‖r1

r1
.

Note that the embeddings

W 1,HL

0 (Ω) ↪→ L(q++1) ϑ(Ω) and W 1,HL

0 (Ω) ↪→ Lr1(Ω)

are both compact due to the fact that (q+ + 1) θ < 2 q+ θ < (p∗)− from
hypothesis (H2)(i) and r1 < (p∗)− from hypothesis (H3)(i) (see Proposition
2.2(i)). Taking this into account, we denote by � and �̃ the best positive
constants such that

‖u‖(q++1) ϑ
(q++1) ϑ ≤ �‖u‖(q++1) ϑ and ‖u‖r1

r1
≤ �̃‖u‖r1 ,
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for all u ∈ W 1,HL

0 (Ω), respectively. Then, we have that

φ(u) ≥ aϑ
1 K(1)
(q+)ϑ

‖u‖(q++1) ϑ − ε � ‖u‖(q++1)ϑ − δε �̃ ‖u‖r1

=
(

aϑ
1K(1)
(q+)ϑ

− ε �

)
‖u‖(q++1) ϑ − δε �̃ ‖u‖r1

=
[(

aϑ
1 K(1)
(q+)ϑ

− ε �

)
− δε �̃ ‖u‖r1−(q++1) ϑ

]
‖u‖(q++1) ϑ,

where r1 − (q+ + 1)ϑ > 0 according to hypothesis (H3)(i). From here, if we
choose ε > 0 small enough such that

aϑ
1 K(1)
(q+)ϑ

− ε � > 0,

then for any u ∈ W 1,HL

0 (Ω) with

‖u‖ = ν ∈
(

0, min
{

1,

[
1

δε �̃

(
aϑ
1 K(1)
(q+)ϑ

− ε �

)] 1
r1−(q++1) ϑ

})

we have that

φ(u) ≥
[(

aϑ
1 K(1)
(q+)ϑ

− ε �

)
− δε �̃ νr1−(q++1) ϑ

]
ν(q++1) ϑ := ζ > 0.

This shows the assertion of the lemma. �

Now, we give the following result.

Lemma 3.3. Let hypotheses (H1), (H2) and (H3) be satisfied. Then, there
exists v ∈ W 1,HL

0 (Ω) such that

φ(v) < 0 and ‖v‖ > 1.

Proof. From hypothesis (H2)(i) we have for all ε > 0 the inequality

K(t) ≤ K(ε)
εϑ

tϑ (3.4)

whenever t ≥ ε. Also, we point out that Proposition 2.1(ii) guarantees that
for all u ∈ W 1,HL

0 (Ω) with ‖u‖ ≥ (q+)
1

p− > 1, it leads to

1 < ‖u‖p− ≤ ρHL
(∇u).

Hence, we deduce that∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx ≥ 1 (3.5)

taking into account that∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx ≥ 1

q+
ρHL

(∇u).

Next, due to hypotheses (H3), we know that it is possible to find c1 > 0
and c2 ≥ 0 so that the inequality

F (x, t) ≥ c1|t|r2 − c2 (3.6)
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is satisfied for a.a. x ∈ Ω and for all t ∈ R.
Based on this, for t ≥ (q+)

1
p− and w ∈ W 1,HL

0 (Ω) such that ‖w‖ = 1
we have that

φ(tw) ≤ K(1)

[ ∫
Ω

(
1

p(x)
|∇(tw)|p(x) +

μ(x)

q(x)
|∇(tw)|q(x)

)
log(e + a|∇(tw)|) dx

]ϑ

− c1

∫
Ω

|t w|r2 dx + c2

∫
Ω

dx

≤ K(1)

p− t(q
++1) ϑ

[ ∫
Ω

(
|∇w|p(x) + μ(x) |∇w|q(x)

)
log(e + a|∇w|) dx

]ϑ

− c1 tr2 ‖w‖r2
r2 + c2 |Ω|

=
K(1)

p− t(q
++1) ϑ[ρHL(∇ w)]ϑ − c1 tr2 ‖w‖r2

r2 + c2 |Ω|.

Recall that ‖w‖ := ‖∇w‖HL
= 1. This, according to Proposition 2.1(i),

implies that ρHL
(∇w) = 1 as well. Moreover, as r2 < (p∗)− due to hypothe-

sis (H3)(ii), Proposition 2.2(i) guarantees that the embedding W 1,HL

0 (Ω) ↪→
Lr2(Ω) is compact. This leads to

φ(tw) ≤ K(1)
p− t(q

++1) ϑ − c1 C tr2 + c2 |Ω|

for some C > 0. Taking into account that r2 > (q+ + 1)ϑ from hypothesis
(H3)(ii), we conclude that

φ(t w) → −∞ as t → +∞.

This shows that if t̄ > 0 is large enough, then v = t̄ w ∈ W 1,HL

0 (Ω) is such
that

‖v‖ > 1 and further φ(v) < 0.

This finishes the proof. �

Next, we show that the functional φ verifies the Palais–Smale condition.

Lemma 3.4. Let hypotheses (H1), (H2) and (H3) be satisfied. Then, the func-
tional φ satisfies the Palais–Smale condition.

Proof. To prove the claim, we consider a sequence {un}n∈N ⊂ W 1,HL

0 (Ω)
satisfying the following conditions:

{φ(un)}n∈N ⊂ R is bounded,

φ′(un) → 0 in W 1,HL

0 (Ω)∗ as n → +∞.
(3.7)

First, we are going to prove that the sequence {un}n∈N ⊂ W 1,HL

0 (Ω) is
bounded. We prove this via contradiction. For this purpose, assume that
the sequence {un}n∈N is unbounded. This means that it is possible to find a
subsequence of {un}n∈N, not relabeled, such that

‖un‖ → +∞ as n → +∞ and ‖un‖ ≥ (q+)
1

p− for all n ∈ N. (3.8)
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Note that hypothesis (H2)(i) implies that

t K(t) ≤ ϑK(t) (3.9)

for all t ≥ 0. Then, recalling that ap− ≥ 1, using (3.9) we see that

φ(un) − 1

r2
〈φ′(un), un〉

= K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)

q(x)
|∇u|q(x)

)
log(e + a|∇u|) dx

]
−

∫
Ω

F (x, un) dx

− 1

r2
K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)

q(x)
|∇u|q(x)

)
log(e + a|∇u|) dx

]

×
∫

Ω

[(
|∇u|p(x) + μ(x)|∇u|q(x)

)
log(e + a|∇u|)

+

(
1

p(x)
|∇u|p(x) +

μ(x)

q(x)
|∇u|q(x)

) |∇u|
(e + a|∇u|)

]
dx +

1

r2

∫
Ω

f(x, un) un dx

≥ 1

q+ ϑ
K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)

q(x)
|∇u|q(x)

)
log(e + a|∇u|) dx

]

×
∫

Ω

(|∇u|p(x) + μ(x)|∇u|q(x)) log(e + a|∇u|) dx

− 1

r2
K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)

q(x)
|∇u|q(x)

)
log(e + a|∇u|) dx

]

×
∫

Ω

[(
|∇u|p(x) + μ(x)|∇u|q(x)

)
log(e + a|∇u|)

+

(
1

p(x)
|∇u|p(x) +

μ(x)

q(x)
|∇u|q(x)

) |∇u|
(e + a|∇u|)

]
dx

−
∫

Ω

(
F (x, un) − 1

r2
f(x, un)un

)
dx

≥
(

1

q+ ϑ
− 1

r2

)
K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)

q(x)
|∇u|q(x)

)
log(e + a|∇u|) dx

]

× ρHL(∇un) −
∫

Ω

(
F (x, un) − 1

r2
f(x, un)un

)
dx

− 1

r2
K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)

q(x)
|∇u|q(x)

)
log(e + a|∇u|) dx

]

×
∫

Ω

(
1

p(x)
|∇u|p(x) +

μ(x)

q(x)
|∇u|q(x)

) |∇u|
(e + a|∇u|) dx

≥
(

1

q+ ϑ
− 2

r2

)
K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)

q(x)
|∇u|q(x)

)
log(e + a|∇u|) dx

]

× ρHL(∇un) −
∫

Ωn

[
F (x, un) − 1

r2
f(x, un)un

]
+

dx, (3.10)

where we have used hypothesis (H3)(ii) to get
1

q+ ϑ
− 2

r2
> 0

and we put

Ωn := {x ∈ Ω: |un(x)| ≤ t0}
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with t0 as given in hypothesis (H3)(ii).
Now, from hypothesis (H2)(ii) we know that there exists k > 0 such

that

K(t) ≥ k whenever t ≥ 1. (3.11)

Also, from (3.5) and (3.8) we see that∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx ≥ 1.

Putting

M := |Ωn| sup
x∈Ωn, |t|≤t0

[
F (x, t) − 1

r2
f(x, t)t

]
+

< +∞

(note that M < +∞ due to hypothesis (H3)(i)) and using (3.10) along with
(3.11) and Proposition 2.1(ii), we derive that

φ(un) − 1
r2

〈φ′(un), un〉 ≥
(

1
q+ ϑ

− 2
r2

)
k ‖un‖p− − M.

For this reason and since (3.7) holds, we can affirm that there exist c3, c4 > 0
such that

c3 + c4 ‖un‖ ≥
(

1
q+ ϑ

− 2
r2

)
k ‖un‖p− − M for all n ∈ N.

Since this contradicts to (3.8) due to p− > 1, we conclude that the sequence
{un}n∈N is bounded. Consequently, we may suppose (for a subsequence if
necessary, not relabeled) that

un ⇀ u in W 1,HL

0 (Ω),

un → u in L(q++1) ϑ(Ω) and in Lr1(Ω).
(3.12)

We emphasize at this point that if we take w = un −u in (3.2) and use (3.7),
we obtain

lim
n→+∞ K

[ ∫
Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx

]

×
∫

Ω

L(un) · ∇(un − u) dx − lim
n→+∞

∫
Ω

f(x, un) (un − u) dx = 0.

(3.13)

Next, using hypothesis (H3)(i) with ε = 1, Hölder’s inequality and (3.12) we
can see that∣∣∣∣

∫
Ω

f(x, un) (un − u) dx

∣∣∣∣
≤

∫
Ω

(
(q+ + 1)ϑ |un|(q++1) ϑ−1 + r1 δ1 |un|r1−1

)
|un − u|dx

≤ (q+ + 1)ϑ ‖un‖(q++1) ϑ−1
(q++1) ϑ ‖un − u‖(q++1) ϑ

+r1 δ1 ‖un‖r1−1
r1

‖un − u‖r1

→ 0 as n → +∞. (3.14)



  185 Page 14 of 20 S. Zeng et al. MJOM

Recall that the operator VL defined in (2.2) is continuous and bounded (see
Proposition 2.3). Further, we know that (3.5) holds and K(t) > k for all t ≥ 1
(see (3.11)). Keeping all this in mind, from (3.13) using (3.14) we deduce that∫

Ω

L(un) · ∇(un − u) dx → 0 as n → +∞

and hence

lim sup
n→+∞

〈VL(un), un − u〉 ≤ 0.

Now, as the operator VL is of (S+)-type (see again Proposition 2.3), we con-
clude that

un → u in W 1,HL

0 (Ω).

�

Finally, we can state and prove the existence result in this section.

Theorem 3.5. Let hypotheses (H1), (H2) and (H3) be satisfied. Then, problem
(1.3) admits at least one nontrivial weak solution in W 1,HL

0 (Ω).

Proof. Let φ be the C1-functional introduced in (3.1). We recall that from
(3.2) and (3.3) we know that the critical points of φ are the weak solutions
of problem (1.3). For way of this, to obtain the claim, it is sufficient to show
that φ has at least one nontrivial critical point. Now, as φ(0) = 0 and since
Lemmas 3.2, 3.3 and 3.4 hold, we are in the position to apply the mountain
pass theorem to derive that there exists a nontrivial critical value of φ, which
is a nontrivial weak solution of problem (1.3) in W 1,HL

0 (Ω). �

4. Infinitely Many Solutions

In this section, we present our second existence result. To be more precise, we
are going to show that problem (1.3) has infinitely many weak solutions in
W 1,HL

0 (Ω). To do this, we will make use of a variant of the symmetric moun-
tain pass theorem, namely, the Fountain theorem which can be found in the
monograph by Willem [33, Theorem 3.6]. First, we need new assumptions on
the nonlinearity f . Precisely, we now suppose that the Carathéodory function
f : Ω × R → R satisfies hypothesis (H3)(ii) and in addition we assume that:
(H4) f is odd with respect to the second variable and there exists r ∈

(p−, (p∗)−) such that

|f(x, t)| ≤ d (1 + |t|r−1)

for some d > 0, for a.a. x ∈ Ω and for all t ∈ R.

Remark 4.1. We point out that if we replace hypothesis (H3)(i) with hy-
pothesis (H4), then Lemma 3.4 is still true. We can easily deduce this from
the proof of Lemma 3.4 recalling that since r < (p∗)− we have the compact
embedding of W 1,HL

0 (Ω) into Lr(Ω).
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Before formulating the main result of this section, we note that W 1,HL

0

(Ω) is a separable and reflexive Banach space. Therefore, we can find se-
quences

{vn}n∈N ⊂ W 1,HL

0 (Ω) and {gn}n∈N ⊂ W 1,HL

0 (Ω)∗

such that

W 1,HL

0 (Ω) := span{vn : n ∈ N}, W 1,HL

0 (Ω)∗ := span{gn : n ∈ N}

and further 〈gj , vn〉 :=

{
1 if n = j,

0 if n �= j.

Next, we put

Zn := span {vn}, Z̃n :=
n⊕

j=1

Zj , Ẑn :=
+∞⊕
j=n

Z̃j

and

ξn := sup
u∈Ẑn, ‖u‖=1

‖u‖r,

where r is from hypothesis (H4).

Remark 4.2. We point out that

ξn → 0 as n → +∞,

see Lemma 7.1 by Liu–Dai [23].

Now, we are ready to state our multiplicity result.

Theorem 4.3. Let hypotheses (H1), (H2), (H3)(ii) and (H4) be satisfied. Then,
problem (1.3) admits infinitely many weak solutions in W 1,HL

0 (Ω).

Proof. Let φ be the C1-functional introduced in (3.1). From hypothesis (H4)
we know that f is odd with respect to the second variable. This in particular
guarantees that φ is an even functional. Also, according to Remark 4.1 we
know that φ verifies the Palais–Smale condition. Then, to use the Fountain
theorem, we only need to show that for all n ≥ 1 there exist σn > γn > 0
such that

ln := inf{φ(u) : u ∈ Ẑn, ‖u‖ = γn} → +∞ as n → +∞ (4.1)

and

max{φ(u) : u ∈ Z̃n, ‖u‖ = σn} ≤ 0. (4.2)

As first step, we have to determinate γn > 0 such that (4.1) holds. To this
end, taking hypothesis (H2)(ii) into account there exists k > 0 such that for
all u ∈ Ẑn with ‖u‖ ≥ (q+)

1
p− > 1 it results

K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx

]
≥ k, (4.3)

(see (3.11) and (3.5)). Also, from hypothesis (H4) we have that

|F (x, t)| ≤ C(|t| + |t|r) (4.4)
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for some C > 0, for a.a. x ∈ Ω and for all t ∈ R.
Then, using (3.9), (4.3), (4.4), Proposition 2.1(ii) and Hölder’s inequal-

ity, for all u ∈ Ẑn such that ‖u‖ ≥ (q+)
1

p− > 1 we get that

φ(u) ≥ 1
q+ ϑ

K
[ ∫

Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx

]

×
∫

Ω

(|∇u|p(x) + μ(x)|∇u|q(x)
)
log(e + |∇u|) dx

−C

∫
Ω

|u|dx − C

∫
Ω

|u|r dx

≥ k

q+ ϑ
‖u‖p− − C |Ω| r−1

r ‖u‖r − C‖u‖r
r

≥ k

q+ ϑ
‖u‖p− − C ξn |Ω| r−1

r ‖u‖ − C ξr
n ‖u‖r

≥ k

q+ ϑ
‖u‖p− − C ξn |Ω| r−1

r ‖u‖r − C ξr
n ‖u‖r

=
[

k

q+ ϑ
− C

(
ξn |Ω| r−1

r + ξr
n

)
‖u‖r−p−

]
‖u‖p−

, (4.5)

where we recall that C > 0 may change from line to line. Taking Remark 4.2
into account and recalling that r > p− from hypothesis (H4), by setting

γn :=
[

k

2 q+ ϑ

1

C (ξn |Ω| r−1
r + ξr

n)

] 1
r−p−

,

we have that

γn → +∞ as n → +∞. (4.6)

This yields

γn > (q+)
1

p− for n large enough.

Thus, (4.5) and (4.6) permit us to affirm that for all u ∈ Ẑn with ‖u‖ = γn

and n large enough it holds

ln ≥ k

2 q+ ϑ
γp−

n → +∞ as n → +∞.

Consequently, we conclude that (4.1) holds.
Our goal is now to prove that (4.2) also holds. We recall that Z̃n has

finite dimension and hence all the norms on Z̃n are equivalent (see, for exam-
ple, [27, Proposition 3.1.17, p.183]). This means that there exists dZ̃n

> 0,
independent of u ∈ Z̃n, such that

dZ̃n
‖u‖r2 ≤ ‖u‖r2

r2
,

where r2 is from hypothesis (H3)(ii). Moreover, from Proposition 2.1(ii) we
know that

ρHL
(∇u) ≤ a1 ‖u‖q++1 whenever ‖u‖ := ‖∇u‖HL

> 1,
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with a1 > 0 as given in (2.1). Then, using the previous facts along with (3.6),
(3.4) (where we choose ε = 1) and (3.5), we have, for u ∈ Z̃n such that
‖u‖ ≥ (q+)

1
p− , that

φ(u) ≤ K(1)
[ ∫

Ω

(
1

p(x)
|∇u|p(x) +

μ(x)
q(x)

|∇u|q(x)

)
log(e + a|∇u|) dx

]ϑ

−c1

∫
Ω

|u|r2 dx + c2

∫
Ω

dx

≤ K(1)
p− [ρHL

(∇u)]ϑ − c1 ‖u‖r2
r2

+ c2 |Ω|

≤ aϑ
1 K(1)
p− ‖u‖(q++1) ϑ − c1 dZ̃n

‖u‖r2 + c2 |Ω| (4.7)

since (q+)
1

p− > 1 according to hypothesis (H1). Now, we point out that
hypothesis (H3)(ii) gives that r2 > (q+ + 1)ϑ. So, if we take

σn > max
{
(q+)

1
p− , γn

}
large enough,

with a view to (4.7), then we conclude that (4.2) holds.
Thus, the functional φ satisfies all the assumptions of the Fountain the-

orem. Consequently, we can apply such result which guarantees the existence
of an unbounded sequence of critical points of φ. Recalling that the critical
points of φ are weak solutions for problem (1.3) (see (3.3) and (3.2)), the
theorem is proved. �
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