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Singular Dirichlet (p, q)-Equations

Nikolaos S. Papageorgiou and Patrick Winkert

Abstract. We consider a nonlinear Dirichlet problem driven by the (p, q)-
Laplacian and with a reaction having the combined effects of a singular
term and of a parametric (p − 1)-superlinear perturbation. We prove
a bifurcation-type result describing the changes in the set of positive
solutions as the parameter λ > 0 varies. Moreover, we prove the exis-
tence of a minimal positive solution u∗

λ and study the monotonicity and
continuity properties of the map λ → u∗

λ.
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1. Introduction

In a recent paper, the authors [15] studied the following singular parametric
p-Laplacian Dirichlet problem

−Δpu = u−η + λf(x, u) in Ω,

u = 0 on ∂Ω,

u > 0, λ > 0, 0 < η < 1, 1 < p.

They proved a result describing the dependence of the set of positive solutions
as the parameter λ > 0 varies, assuming that f(x, ·) is (p − 1)-superlinear.

In the present paper, we consider a singular parametric Dirichlet prob-
lem driven by the (p, q)-Laplacian, that is, the sum of a p-Laplacian and
of a q-Laplacian with 1 < q < p. To be more precise, the problem under
consideration is the following

−Δpu − Δqu = u−η + λf(x, u) in Ω,

u = 0 on ∂Ω,

u > 0, λ > 0, 0 < η < 1, 1 < q < p, (Pλ)

where Ω ⊆ R
N is a bounded domain with a C2-boundary ∂Ω. In this problem,

the differential operator is not homogeneous and so many of the techniques
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used in Papageorgiou–Winkert [15] are not applicable here. More precisely,
in the proof of Proposition 3.1 in [15], the homogeneity of the p-Laplacian is
crucial in the argument. It provides naturally an upper solution u which is an
appropriate multiple of the unique solution e ∈ int

(
C1

0 (Ω)+
)

of problem (3.2)
in [15] (see also the argument in (3.7)). In our setting, this is no longer possi-
ble since the differential operator, the (p, q)-Laplacian, is not homogeneous.
This makes our proof here of the fact that L �= ∅ (existence of admissible
parameters, see Proposition 3.1) more involved and requires some prepara-
tion which involves Propositions 2.3 and 2.4. Moreover, the proof that the
critical parameter λ∗ > 0 is finite differs for the same reason and here is more
involved and requires the use of a different strong comparison principle. In
[15] (see Proposition 3.6) this is done easily since we can use the spectrum of
(−Δp,W

1,p
0 (Ω)) and in particular the principal eigenvalue λ̂1 > 0 thanks to

the homogeneity of the differential operator (see (3.25) in [15]). This reason-
ing fails in our setting and leads to a different geometry near zero (compare
hypothesis H(iv) in [15] with hypothesis H(iv) in this paper). Furthermore,
we now need to employ a different comparison argument based on a recent
strong comparison principle due to Papageorgiou–Rădulescu–Repovš [12]. In
addition, the proof of Proposition 3.7 in [15] cannot be extended to our prob-
lem (see the part from (3.42) and below). The presence of the q-Laplacian
leads to difficulties. For this reason, our superlinearity condition (see hypoth-
esis H(iii)) differs from the one used in [15]. However, we stress that both go
beyond the classical Ambrosetti–Rabinowitz condition.

For the parametric perturbation of the singular term, λf(·, ·) with f : Ω×
R → R, we assume that f is a Carathéodory function, that is, x �→ f(x, s) is
measurable for all s ∈ R and s �→ f(x, s) is continuous for almost all (a. a.)
x ∈ Ω. Moreover we assume that f(x, ·) exhibits (p−1)-superlinear growth as
s → +∞ but it need not satisfy the usual Ambrosetti–Rabinowitz condition
(the AR-condition for short) in such cases. Applying variational tools from
critical point theory along with suitable truncation and comparison tech-
niques, we prove a bifurcation-type result as in [15], which describes in a
precise way the dependence of the set of positive solutions as the parameter
λ > 0 changes.

In this direction we mention the recent works of Papageorgiou–
Rădulescu–Repovš [12] and Papageorgiou–Vetro–Vetro [14] which also deal
with nonlinear singular parametric Dirichlet problems. In theses works the
parameter multiplies the singular term. Indeed, in Papageorgiou–Rădulescu–
Repovš [12] the equation is driven by a nonhomogeneous differential operator
and in the reaction we have the competing effects of a parametric singular
term and of a (p−1)-superlinear perturbation. In Papageorgiou–Vetro–Vetro
[14] the equation is driven by the (p, 2)-Laplacian and in the reaction we have
the competing effects of a parametric singular term and of a (p − 1)-linear,
resonant perturbation. The work of Papageorgiou–Vetro–Vetro [14] was con-
tinued by Bai–Motreanu–Zeng [2] where the authors examine the continuity
properties with respect to the parameter of the solution multifunction.
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Boundary value problems monitored by a combination of differential op-
erators of different nature (such as (p, q)-equations), arise in many mathemat-
ical processes. We refer, for example, to the works of Bahrouni–Rădulescu–
Repovš [1] (transonic flows), Benci–D’Avenia–Fortunato–Pisani [3] (quantum
physics), Cherfils–Il′yasov [4] (reaction diffusion systems) and Zhikov [19]
(elasticity theory). We also mention the survey paper of Rădulescu [18] on
anisotropic (p, q)-equations.

2. Preliminaries and Hypotheses

The main spaces which we will be using in the study of problem (Pλ) are the
Sobolev space W 1,p

0 (Ω) and the Banach space C1
0 (Ω). By ‖ · ‖ we denote the

norm of the Sobolev space W 1,p
0 (Ω) and because of the Poincaré inequality,

we have

‖u‖ = ‖∇u‖p for all u ∈ W 1,p
0 (Ω),

where ‖ · ‖p denotes norm in Lp(Ω) and also in Lp(Ω;RN ). From the context
it will be clear which one is used.

The Banach space

C1
0 (Ω) =

{
u ∈ C1(Ω) : u

∣
∣
∂Ω

= 0
}

is an ordered Banach space with positive cone

C1
0 (Ω)+ =

{
u ∈ C1

0 (Ω) : u(x) ≥ 0 for all x ∈ Ω
}

.

This cone has a nonempty interior given by

int
(
C1

0 (Ω)+
)

=

{
u ∈ C1

0 (Ω)+ : u(x) > 0 for all x ∈ Ω,
∂u

∂n
(x) < 0 for all x ∈ ∂Ω

}
,

where n(·) stands for the outward unit normal on ∂Ω.
For every r ∈ (1,∞), let Ar : W 1,r

0 (Ω) → W−1,r′
(Ω) = W 1,r

0 (Ω)∗ with
1
r + 1

r′ = 1 be the nonlinear map defined by

〈Ar(u), h〉 =
∫

Ω

|∇u|r−2∇u · ∇h dx for all u, h ∈ W 1,r
0 (Ω). (2.1)

From Gasiński-Papageorgiou [5, Problem 2.192, p. 279] we have the fol-
lowing properties of Ar.

Proposition 2.1. The map Ar : W 1,r
0 (Ω) → W−1,r′

(Ω) defined in (2.1) is
bounded, that is, it maps bounded sets to bounded sets, continuous, strictly
monotone, hence maximal monotone and it is of type (S)+, that is,

un ⇀ u in W 1,r
0 (Ω) and lim sup

n→∞
〈Ar(un), un − u〉 ≤ 0,

imply un → u in W 1,r
0 (Ω).

For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,p
0 (Ω) we define

u±(·) = u(·)±. It is well known that

u± ∈ W 1,p
0 (Ω), |u| = u+ + u−, u = u+ − u−.
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For u, v ∈ W 1,p
0 (Ω) with u(x) ≤ v(x) for a. a.x ∈ Ω we define

[u, v] =
{
h ∈ W 1,p

0 (Ω) : u(x) ≤ h(x) ≤ v(x) for a. a. x ∈ Ω
}
,

[u) =
{
h ∈ W 1,p

0 (Ω) : u(x) ≤ h(x) for a. a. x ∈ Ω
}
.

Given a set S ⊆ W 1,p(Ω) we say that it is “downward directed”, if for
any given u1, u2 ∈ S we can find u ∈ S such that u ≤ u1 and u ≤ u2.

If h1, h2 : Ω → R are two measurable functions, then we write h1 ≺ h2

if and only if for every compact K ⊆ Ω we have 0 < cK ≤ h2(x) − h1(x) for
a. a. x ∈ K.

If X is a Banach space and ϕ ∈ C1(X,R), then we define

Kϕ = {u ∈ X : ϕ′(u) = 0}
being the critical set of ϕ. Furthermore, we say that ϕ satisfies the Cerami
condition (C-condition for short), if every sequence {un}n≥1 ⊆ X such that
{ϕ(un)}n≥1 ⊆ R is bounded and such that (1 + ‖un‖X) ϕ′(un) → 0 in X∗ as
n → ∞, admits a strongly convergent subsequence.

Our Hypotheses on the perturbation f : Ω × R → R are the following:

H: f : Ω × R → R is a Carathéodory function such that f(x, 0) = 0 for
a. a.x ∈ Ω and

(i)

f(x, s) ≤ a(x)
(
1 + sr−1

)

for a.a. x ∈ Ω, for all s ≥ 0, with a ∈ L∞(Ω) and p < r < p∗,
where p∗ denotes the critical Sobolev exponent with respect to p
given by

p∗ =

{
Np

N−p if p < N,

+∞ if N ≤ p;

(ii) if F (x, s) =
∫ s

0
f(x, t)dt, then

lim
s→+∞

F (x, s)
sp

= +∞ uniformly for a. a.x ∈ Ω;

(iii) there exists τ ∈
(
(r − p)max

{
N
p , 1

}
, p∗

)
with τ > q such that

0 < c0 ≤ lim inf
s→+∞

f(x, s)s − pF (x, s)
sτ

uniformly for a. a.x ∈ Ω;

(iv)

lim
s→0+

f(x, s)
sq−1

= 0 uniformly for a. a. x ∈ Ω

and there exists τ ∈ (q, p) such that

lim inf
s→0+

f(x, s)
sτ−1

≥ η̂ > 0 uniformly for a. a. x ∈ Ω;
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(v) for every ŝ > 0 we have

f(x, s) ≥ mŝ > 0

for a.a. x ∈ Ω and for all s ≥ ŝ and for every ρ > 0 there exists
ξ̂ρ > 0 such that the function

s → f(x, s) + ξ̂ρs
p−1

is nondecreasing on [0, ρ] for a.a. x ∈ Ω.

Remark 2.2. Since we are looking for positive solutions and the hypotheses
above concern the positive semiaxis R+ = [0,+∞), without any loss gener-
ality, we may assume that

f(x, s) = 0 for a.a.x ∈ Ω and for all s ≤ 0. (2.2)

Hypotheses H(ii), H(iii) imply that

lim
s→+∞

f(x, s)
sp−1

= +∞ uniformly for a.a. x ∈ Ω.

Hence, the perturbation f(x, ·) is (p − 1)-superlinear. In the literature, su-
perlinear equations are usually treated using the AR-condition. In our case,
taking (2.2) into account, we refer to a unilateral version of this condition
which says that there exist M > 0 and μ > p such that

0 < μF (x, s) ≤ f(x, s)s for a. a. x ∈ Ω and for all s ≥ M, (2.3)
0 < ess infΩ F (·,M). (2.4)

If we integrate (2.3) and use (2.4), we obtain the weaker condition

c1s
μ ≤ F (x, s) for a. a. x ∈ Ω, for all s ≥ M and for some c1 > 0.

This implies, due to (2.3), that

c1s
μ−1 ≤ f(x, s) for a. a. x ∈ Ω and for all s ≥ M.

We see that the AR-condition is dictating that f(x, ·) eventually has
(μ−1)-polynomial growth. Here, instead of the AR-condition, see (2.3), (2.4),
we employ a less restrictive behavior near +∞, see hypothesis H(iii). This
way we are able to incorporate in our framework superlinear nonlinearities
with “slower” growth near +∞. For example, consider the function f : R → R

(for the sake of simplicity we drop the x-dependence) defined by

f(x) =

{
sμ−1 if 0 ≤ s ≤ 1,

sp−1 ln(x) + ss̃−1 if 1 < s

with q < μ < p and s̃ < p, see (2.2). This function satisfies hypotheses H,
but fails to satisfy the AR-condition.

By a solution of (Pλ) we mean a function u ∈ W 1,p
0 (Ω), u ≥ 0, u �= 0,

such that uh ∈ L1(Ω) for all h ∈ W 1,p
0 (Ω) and

〈Ap(u), h〉+〈Aq(u), h〉=
∫

Ω

u−ηh dx+λ

∫

Ω

f(x, u)h dx for all h ∈ W 1,p
0 (Ω).
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The energy functional ϕλ : W 1,p
0 (Ω) → R of the problem (Pλ) is given by

ϕλ(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q − 1
1 − η

∫

Ω

(
u+

)1−η dx − λ

∫

Ω

F
(
x, u+

)
dx

for all h ∈ W 1,p
0 (Ω).

We can find solutions of (Pλ) among the critical points of ϕλ. The
problem that we face is that because of the third term, so the singular one,
the energy functional ϕλ is not C1. So, we cannot apply directly the minimax
theorems of the critical point theory on ϕλ. Solving related auxiliary Dirichlet
problems and then using suitable truncation and comparison techniques, we
are able to overcome this difficulty, isolate the singularity and deal with C1-
functionals on which the classical critical point theory can be used.

To this end, first we consider the following purely singular Dirichlet
problem

− Δpu − Δqu = u−η in Ω,

u = 0 on ∂Ω,

u > 0, 0 < η < 1, 1 < q < p. (2.5)

From Proposition 10 of Papageorgiou–Rădulescu–Repovš [12] we have the
following result concerning problem (2.5).

Proposition 2.3. Problem (2.5) admits a unique solution u ∈ int
(
C1

0 (Ω)+
)
.

From the Lemma in Lazer-McKenna [9] we know that

u−η ∈ L1(Ω).

Moreover, from Hardy’s inequality we have

u−ηh ∈ L1(Ω) and
∫

Ω

∣
∣u−ηh

∣
∣ dx ≤ ĉ‖h‖

for all h ∈ W 1,p
0 (Ω). It follows that u−η + 1 ∈ W−1,p′

(Ω) = W 1,p
0 (Ω)∗.

So, we can consider a second auxiliary Dirichlet problem

−Δpu − Δqu = u−η + 1 in Ω,

u = 0 on ∂Ω,

0 < η < 1, 1 < q < p.

(2.6)

We show that (2.6) has a unique solution.

Proposition 2.4. Problem (2.6) admits a unique solution u ∈ int
(
C1

0 (Ω)+
)
.

Proof. Consider the operator L : W 1,p
0 (Ω) → W−1,p′

(Ω) with 1
p + 1

p′ = 1
defined by

L(u) = Ap(u) + Aq(u) for all u ∈ W 1,p
0 (Ω).

This operator is continuous, strictly monotone, hence maximal monotone and
coercive. Since u−η +1 ∈ W−1,p′(Ω) (see the comments after Proposition 2.3),
we can find u ∈ W 1,p

0 (Ω), u �= 0 such that

L (u) = u−η + 1.
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The strict monotonicity of L implies the uniqueness of u while Theorem B.1 of
Giacomoni-Schindler-Takáč [7] implies that u ∈ C1

0 (Ω)+ \ {0}. Furthermore,
we have

Δpu(x) + Δqu(x) ≤ 0 for a. a. x ∈ Ω.

Hence, from the nonlinear maximum principle, see Pucci-Serrin [17, pp. 111
and 120], we conclude that u ∈ int

(
C1

0 (Ω)+
)
. �

3. Positive Solutions

We introduce the following two sets

L = {λ > 0 : problem (Pλ) has a positive solution} ,

Sλ = {u : u is a positive solution of problem (Pλ)} .

Proposition 3.1. If hypotheses H hold, then L �= ∅.
Proof. Let u ∈ int

(
C1

0 (Ω)+
)

be as in Proposition 2.4. Hypothesis H(i) implies
that f(·, u(·)) ∈ L∞(Ω). So, we can find λ0 > 0 such that

0 ≤ λ0f (x, u(x)) ≤ 1 for a. a. x ∈ Ω. (3.1)

From the weak comparison principle (see Pucci-Serrin [17, Theorem 3.4.1,
p. 61]), we have u ≤ u. So, for given λ ∈ (0, λ0], we can define the following
truncation of the reaction of problem (Pλ)

gλ(x, s) =

⎧
⎪⎨

⎪⎩

u(x)−η + λf(x, u(x)) if s < u(x),
s−η + λf(x, s) if u(x) ≤ s ≤ u(x),
u(x)−η + λf(x, u(x)) if u(x) < s.

(3.2)

This is a Carathéodory function. We set Gλ(x, s) =
∫ s

0
gλ(x, t) dt and consider

the C1-functional ψλ : W 1,p
0 (Ω) → R defined by

ψλ(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
∫

Ω

Gλ(x, u) dx for all u ∈ W 1,p
0 (Ω),

see also Papageorgiou-Smyrlis [13, Proposition 3]. From (3.2) we see that
ψλ is coercive. Also, using the Sobolev embedding theorem, we see that ψλ

is sequentially weakly lower semicontinuous. So, by the Weierstraß-Tonelli
theorem, we can find uλ ∈ W 1,p

0 (Ω) such that

ψλ(uλ) = min
[
ψλ(u) : u ∈ W 1,p

0 (Ω)
]
.

This means, in particular, that ψ′
λ(uλ) = 0, which gives

〈Ap(uλ), h〉 + 〈Aq(uλ), h〉 =
∫

Ω

gλ(x, uλ)h dx for all h ∈ W 1,p
0 (Ω). (3.3)
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First, we choose h = (u − uλ)+ ∈ W 1,p
0 (Ω) in (3.3). This yields, because of

(3.2), f ≥ 0 and Proposition 2.3 that
〈
Ap(uλ), (u − uλ)+

〉
+

〈
Aq(uλ), (u − uλ)+

〉

=
∫

Ω

[
u−η + λf(x, u)

]
(u − uλ)+ dx

≥
∫

Ω

u−η (u − uλ)+ dx

=
〈
Ap(u), (u − uλ)+

〉
+

〈
Aq(u), (u − uλ)+

〉
.

This implies
∫

{u>uλ}

(|∇u|p−2∇u − |∇uλ|p−2∇uλ

) · (∇u − ∇uλ) dx

+
∫

{u>uλ}

(|∇u|q−2∇u − |∇uλ|q−2∇uλ

) · (∇u − ∇uλ) dx

≤ 0,

which means |{u > uλ}|N = 0 with | · |N being the Lebesgue measure of RN .
Hence,

u ≤ uλ. (3.4)

Next, we choose h = (uλ − u)+ ∈ W 1,p
0 (Ω) in (3.3). Applying (3.2), (3.4),

(3.1) and recall that 0 < λ ≤ λ0, we obtain
〈
Ap(uλ), (uλ − u)+

〉
+

〈
Aq(uλ), (uλ − u)+

〉

=
∫

Ω

[
u−η + λf(x, u)

]
(uλ − u)+ dx

≤
∫

Ω

[
u−η + 1

]
(uλ − u)+ dx

=
〈
Ap(u), (uλ − u)+

〉
+

〈
Aq(u), (uλ − u)+

〉
.

From this we see that
∫

{uλ>u}

(|∇uλ|p−2∇uλ − |∇u|p−2∇u
) · (∇uλ − ∇u) dx

+
∫

{uλ>u}

(|∇uλ|q−2∇uλ − |∇u|q−2∇u
) · (∇uλ − ∇u) dx

≤ 0

and so |{uλ > u}|N = 0. Thus, uλ ≤ u. So, we have proved that

uλ ∈ [u, u]. (3.5)

Then, (3.5), (3.2) and (3.3) imply that uλ ∈ Sλ and so (0, λ0] ⊆ L �= ∅. �

Proposition 3.2. If hypotheses H hold and λ ∈ L, then u ≤ u for all u ∈ Sλ.
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Proof. Let u ∈ Sλ. On Ω × (0,+∞) we introduce the Carathéodory function
k(·, ·) defined by

k(x, s) =

{
s−η if 0 < s ≤ u(x),
u(x)−η if u(x) < s

(3.6)

for all (x, s) ∈ Ω × (0,+∞). Then we consider the following Dirichlet (p, q)-
problem

−Δpu − Δqu = k(x, u) in Ω,

u = 0 on ∂Ω,

u > 0, 1 < q < p.

Proposition 10 of Papageorgiou–Rădulescu–Repovš [12] implies that this prob-
lem admits a solution

ũ ∈ int
(
C1

0 (Ω)+
)
. (3.7)

This means

〈Ap (ũ) , h〉 + 〈Aq (ũ) , h〉 =
∫

Ω

k (x, ũ) h dx for all h ∈ W 1,p
0 (Ω). (3.8)

Choosing h = (ũ − u)+ ∈ W 1,p
0 (Ω) in (3.8) and applying (3.6), f ≥ 0 and

u ∈ Sλ gives
〈
Ap(ũ), (ũ − u)+

〉
+

〈
Aq(ũ), (ũ − u)+

〉

=
∫

Ω

u−η (ũ − u)+ dx

≤
∫

Ω

[
u−η + λf(x, u)

]
(ũ − u)+ dx

=
〈
Ap(u), (ũ − u)+

〉
+

〈
Aq(u), (ũ − u)+

〉
.

This implies
∫

{ũ>u}

(|∇ũ|p−2∇ũ − |∇u|p−2∇u
) · (∇ũ − ∇u) dx

+
∫

{ũ>u}

(|∇ũ|q−2∇ũ − |∇u|q−2∇u
) · (∇ũ − ∇u) dx

≤ 0,

which means |{ũ > u}|N = 0. Thus,

ũ ≤ u. (3.9)

From (3.9), (3.7), (3.6), (3.8) and Proposition 2.3 it follows that ũ = u.
Therefore, u ≤ u for all u ∈ Sλ. �

As before, using Theorem B.1 of Giacomoni-Schindler-Takáč [7], we have
the following result about the solution set Sλ.

Proposition 3.3. If hypotheses H hold and λ ∈ L, then Sλ ⊆ int
(
C1

0 (Ω)+
)
.

Let λ∗ = supL.
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Proposition 3.4. If hypotheses H hold, then λ∗ < ∞.

Proof. Hypotheses H(ii), (iii) imply that we can find M > 0 such that

f(x, s) ≥ sp−1 for a. a. x ∈ Ω and for all s ≥ M.

Moreover, hypothesis H(iv) implies that there exist δ ∈ (0, 1) and η̂1 ∈ (0, η̂)
such that

f(x, s) ≥ η̂1s
τ−1 ≥ η̂1s

p−1

for a. a. x ∈ Ω and for all 0 ≤ s ≤ δ since τ < p and δ < 1. This yields
1
η̂1

f(x, s) ≥ sp−1 for a. a. x ∈ Ω and for all 0 ≤ s ≤ δ.

In addition, on account of hypothesis H(v) we can find λ̃ > 0 large enough
such that

λ̃f(x, s) ≥ Mp−1 for a. a. x ∈ Ω and for all δ ≤ s ≤ M.

Therefore, taking into account the calculations above, there exists λ̂ > 0 large
enough such that

sp−1 ≤ λ̂f(x, s) for a. a. x ∈ Ω and for all s ≥ 0. (3.10)

Let λ > λ̂ and suppose that λ ∈ L. Then we can find uλ ∈ Sλ ⊆ int
(
C1

0 (Ω)+
)
,

see Proposition 3.3. Let Ω′ ⊂⊂ Ω with C2-boundary ∂Ω′. Then m0 =
minΩ′ uλ > 0 since uλ ∈ int

(
C1

0 (Ω)+
)
. Let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be

as postulated by hypothesis H(v). For δ > 0, we set mδ
0 = m0 + δ. Applying

(3.10), hypothesis H(v) and uλ ∈ Sλ, we have for a. a. x ∈ Ω′

− Δpm
δ
0 − Δqm

δ
0 + λξ̂ρ

(
mδ

0

)p−1 − λ
(
mδ

0

)−η

≤ λξ̂ρm
p−1
0 + χ(δ) with χ(δ) → 0+ as δ → 0+

≤
[
λξ̂ρ + 1

]
mp−1

0 + χ(δ)

≤ λ̂f(x,m0) + λξ̂ρm
p−1
0 + χ(δ)

= λ
[
f(x,m0) + ξ̂ρm

p−1
0

]
−

(
λ − λ̂

)
f(x,m0) + χ(δ)

≤ λ
[
f (x, uλ(x)) + ξ̂ρuλ(x)p−1

]
for δ > 0 small enough

= −Δpuλ(x) − Δquλ(x) + λξ̂ρuλ(x)p−1 − λuλ(x)−η.

Note that for δ > 0 small enough, we will have

0 < η̂ ≤
[
λ − λ̂

]
f(x,m0) − χ(δ) for a. a.x ∈ Ω′,

see hypothesis H(v). Then, invoking Proposition 6 of Papageorgiou–
Rădulescu–Repovš [12], it follows that

mδ
0 < uλ(x) for a. a.x ∈ Ω′ and for δ > 0 small enough,

which contradicts the definition of m0. Therefore, λ �∈ L and so we conclude
that λ∗ ≤ λ̂ < ∞. �
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Next, we are going to show that L is an interval. So, we have

(0, λ∗) ⊆ L ⊆ (0, λ∗] .

Proposition 3.5. If hypotheses H hold, λ ∈ L and 0 < μ < λ, then μ ∈ L.
Proof. Since λ ∈ L, we can find uλ ∈ Sλ ⊆ int

(
C1

0 (Ω)+
)
. We know that

u ≤ uλ, see Proposition 3.2. So, we can define the following truncation eμ : Ω×
R → R of the reaction for problem (Pλ)

eμ(x, s) =

⎧
⎪⎨

⎪⎩

u(x)−η + μf(x, u(x)) if s < u(x),
s−η + μf(x, s) if u(x) ≤ s ≤ uλ(x),
uλ(x)−η + μf (x, uλ(x)) if uλ(x) < s,

(3.11)

which is a Carathéodory function. We set Eμ(x, s) =
∫ s

0
eμ(x, t) dt and con-

sider the C1-functional ϕ̂μ : W 1,p
0 (Ω) → R defined by

ϕ̂μ(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
∫

Ω

Eμ(x, u) dx for all u ∈ W 1,p
0 (Ω),

see Papageorgiou-Vetro-Vetro [14]. From (3.11) it is clear that ϕ̂μ is coercive.
Moreover, it is sequentially weakly lower semicontinuous. Therefore, we can
find uμ ∈ W 1,p

0 (Ω) such that

ϕ̂μ (uμ) = min
[
ϕ̂μ(u) : u ∈ W 1,p

0 (Ω)
]
.

In particular, we have ϕ̂′
μ (uμ) = 0 which means

〈Ap (uμ) , h〉+〈Aq (uμ) , h〉=
∫

Ω

eμ(x, u)h dx for all h∈W 1,p
0 (Ω). (3.12)

Choosing h = (u − uμ)+ ∈ W 1,p
0 (Ω) in (3.12) and applying (3.11), f ≥ 0 and

Proposition 2.3 yields
〈
Ap (uμ) , (u − uμ)+

〉
+

〈
Aq (uμ) , (u − uμ)+

〉

=
∫

Ω

[
u−η + μf(x, u)

]
(u − uμ)+ dx

≥
∫

Ω

u−η (u − uμ)+ dx

=
〈
Ap (u) , (u − uμ)+

〉
+

〈
Aq (u) , (u − uμ)+

〉
.

We obtain u ≤ uμ. Furthermore, choosing h = (uμ − uλ)+ ∈ W 1,p
0 (Ω) in

(3.12) and applying (3.11), μ < λ and uλ ∈ Sλ, we get
〈
Ap (uμ) , (uμ − uλ)+

〉
+

〈
Aq (uμ) , (uμ − uλ)+

〉

=
∫

Ω

[
u−η

λ + μf(x, uλ)
]
(uμ − uλ)+ dx

≤
∫

Ω

[
u−η + λf(x, uλ)

]
(uμ − uλ)+ dx

=
〈
Ap (uλ) , (uμ − uλ)+

〉
+

〈
Aq (uλ) , (uμ − uλ)+

〉
.
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Hence, uμ ≤ uλ and so we have proved that

uμ ∈ [u, uλ] . (3.13)

From (3.13), (3.11) and (3.12) we infer that

uμ ∈ Sμ ⊆ int
(
C1

0 (Ω)+
)
.

Thus, μ ∈ L. �

A byproduct of the proof above is the following corollary.

Corollary 3.6. If hypotheses H hold, λ ∈ L, uλ ∈ Sλ ⊆ int
(
C1

0 (Ω)+
)
and

μ ∈ (0, λ), then μ ∈ L and there exists uμ ∈ Sμ ⊆ int
(
C1

0 (Ω)+
)
such that

uμ ≤ uλ.

Using the strong comparison principle of Papageorgiou–Rădulescu–
Repovš [12] we can improve the conclusion of this corollary as follows.

Proposition 3.7. If hypotheses H hold, λ ∈ L, uλ ∈ Sλ ⊆ int
(
C1

0 (Ω)+
)
and

μ ∈ (0, λ), then μ ∈ L and there exists uμ ∈ Sμ ⊆ int
(
C1

0 (Ω)+
)
such that

uλ − uμ ∈ int
(
C1

0 (Ω)+
)
.

Proof. From Corollary 3.6 we already have that μ ∈ L and we also know that
there exists uμ ∈ Sμ ⊆ int

(
C1

0 (Ω)+
)

such that

uμ ≤ uλ. (3.14)

Let ρ = ‖uλ‖∞ and let ξ̂ρ > 0 be as postulated by hypothesis H(v). Applying
uμ ∈ Sμ, (3.14), hypothesis H(v) and μ < λ, we obtain

−Δpuμ(x) − Δquμ(x) + λξ̂ρuμ(x)p−1 − uμ(x)−η

= μf(x, uμ(x)) + λξ̂ρuμ(x)p−1

= λ
[
f(x, uμ(x)) + ξ̂ρuμ(x)p−1

]
− (λ − μ)f(x, uμ(x))

≤ λ
[
f(x, uλ(x)) + ξ̂ρuλ(x)p−1

]

= −Δpuλ(x) − Δquλ(x) + λξ̂ρuλ(x)p−1 − uλ(x)−η (3.15)

for a. a. x ∈ Ω. Since uμ ∈ int
(
C1

0 (Ω)+
)
, because of hypothesis H(v), we

have

0 ≺ (λ − μ)f(·, uμ(·)).
Then, from (3.15) and Proposition 7 of Papageorgiou–Rădulescu–Repovš [12]
we conclude that uλ − uμ ∈ int

(
C1

0 (Ω)+
)
. �

Proposition 3.8. If hypotheses H hold and λ ∈ (0, λ∗), then problem (Pλ) has
at least two positive solutions

u0, û ∈ int
(
C1

0 (Ω)+
)
, u0 ≤ û, u0 �= û.
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Proof. Let λ < ϑ < λ∗. Due to Proposition 3.7, we can find uϑ ∈ Sϑ ⊆
int

(
C1

0 (Ω)+
)

and u0 ∈ Sλ such that

uϑ − u0 ∈ int
(
C1

0 (Ω)+
)
. (3.16)

From Proposition 3.2 we know that u ≤ u0. Therefore, u−η
0 ∈ L1(Ω). So, we

can define the following truncation wλ : Ω×R → R of the reaction in problem
(Pλ)

wλ(x, s) =

{
u0(x)−η + λf(x, u0(x)) if s ≤ u0(x),
s−η + λf(x, s) if u0(x) < s.

(3.17)

Also, using (3.16), we can consider the truncation ŵλ : Ω×R → R of wλ(x, ·)
defined by

ŵλ(x, s) =

{
wλ(x, s) if s ≤ uϑ(x),
wλ(x, uϑ(x)) if uϑ(x) < s.

(3.18)

It is clear that both are Carathéodory function. We set

Wλ(x, s) =
∫ s

0

wλ(x, t) dt and Ŵλ(x, s) =
∫ s

0

ŵλ(x, t) dt

and consider the C1-functionals σλ, σ̂λ : W 1,p
0 (Ω) → R defined by

σλ(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
∫

Ω

Wλ(x, u) dx for all u ∈ W 1,p
0 (Ω),

σ̂λ(u) =
1
p
‖∇u‖p

p +
1
q
‖∇u‖q

q −
∫

Ω

Ŵλ(x, u) dx for all u ∈ W 1,p
0 (Ω).

From (3.17) and (3.18) it is clear that

σλ

∣
∣
[0,uϑ]

= σ̂λ

∣
∣
[0,uϑ]

and σ′
λ

∣
∣
[0,uϑ]

= σ̂′
λ

∣
∣
[0,uϑ]

. (3.19)

Using (3.17), (3.18) and the nonlinear regularity theory of Lieberman [10] we
obtain that

Kσλ
⊆ [u0)∩int

(
C1

0 (Ω)+
)

and Kσ̂λ
⊆ [u0, uϑ]∩int

(
C1

0 (Ω)+
)
. (3.20)

From (3.20) we see that we may assume that

Kσλ
is finite and Kσλ

∩ [u0, uϑ] = {u0}. (3.21)

Otherwise we already have a second positive smooth solution larger that u0

and so we are done.
From (3.18) and since u−η

0 ∈ L1(Ω), it is clear that σ̂λ is coercive and
it is also sequentially weakly lower semicontinuous. Hence, we find its global
minimizer ũ0 ∈ W 1,p

0 (Ω) such that

σ̂λ (ũ0) = min
[
σ̂λ(u) : u ∈ W 1,p

0 (Ω)
]
.

By (3.20) we see that ũ0 ∈ Kσ̂λ
⊆ [u0, uϑ] ∩ int

(
C1

0 (Ω)+
)
. Then, (3.19) and

(3.21) imply ũ0 = u0 ∈ int
(
C1

0 (Ω)+
)
. Finally, from (3.16) we obtain that u0

is a local C1
0 (Ω)-minimizer of σλ and then by Gasiński-Papageorgiou [6] we

have that

u0 is also a local W 1,p
0 (Ω)-minimizer of σλ. (3.22)
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From (3.22), (3.21) and Theorem 5.7.6 of Papageorgiou–Rădulescu–
Repovš [11, p. 449] we know that we can find ρ ∈ (0, 1) small enough such
that

σλ(u0) < inf [σλ(u) : ‖u − u0‖ = ρ] = mλ. (3.23)

Hypothesis H(ii) implies that if u ∈ int
(
C1

0 (Ω)+
)
, then

σλ(tu) → −∞ as t → +∞. (3.24)

Claim: The functional σλ satisfies the C-condition.
Consider a sequence {un}n≥1 ⊆ W 1,p

0 (Ω) such that

|σλ(un)| ≤ c6 for some c6 > 0 and for all n ∈ N, (3.25)

(1 + ‖un‖)σ′
λ(un) → 0 in W−1,p′

(Ω) as n → ∞. (3.26)

From (3.26) we have
∣
∣
∣
∣〈Ap(un), h〉 + 〈Aq(un), h〉 −

∫

Ω

wλ(x, un)h dx

∣
∣
∣
∣ ≤ εn‖h‖

1 + ‖un‖ (3.27)

for all h ∈ W 1,p
0 (Ω) with εn → 0+. We choose h = −u−

n ∈ W 1,p
0 (Ω) in (3.27)

and obtain, by applying (3.17), that

‖u−
n ‖p ≤ c7 for some c7 > 0 and for all n ∈ N.

This shows that
{
u−

n

}
n≥1

⊆ W 1,p
0 (Ω) is bounded. (3.28)

From (3.25) and (3.28) it follows that

‖∇u+
n ‖p

p +
p

q
‖∇u+

n ‖q
q −

∫

Ω

pF
(
x, u+

n

)
dx ≤ c8

[
1 + ‖u+

n ‖τ

]
(3.29)

for some c8 > 0 and for all n ∈ N, see (3.17). Moreover, choosing h = u+
n ∈

W 1,p
0 (Ω) in (3.27), we obtain using (3.17)

− ‖∇u+
n ‖p

p − ‖∇u+
n ‖q

q +
∫

Ω

f
(
x, u+

n

)
u+

n dx ≤ c9 (3.30)

for some c9 > 0 and for all n ∈ N. Adding (3.29) and (3.30) and recall that
q < p, gives

∫

Ω

[
f

(
x, u+

n

)
u+

n − pF
(
x, u+

n

) ]
dx ≤ c10

[
1 + ‖u+

n ‖τ

]
(3.31)

for some c10 > 0 and for all n ∈ N.
Taking hypotheses H(i), (iii) into account, we see that we can find con-

stants c11, c12 > 0 such that

c11s
τ − c12 ≤f(x, s)s − pF (x, s) for a. a.x∈Ω and for all s≥0. (3.32)

Applying (3.32) in (3.31), we infer that

‖u+
n ‖τ−1

τ ≤ c13

for some c13 > 0 and for all n ∈ N. Therefore,
{
u+

n

}
n≥1

⊆ Lτ (Ω) is bounded. (3.33)
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First assume that p �= N . From hypothesis H(iii), we see that we can
always assume that τ < r < p∗. So, we can find t ∈ (0, 1) such that

1
r

=
1 − t

τ
+

t

p∗ . (3.34)

Invoking the interpolation inequality, see Papageorgiou-Winkert [16, Propo-
sition 2.3.17, p. 116], we have

‖u+
n ‖r ≤ ‖u+

n ‖1−r
τ ‖u+

n ‖t
p∗ .

Hence, by (3.33),

‖u+
n ‖r

r ≤ c14‖u+
n ‖tr (3.35)

for some c14 > 0 and for all n ∈ N. We choose h = u+
n ∈ W 1,p

0 (Ω) in (3.27)
to get

‖u+
n ‖p ≤

∫

Ω

wλ

(
x, u+

n

)
u+

n dx.

Then, from (3.17) and hypothesis H(i), it follows that

‖u+
n ‖p ≤

∫

Ω

c15

[
1 +

(
u+

n

)r] dx

for some c15 > 0 and for all n ∈ N. This implies

‖u+
n ‖p ≤ c16

[
1 + ‖u+

n ‖r
r

]

for some c16 > 0 and for all n ∈ N. Finally, from (3.35), we then obtain

‖u+
n ‖p ≤ c17

[
1 + ‖u+

n ‖tr
]

(3.36)

for some c17 > 0 and for all n ∈ N.
If N < p, then p∗ = ∞ and so from (3.34) we have tr = r − τ , which by

hypothesis H(iii) leads to tr < p.
If N > p, then p∗ = Np

N−p . From (3.34) it follows

tr =
(r − τ)p∗

p∗ − τ
,

which implies

tr =
(r − τ)Np

N(p − τ) + τp
< p.

Therefore, from (3.36) we infer that
{
u+

n

}
n≥1

⊆ W 1,p
0 (Ω) is bounded. (3.37)

If N = p, then by the Sobolev embedding theorem, we know that
W 1,p

0 (Ω) ↪→ Ls(Ω) continuously for all 1 ≤ s < ∞. So, for the argument
above to work, we need to replace p∗ by s > r > τ in (3.34) which yields

1
r

=
1 − t

τ
+

t

s
.

Then, by hypothesis H(iii), we obtain

tr =
(r − τ)s
s − τ

→ r − τ < p as s → +∞.
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We choose s > r large enough so that tr < p. Then, we reach again (3.37).
From (3.37) and (3.28) it follows that

{un}n≥1 ⊆ W 1,p
0 (Ω) is bounded.

So, we may assume that

un ⇀ u in W 1,p
0 (Ω) and un → u in Lr(Ω). (3.38)

In (3.27) we choose h = un − u ∈ W 1,p
0 (Ω), pass to the limit as n → ∞

and use (3.38). This gives

lim
n→∞ [〈Ap(un), un − u〉 + 〈Aq(un), un − u〉] = 0.

The monotonicity of Aq implies

lim
n→∞ [〈Ap(un), un − u〉 + 〈Aq(u), un − u〉] ≤ 0

and from (3.38) one has

lim sup
n→∞

〈Ap(un), un − u〉 ≤ 0.

Hence, by Proposition 2.1, it follows

un → u in W 1,p
0 (Ω).

Therefore, σλ satisfies the C-condition and this proves the Claim.
Then, (3.23), (3.24) and the Claim permit the use of the mountain pass

theorem. So, we can find û ∈ W 1,p
0 (Ω) such that

û ∈ Kσλ
⊆ [u0) ∩ int

(
C1

0 (Ω)+
)

and σλ(u0) < mλ ≤ σλ (û) , (3.39)

see (3.20) and (3.23), respectively.
From (3.39), (3.17) and (3.27), we conclude that

û ∈ Sλ ⊆ int
(
C1

0 (Ω)+
)
, u0 ≤ û, u0 �= û.

�

Proposition 3.9. If hypotheses H hold, then λ∗ ∈ L.
Proof. Let 0 < λn < λ∗ with n ∈ N and assume that λn ↗ λ∗. By Proposi-
tion 3.2 we can find un ∈ Sλn

⊆ int
(
C1

0 (Ω)+
)

such that

u ≤ un for all n ∈ N

and

〈Ap(un), h〉 + 〈Aq(un), h〉 =
∫

Ω

[
u−η

n + λnf(x, un)
]
h dx (3.40)

for all h ∈ W 1,p
0 (Ω) and for all n ∈ N. From hypothesis H(iii), we have

ϕλ(un) ≤ c18 (3.41)

for some c18 > 0 and for all n ∈ N, where ϕλ is the energy functional of
problem (Pλ).

From (3.40), (3.41) and reasoning as in the Claim in the proof of Propo-
sition 3.8, we obtain that

un → u∗ in W 1,p
0 (Ω). (3.42)
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So, if in (3.40) we pass to the limit as n → ∞ and use (3.42), then

〈Ap(u∗), h〉 + 〈Aq(u∗), h〉 =
∫

Ω

[
u−η

∗ + λ∗f(x, u∗)
]
h dx

for all h ∈ W 1,p
0 (Ω) and u ≤ u∗. It follows that u∗ ∈ Sλ∗ ⊆ int

(
C1

0 (Ω)+
)

and
so λ∗ ∈ L. �

Therefore, we have

L = (0, λ∗] .

We can state the following bifurcation-type theorem describing the vari-
ations in the set of positive solutions as the parameter λ moves in (0,+∞).

Theorem 3.10. If hypotheses H hold, then there exist λ∗ > 0 such that
(a) for every 0 < λ < λ∗, problem (Pλ) has at least two positive solutions

u0, û ∈ int
(
C1

0 (Ω)+
)
, u0 ≤ û, u0 �= û;

(b) for λ = λ∗, problem (Pλ) has at least one positive solution

u∗ ∈ int
(
C1

0 (Ω)+
)
;

(c) for every λ > λ∗, problem (Pλ) has no positive solutions.

4. Minimal Positive Solutions

In this section we show that for every λ ∈ L = (0, λ∗], problem (Pλ) has a
smallest positive solutions u∗ ∈ int

(
C1

0 (Ω)+
)

and we investigate the mono-
tonicity and continuity properties of the map λ → u∗

λ.

Proposition 4.1. If hypotheses H hold and λ ∈ L, then problem (Pλ) has a
smallest positive solution u∗

λ ∈ Sλ ⊆ int
(
C1

0 (Ω)+
)
, that is, u∗

λ ≤ u for all
u ∈ Sλ.

Proof. From Proposition 18 of Papageorgiou–Rădulescu–Repovš [12] we know
that the set Sλ ⊆ W 1,p

0 (Ω) is downward directed. So, invoking Lemma 3.10 of
Hu-Papageorgiou [8, p. 178], we can find a decreasing sequence {un}n≥1 ⊆ Sλ

such that

u ≤ un ≤ u1 for all n ∈ N, inf
n≥1

un = inf Sλ, (4.1)

see Proposition 3.2. From (4.1) we see that {un}n≥1 ⊆ W 1,p
0 (Ω) is bounded.

From this, as in the proof of Proposition 3.8, using Proposition 2.1, we obtain

un → u∗
λ in W 1,p

0 (Ω), u ≤ u∗
λ.

From (4.1) it follows

u∗
λ ∈ Sλ ⊆ int

(
C1

0 (Ω)+
)

and u∗
λ = inf Sλ.

�

In the next proposition we examine the monotonicity and continuity
properties of the map λ → u∗

λ from L = (0, λ∗] into C1
0 (Ω).
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Proposition 4.2. If hypotheses H hold, then the minimal solution map λ → u∗
λ

from L = (0, λ∗] into C1
0 (Ω) is

(a) strictly increasing in the sense that

0 < μ < λ ≤ λ∗ implies u∗
λ − u∗

μ ∈ int
(
C1

0 (Ω)+
)
;

(b) left continuous.

Proof. (a) Let 0 < μ < λ ≤ λ∗. According to Proposition 3.2 we can find
uμ ∈ Sμ ⊆ int

(
C1

0 (Ω)+
)

such that u∗
λ − uμ ∈ int

(
C1

0 (Ω)+
)
. Since u∗

λ ≤ uμ

we obtain the desired conclusion.
(b) Suppose that λn → λ− ≤ λ∗. Then {u∗

n}n≥1 := {u∗
λn

}n≥1 ⊆
int

(
C1

0 (Ω)+
)

is increasing and

u ≤ u∗
n ≤ u∗

λ∗ for all n ∈ N. (4.2)

From (4.2) and the nonlinear regularity theory of Lieberman [10] we have
that {u∗

n}n≥1 ⊆ C1
0 (Ω) is relatively compact and so

u∗
n → ũ∗

λ in C1
0 (Ω). (4.3)

If ũ∗
λ �= u∗

λ, then we can find z0 ∈ Ω such that

u∗
λ(z0) < ũ∗

λ(z0).

From (4.3) we then derive

u∗
λ(z0) < u∗

n(z0) for all n ≥ n0,

which contradicts (a). So, ũ∗
λ = u∗

λ and we conclude the left continuity of
λ → u∗

λ. �

Summarizing our findings in this section, we can state the following
theorem.

Theorem 4.3. If hypotheses H hold and λ ∈ L = (0, λ∗], then problem (Pλ)
admits a smallest positive solution u∗

λ ∈ Sλ ⊆ int
(
C1

0 (Ω)+
)
and the map

λ → u∗
λ from L = (0, λ∗] into C1

0 (Ω) is
(a) strictly increasing;
(b) left continuous.

Acknowledgements

The authors wish to thank a knowledgeable referee for her/his corrections
and remarks.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access. This article is licensed under a Creative Commons Attribution 4.0
International License, which permits use, sharing, adaptation, distribution and re-
production in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party ma-
terial in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in



MJOM Singular Dirichlet (p, q)-Equations Page 19 of 20   141 

the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/.

Publisher’s Note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

References
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