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1. Introduction

Let � � RN be a bounded domain with a C 2-boundary @�. In this paper, we study
the anisotropic Robin problem

(1.1)
��p.�/uC �.x/juj

p.x/�2u D f .x; u/ in �;

jrujp.x/�2ru � � C ˇ.x/jujp.x/�2u D 0 on @�;

where �.x/ denotes the outer unit normal at x 2 @�, ˇ 2 C 0;˛.@�/ with ˛ 2 .0; 1/,
ˇ � 0, and for p 2 C 0;1.x�/ with 1 < minx2x� p.x/ we denote by �p.�/ the p.x/-
Laplacian which is given by

�p.�/u D div
�
jrujp.x/�2ru

�
for all u 2 W 1;p.�/.�/:

In the left-hand side of (1.1) there is also a potential term �.x/jujp.x/�2u with � 2
L1.�/ and � � 0. In the right-hand side of (1.1) there is a Carathéodory function
f W� � R! R, that is, x ! f .x; s/ is measurable for all s 2 R and s ! f .x; s/

is continuous for a.a. x 2 �. We suppose that f .x; �/ is .pC � 1/-superlinear as
s !˙1 but without assuming the usual Ambrosetti–Rabinowitz condition, where
pC D maxx2x� p.x/. Near zero f .x; �/ exhibits an oscillatory behavior.
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Using variational tools from the critical point theory along with appropriate trun-
cation and comparison techniques, we prove the existence of at least five nontrivial
smooth solutions, all with sign information and ordered.
Elliptic equations driven by the anisotropic Dirichlet p-Laplacian have been studied

extensively in the last decade. The books of Diening–Harjulehto–Hästö–Růžička [6]
and Rădulescu–Repovš [19] contain a rich bibliography on the subject. In contrast, the
study of anisotropic Robin problems is lagging behind. Deng [2] studied the Robin
problem

(1.2)
��p.�/u D �f .x; u/ in �;

jrujp.x/�2ru � � C ˇ.x/jujp.x/�2u D 0 on @�;

and proved the existence of two positive solutions of problem (1.2) when p 2 C 1.x�/
and under the Ambrosetti–Rabinowitz condition. A similar problem under the same
assumptions as in [2] was treated by Fan–Deng [10], namely

(1.3)
��p.�/uC �juj

p.x/�2u D f .x; u/ in �;

jrujp.x/�2ru � � D ' on @�:

Only positive solutions for (1.3) is shown but no sign-changing solution is obtained. In
2010, Deng–Wang [3] considered existence and nonexistence of a nonhomogeneous
Neumann problem given by

(1.4)
��p.�/uC �juj

p.x/�2u D f .x; u/ in �;

jrujp.x/�2ru � � D g.x; u/ on @�:

It is proved that there exists a parameter �� > 0 such that problem (1.4) has at least two
positive solutions for all � > ��. We also mention the works of Gasiński–Papageorgiou
[11], Papageorgiou–Rădulescu–Tang [18], and Wang–Fan–Ge [21]. Except for [11],
the above-mentioned works consider parametric equations and focus on the existence
and multiplicity of positive solutions. Gasiński–Papageorgiou [11] considered the
Neumann problem

��p.�/u D f .x; u/ in �;

jrujp.x/�2ru � � D 0 on @�:

and proved the existence of three nontrivial smooth solutions but they did not produce
nodal solutions. The novelties in our work in contrast to the above-mentioned papers
can be summarized in the following.
• We only need p to be Lipschitz continuous.



a multiplicity theorem for anisotropic robin equations 3

• We do not need to assume the Ambrosetti–Rabinowitz condition. We can weaken
the assumptions; see hypotheses (H1)(ii), (iii) in Section 2 and Remark 2.4.

• We obtain not only constant sign solutions, but also a sign-changing solution.
• All the solutions we obtain are ordered with concrete sign information.

Finally, we mention the works of Deng [1] and Deng–Wang–Cheng [4] concerning
the Steklov and Robin eigenvalue problems of the anisotropic p-Laplacian, respec-
tively.
The paper is organized as follows. In Section 2, we recall the basic properties

of the variable exponent Sobolev spaces and the anisotropic p-Laplacian, mention
some tools/definitions we need later (Cerami-condition, critical groups), and state the
main hypotheses on the data of our problem. Section 3 deals with the existence of
constant sign solutions. The first pair of positive and negative solutions is obtained in
Proposition 3.1 by using the direct method of calculus of variations and the existence of
the second pair of positive and negative solutions, stated in Proposition 3.2, is proved
via the mountain pass theorem. The rest of the section is devoted to the existence of
extremal constant sign solutions, see Proposition 3.5, which are needed later in order
to find a sign-changing solution. Finally, Section 4 is concerned with the existence of a
nodal solution to problem (1.1) which lies between the extremal constant sign solutions.
This result is stated in Proposition 4.1 and the proof relies on the combination of the
mountain pass theorem and critical groups. The full multiplicity result is given at the
end in Theorem 4.2.

2. Preliminaries and Hypotheses

The study of problem (1.1) uses function spaces with variable exponents. A compre-
hensive introduction on the subject can be found in the book of Diening–Harjulehto–
Hästö–Růžička [6].
In what follows we denote byM.�/ the vector space of functions uW�! R which

are measurable. As usual, we identify two such functions when they differ only on a
Lebesgue-null set. Given r 2 C.x�/ we define

r� D min
x2x�

r.x/ and rC D max
x2x�

r.x/

and introduce the set
E1 D

®
r 2 C.x�/ W 1 < r�

¯
:

Then, for r 2 E1, we introduce the variable exponent Lebesgue space Lr.�/.�/ defined
by

Lr.�/.�/ D
°
u 2M.�/ W

Z
�

jujr.x/ dx <1
±
:
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We equip this space with the Luxemburg norm defined by

kukr.�/ D inf
²
� > 0 W

Z
�

�
juj

�

�r.x/
dx � 1

³
:

Then Lr.�/.�/ is a separable, reflexive Banach space.
Moreover, we denote by r 0.x/ D r.x/

r.x/�1
the conjugate variable exponent to r 2 E1,

that is,
1

r.x/
C

1

r 0.x/
D 1 for all x 2 x�:

It is clear that r 0 2E1. We know thatLr.�/.�/�DLr
0.�/.�/ and the version of Hölder’s

inequality Z
�

juvj dx �
h 1
r�
C

1

r 0�

i
kukr.�/kvkr 0.�/

holds for all u 2 Lr.�/.�/ and for all v 2 Lr 0.�/.�/.
On the boundary @� we consider the .N � 1/-dimensional Hausdorff (surface)

measure � . Using this measure we can define the boundary variable exponent Lebesgue
spaces Lr.�/.@�/ for r 2 E1.
The corresponding variable exponent Sobolev spaces can be defined in a natural

way using the variable exponent Lebesgue spaces. So, given r 2 E1, we define

W 1;r.�/.�/ D
®
u 2 Lr.�/.�/ W jruj 2 Lr.�/.�/

¯
with ru being the gradient of uW�! R. This space is equipped with the norm

kuk1;r.�/ D kukr.�/ C krukr.�/ for all u 2 W 1;r.�/.�/

with krukr.�/ D kjruj kr.�/. The spaceW 1;r.�/.�/ is a separable and reflexive Banach
space.
For r 2 E1 we introduce the critical Sobolev variable exponents r� and r� defined

by

r�.x/ D

´
Nr.x/
N�r.x/

if r.x/ < N;
`1.x/ if N � r.x/;

for all x 2 x�;

r�.x/ D

´
.N�1/r.x/
N�r.x/

if r.x/ < N;
`2.x/ if N � r.x/;

for all x 2 @�;

where `1 2 C.x�/ and `2 2 C.@�/ are arbitrarily chosen such that r.x/ < `1.x/ for
all x 2 x� and r.x/ < `2.x/ for all x 2 @�.
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Suppose that r 2 C 0;1.x�/ \ E1 and q 2 C.x�/ with 1 � q�. Then we have the
anisotropic Sobolev embeddings

W 1;r.�/.�/ ,! Lq.�/.�/ continuously if q.x/ � r�.x/ for all x 2 x�;

W 1;r.�/.�/ ,! Lq.�/.�/ compactly if q.x/ < r�.x/ for all x 2 x�:

Similarly, if r 2 C 0;1.x�/ \ E1 and q 2 C.@�/ with 1 � q�, then we have the
anisotropic trace embeddings

W 1;r.�/.�/ ,! Lq.�/.@�/ continuously if q.x/ � r�.x/ for all x 2 x�;

W 1;r.�/.�/ ,! Lq.�/.@�/ compactly if q.x/ < r�.x/ for all x 2 x�:

We refer to Diening–Harjulehto–Hästö–Růžička [6] and Fan [9].
In the study of these variable exponent spaces, the following modular function is

useful:
%r.�/.u/ D

Z
�

jujr.x/ dx for all u 2 Lr.�/.�/:

For u 2 W 1;r.�/.�/ we write %r.�/.ru/ D %r.�/.jruj/.
The following proposition illustrates the relation between this modular and the

Luxemburg norm.

Proposition 2.1. Let r 2 E1, let u 2 Lr.�/.�/, and let ¹unºn2N � L
r.�/.�/. The

following assertions hold:

(i) kukr.�/ D � ” %r.�/.
u
�
/ D 1;

(ii) kukr.�/ < 1 .resp. D 1; > 1/ ” %r.�/.u/ < 1 .resp. D 1; > 1/;

(iii) kukr.�/ � 1 H) kuk
rC
r.�/
� %r.�/.u/ � kuk

r�
r.�/

;
kukr.�/ � 1 H) kuk

r�
r.�/
� %r.�/.u/ � kuk

rC
r.�/

;

(iv) kunkr.�/ ! 0 ” %r.�/.un/! 0;

(v) kunkr.�/ !1 ” %r.�/.un/!1.

Let Ar.�/WW 1;r.�/.�/! W 1;r.�/.�/� be the nonlinear operator defined by˝
Ar.�/.u/; h

˛
D

Z
�

jrujr.x/�2ru � rh dx for all u; h 2 W 1;r.�/.�/:

This operator has the following properties; see, for example Gasiński–Papageorgiou
[11] and Rădulescu–Repovš [19, p. 40].



n. s. papageorgiou and p. winkert 6

Proposition 2.2. The operator Ar.�/WW 1;r.�/.�/! W 1;r.�/.�/� is bounded (so it
maps bounded sets to bounded sets), continuous, strictly monotone (which implies that
it is also maximal monotone) and of type .SC/; that is,

un
w
! u in W 1;r.�/.�/ and lim sup

n!1

˝
Ar.�/.un/; un � u

˛
� 0

imply that un ! u in W 1;r.�/.�/.

In the anisotropic regularity theory we need the Banach space C 1.x�/. This is an
ordered Banach space with positive order cone

C 1.x�/C D
®
u 2 C 1.x�/ W u.x/ � 0 for all x 2 x�

¯
:

This cone has a nonempty interior given by

int
�
C 1.x�/C

�
D
®
u 2 C 1.x�/C W u.x/ > 0 for all x 2 x�

¯
:

We will also use another open cone in C 1.x�/ defined by

DC D

²
u 2 C 1.x�/ W u.x/ > 0 for all x 2 � and

@u

@�

ˇ̌̌
@�\u�1.0/

< 0

³
;

where @u
@�
D ru � �.

Given u2W 1;r.�/.�/, we set u˙Dmax¹˙u;0º to be the positive and negative part
of u, respectively. We know that uD uC � u�, juj D uCC u�, and u˙ 2W 1;r.�/.�/.
If u; vW�! R are measurable functions and u.x/ � v.x/ for a.a. x 2 �, then we
introduce the following order interval in W 1;r.�/.�/:

Œu; v� D
®
h 2 W 1;r.�/.�/ W u.x/ � h.x/ � v.x/ for a.a. x 2 �

¯
:

Moreover, we denote by intC1.x�/Œu; v� the interior of Œu; v� \ C
1.x�/ in C 1.x�/.

Furthermore, we define

Œu/ D
®
h 2 W 1;r.�/.�/ W u.x/ � h.x/ for a.a. x 2 �

¯
:

Suppose that X is a Banach space and ' 2 C 1.X/. We introduce the sets

K' D
®
u 2 X W '0.u/ D 0

¯
;

'c D
®
u 2 X W '.u/ � c

¯
with c 2 R:

We say that ' satisfies the “Cerami condition,” C-condition for short, if every
sequence ¹unºn2N � X such that ¹'.un/ºn2N � R is bounded and�

1C kunkX
�
'0.un/! 0 in X� as n!1;

admits a strongly convergent subsequence.
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If Y2 � Y1 � X , then we denote by Hk.Y1; Y2/, with k 2 N0, the k-th relative
singular homology group with integer coefficients. If u 2 K' is isolated, then the
k-th critical group of ' at u is defined by

Ck.'; u/ D Hk
�
'c \ U; .'c \ U/ n ¹uº

�
for all k 2 N0

with c D '.u/ and a neighborhood U of u such that 'c \ K' \ U D ¹uº. The
excision property of singular homology implies that this definition of critical groups is
independent of the isolating neighborhood U .
Now we introduce our hypotheses on the exponent p.�/, the potential �.�/, and the

boundary coefficient ˇ.�/.

(H0) p 2 C 0;1.x�/, 1 < p�.x/ D minx2x� p.x/ < N , � 2 L1.�/, ˇ 2 C 0;˛.@�/
with ˛ 2 .0; 1/, �.x/ � 0 for a.a. x 2 �, ˇ.x/ � 0 for all x 2 @� and � 6� 0 or
ˇ 6� 0.

Note that the case ˇ D 0 is also included and corresponds to the Neumann problem.
We introduce the C 1-functional 
p.�/WW 1;p.�/.�/! R defined by


p.�/.u/ D

Z
�

1

p.x/
jrujp.x/ dx C

Z
�

�.x/

p.x/
jujp.x/ dx C

Z
@�

ˇ.x/

p.x/
jujp.x/ d�

for all u 2 W 1;p.�/.�/. We have˝

 0p.�/.u/; h

˛
D
˝
Ap.�/.u/; h

˛
C

Z
�

�.x/jujp.x/�2uh dx C
Z
@�

ˇ.x/jujp.x/�2uh d�

for all u; h 2 W 1;p.�/.�/. Moreover, let %0WW 1;p.�/.�/! R be the modular function
defined by

%0.u/ D %p.�/.ru/C

Z
�

�.x/jujp.x/ dx C
Z
@�

ˇ.x/jujp.x/ d�

for all u 2 W 1;p.�/.�/.
In the sequel, we denote by k � k the norm of the Sobolev spaceW 1;p.�/.�/ defined

by
kuk D kukp.�/ C krukp.�/ for u 2 W 1;p.�/.�/:

The following estimates for 
p.�/.�/ will be useful in what follows. The result can
be found in the recent work of Papageorgiou–Rădulescu–Tang [18].

Proposition 2.3. If hypothesis (H0) holds, then there exist Oc0; Oc > 0 such that

OckukpC �
1

pC
%0.u/ � 
p.�/.u/ �

1

p�
%0.u/ � Oc0kuk

p� if kuk � 1;

Ockukp� �
1

pC
%0.u/ � 
p.�/.u/ �

1

p�
%0.u/ � Oc0kuk

pC if kuk � 1:
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Now we are ready to state our hypotheses on the nonlinearity f W� �R! R.

(H1) f W� �R! R is a Carathéodory function such that f .x; 0/ D 0 for a.a. x 2 �
and

(i) there exists a 2 L1.�/ such thatˇ̌
f .x; s/

ˇ̌
� a.x/

�
1C jsjr.x/�1

�
for a.a. x 2�, for all s 2Rwith r 2L1.�/ such that pC < r.x/ < p�.x/
for a.a. x 2 �;

(ii) if F.x; s/ D
R s
0
f .x; t/ dt , then

lim
s!˙1

F.x; s/

jsjpC
D C1 uniformly for a.a. x 2 �I

(iii) there exists a function q 2 C.x�/ such that

q.x/ 2
�
.rC � p�/

N

p�
; p�.x/

�
for all x 2 x�;

0 < � � lim inf
s!C1

f .x; s/s � pCF.x; s/

jsjq.x/

uniformly for a.a. x 2 �;

(iv) there exist �� < 0 < �C, � 2 C.x�/, and ı > 0 such that

f .x; �C/ � �c0 < 0 < c1 � f .x; ��/

for a.a. x 2 �, for some positive constants c0; c1, �C < p� and

f .x; s/s � c2jsj
�.x/

for a.a. x 2 �, for all s 2 R, and for some c2 > 0;

(v) there exists y� > 0 such that

s ! f .x; s/C y�jsjp.x/�2s

is nondecreasing on Œ��; �C� for a.a. x 2 �.

Remark 2.4. Hypotheses (H1)(ii), (iii) imply that f .x; �/ is .pC � 1/-superlinear for
a.a. x 2 �. However, we do not use the Ambrosetti–Rabinowitz condition as it was
done in most previous works on the subject; see Deng [2], Deng–Wang [3], and Fan–
Deng [10], for example. Hypothesis (H1)(iv) dictates an oscillatory behavior near zero.
In contrast, in [2,3,10] the reaction f .x; �/ is required to be positive. Moreover, in [10],
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f .x; �/ is nondecreasing. So we see that our hypotheses provide a broader framework
for the analysis of problem (1.1). The following function satisfies hypothesis (H1), but
fails to fulfill the Ambrosetti–Rabinowitz condition:

f .x; s/ D

8<: jsj�.x/�2s � 2jsj�.x/�2s if jsj � 1;

jsjpC�2s ln.jsj/ � jsjq.x/�2s if 1 < jsj;

with � 2 E1, �;q 2 L1.�/ and q.x/ � pC for a.a. x 2�. Note that f fails to satisfy
the requirements in [2, 3, 10].

3. Constant sign solutions

We start by producing two localized constant sign solutions. To do this, we do not need
the complete set of hypothesis (H1). More precisely, we do not need the asymptotic
conditions (H1)(ii), (iii) as s !˙1.

Proposition 3.1. If hypotheses (H0), (H1)(i), (iv), (v) hold, then problem (1.1) has
two constant sign solutions

u0 2 int
�
C 1.x�/C

�
and v0 2 � int

�
C 1.x�/C

�
such that

�� < v0.x/ < 0 < u0.x/ < �C for all x 2 x�:

Proof. First we show the existence of the positive solution. To this end, we introduce
the Carathéodory function OfCW� �R! R defined by

(3.1) OfC.x; s/ D

8<:f .x; sC/ if s � �C;

f .x; �C/ if �C < s:

We set yFC.x; s/ D
R s
0
OfC.x; t/ dt and consider the C 1-functional y CWW 1;p.�/.�/!

R defined by

y C.u/ D 
p.�/.u/ �

Z
�

yFC.x; u/ dx for all u 2 W 1;p.�/.�/:

From the truncation in (3.1) and Proposition 2.3 it is clear that y CWW 1;p.�/.�/!R

is coercive. Moreover, the anisotropic Sobolev embedding theorem and the compact-
ness of the anisotropic trace map imply that y CWW 1;p.�/.�/! R is also sequentially
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weakly lower semicontinuous. So, by the Weierstraß–Tonelli theorem we can find
u0 2 W

1;p.�/.�/ such that

(3.2) y C.u0/ D min
�
y C.u/ W u 2 W

1;p.�/.�/
�
:

Let u 2 int.C 1.x�/C/ and choose t 2 .0; 1/ small enough such that

0 < tu.x/ � min¹�C; ıº for all x 2 x�;

see hypothesis (H1)(iv). Applying hypothesis (H1)(iv) and recalling that t 2 .0; 1/, we
have

y C.tu/ �
tp�

p�
%0.u/ �

t �C

�C
c0%�.�/.u/:

Since �C < p�, we can choose t 2 .0; 1/ sufficiently small such that y C.tu/ < 0.
Hence, since u0 is the global minimizer of y C, see (3.2), we know that

y C.u0/ < 0 D y C.0/:

Thus, u0 ¤ 0.
From (3.2) we have . y C/0.u0/ D 0 which is equivalent to

(3.3)
˝

 0p.�/.u0/; h

˛
D

Z
�

OfC.x; u0/h dx for all h 2 W 1;p.�/.�/:

Choosing h D �u�0 2 W
1;p.�/.�/ in (3.3) and using (3.1) gives

%0.u
�
0 / D 0:

Hence, from Proposition 2.3, we get u0 � 0 with u0 ¤ 0.
Next, we choose h D .u0 � �C/C 2 W 1;p.�/.�/ in (3.3). Applying the definition

of the truncation in (3.1) and hypothesis (H1)(iv), we obtain˝

 0p.�/.u0/; .u0 � �C/

C
˛
D

Z
�

f .x; �C/.u0 � �C/
C dx

� 0 D
˝

 0p.�/.�C/; .u0 � �C/

C
˛
:

So, u0 � �C; see hypothesis (H0).
We have proved that

(3.4) u0 2 Œ0; �C�; u0 ¤ 0:

Then (3.4), (3.1), and (3.3) imply that u0 is a positive solution of problem (1.1).
From the anisotropic regularity theory, see Fan [7, Theorem 1.3], we have u0 2
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C 1.x�/C n ¹0º. Finally, the anisotropic maximum principle of Zhang [23, Theorem 1.2]
implies that u0 2 int.C 1.x�/C/.
Let y� > 0 be as given in hypothesis (H1)(v). Then by using (3.4) and hypothesis

(H1)(v) one gets

��p.�/u0 C
�
�.x/C y�

�
u
p.x/�1
0 D f .x; u0/C y�u

p.x/�1
0

� f .x; �C/C y��
p.x/�1
C

� �c0 C y��
p.x/�1
C

� ��p.�/�C C
�
�.x/C y�

�
�
p.x/�1
C in �:

From Proposition 2.5 of Papageorgiou–Rădulescu–Repovš [17] we then conclude that
�C � u0 2 DC.
Similarly, using the Carathéodory function Of�W� �R! R defined by

Of�.x; s/ D

8<:f .x; ��/ if s < ��;

f .x; s/ if �� � s

and reasoning as above, we produce a negative solution

v0 2 � int
�
C 1.x�/C

�
and v0 � �� 2 DC:

From Proposition 3.1 it follows that

(3.5) u0 2 intC1.x�/Œ0; �C� and v0 2 intC1.x�/Œ��; 0�:

Now, using these localized constant sign solutions, we are going to show the
existence of two more such solutions, one is larger than u0 and the other one is smaller
than v0. So, we will have four smooth constant sign solutions which are ordered. For
this we will use the asymptotic conditions (H1)(ii), (iii) as s !˙1.

Proposition 3.2. If hypotheses (H0), (H1) hold, then problem (1.1) has two more
constant sign solutions

Ou 2 int
�
C 1.x�/C

�
and Ov 2 � int

�
C 1.x�/C

�
such that

Ou ¤ u0; u0 � Ou and Ov ¤ v0; Ov � v0:

Proof. We start with the existence of a second positive solution. To this end, we
introduce the Carathéodory function gCW� �R! R defined by

(3.6) gC.x; s/ D

8<:f
�
x; u0.x/

�
if s � u0.x/;

f .x; s/ if u0.x/ < s:



n. s. papageorgiou and p. winkert 12

Moreover, we will use the truncation of gC.x; �/ at �C and recall that u0.x/ < �C for
all x 2 �. So we introduce the Carathéodory function OgCW� �R! R defined by

(3.7) OgC.x; s/ D

8<:g.x; s/ if s � �C;

g.x; �C/ if �C < s:

We set GC.x; s/ D
R s
0
gC.x; t/ dt , yGC.x; s/ D

R s
0
OgC.x; t/ dt and consider the C 1-

functionals �C; y�CWW 1;p.�/.�/! R defined by

�C.u/ D 
p.�/.u/ �

Z
�

GC.x; u/ dx for all u 2 W 1;p.�/.�/;

y�C.u/ D 
p.�/.u/ �

Z
�

yGC.x; u/ dx for all u 2 W 1;p.�/.�/:

Using (3.6), (3.7) and the anisotropic regularity theory, see Winkert–Zacher [22]
(see also Ho–Kim–Winkert–Zhang [12]) and Fan [7], we have

(3.8) K�C � Œu0/ \ int
�
C 1.x�/C

�
and Ky�C � Œu0; �C� \ int

�
C 1.x�/C

�
:

Moreover, it is clear that from (3.6) and (3.7) we know that

(3.9) �CjŒ0;�C� D y�CjŒ0;�C�:

From (3.8) we see that we can always assume that

(3.10) Ky�C D ¹u0º:

Otherwise, we would infer from (3.8) and (3.7) that we already have a second positive
smooth solution of (1.1) larger than u0 and so we are done.
From (3.7) and Proposition 2.3 it is clear that y�CWW 1;p.�/.�/! R is coercive.

Also it is sequentially weakly lower semicontinuous. Hence, its global minimizer
exists; that is, we find Qu0 2 W 1;p.�/.�/ such that

y�C. Qu0/ D min
�
y�C.u/ W u 2 W

1;p.�/.�/
�
:

Because of (3.10) we conclude that Qu0 D u0.
From (3.9) and (3.5) it follows that u0 is a local C 1.x�/-minimizer of �C. Then we

know that

(3.11) u0 is a local W 1;p.�/.�/-minimizer of �CI

see Fan [8] and Gasiński–Papageorgiou [11].
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Note that from (3.8) and (3.6) we see that we may assume that

(3.12) K�C is finite:

Otherwise we already have an infinity of positive smooth solutions of (1.1) all larger
than u0 and so we are done.
From (3.11), (3.12), and Theorem 5.7.6 of Papageorgiou–Rădulescu–Repovš [16,

p. 449] we can find � 2 .0; 1/ small enough such that

(3.13) �C.u0/ < inf
�
�C.u/ W ku � u0k D �

�
D mC:

On account of hypothesis (H1)(ii), if u 2 int.C 1.x�/C/, we have

(3.14) �C.tu/! �1 as t !C1:

Moreover, hypotheses (H1)(ii), (iii) and Proposition 4.1 of Gasiński–Papageorgiou
[11] imply that

(3.15) �C satisfies the C -condition:

From (3.13), (3.14), and (3.15) we see that we can use the mountain pass theorem
and find Ou 2 W 1;p.�/.�/ such that

(3.16) Ou 2 K�C � Œu0/ \ int
�
C 1.x�/C

�
and �C.u0/ < mC � �C. Ou/;

see (3.8) and (3.13). From (3.16) and (3.6) it follows that Ou 2 int.C 1.x�/C/ is the
second positive smooth solution of problem (1.1) with u0 � Ou and Ou ¤ u0.
In a similar way, starting with the Carathéodory function

g�.x; s/ D

8<:f .x; s/ if s < v0.x/;

f
�
x; v0.x/

�
if v0.x/ � s

and continuing as above, we can produce a second negative smooth solution Ov 2
� int.C 1.x�/C/ with Ov � v0 and Ov ¤ v0.

In fact, we will show that problem (1.1) admits extremal constant sign solutions;
that is, there is a smallest positive solution u� 2 int.C 1.x�/C/ and a greatest negative
solution v� 2 � int.C 1.x�/C/. In Section 4, we will use these extremal constant sign
solutions in order to prove the existence of a sign-changing solution, also called nodal
solution.
Hypotheses (H1)(i), (iv) imply that

(3.17) f .x; s/s � c2jsj
�.x/�1

� c3jsj
r.x/�1
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for a.a. x 2 �, for all s 2 R, and for some c3 > 0. This unilateral growth condition on
f .x; �/ leads to the auxiliary Robin problem
(3.18)

��p.�/uC �.x/juj
p.x/�2u D c2juj

�.x/�2u � c3juj
r.x/�2u in �;

jrujp.x/�2ru � � C ˇ.x/jujp.x/�2u D 0 on @�:

For this problem we have the following existence and uniqueness result.

Proposition 3.3. If hypothesis (H0) holds, then problem (3.18) admits a unique
positive solution Nu 2 int.C 1.x�/C/ and since problem (3.18) is odd, Nv D �Nu 2
� int.C 1.x�/C/ is the unique negative solution of (3.18).

Proof. First we show the existence of a positive smooth solution for problem (3.18).
To this end, we introduce the C 1-functional #CWW 1;p.�/.�/! R defined by

#C.u/ D 
p.�/.u/C

Z
�

c3

r.x/
.uC/r.x/ dx �

Z
�

c2

�.x/
.uC/�.x/ dx

for all u 2 W 1;p.�/.�/.
Using Proposition 2.3 we have for all kuk � 1

#C.u/ � Ockuk
p� �

c2

��
%�.�/.u/ � Ockuk

p� � c4kuk
�C

for some c4 > 0; see also Proposition 2.1 and recall that W 1;p.�/.�/ ,! L�.�/.�/.
Since �C < p�, see hypothesis (H1)(iv), we infer that #CWW 1;p.�/.�/! R is

coercive. Since it is also sequentially weakly lover semicontinuous, we can find Qu 2
W 1;p.�/.�/ such that

(3.19) #C. Qu/ D min
�
#C.u/ W u 2 W

1;p.�/.�/
�
:

Since �C < p� � p.x/ < r.x/ for all x 2 x�, if u 2 int.C 1.x�/C/ and t 2 .0; 1/
is sufficiently small, we have #C.tu/ < 0. Then, due to (3.19), it holds that #C. Qu/ <
0 D #C.0/ and so, Qu ¤ 0.
From (3.19) we know that # 0C. Qu/ D 0 and so

(3.20)
˝

 0p.�/. Qu/; h

˛
D

Z
�

c2. Qu
C/�.x/�1h dx �

Z
�

c3. Qu
C/r.x/�1h dx

for all h 2W 1;p.�/.�/. Choosing hD�Qu� 2W 1;p.�/.�/ in (3.20), we get %0. Qu�/D 0
and so, Qu � 0 with Qu ¤ 0; see Proposition 2.3.
Therefore, Qu is a positive solution of (3.18) and as before, using the anisotropic

regularity theory, see Winkert–Zacher [22] and Fan [7], and the anisotropic maximum
principle, see Zhang [23], we infer that Qu 2 int.C 1.x�/C/.



a multiplicity theorem for anisotropic robin equations 15

Next we show that this positive solution of (3.18) is unique. For this purpose, we
introduce the integral functional jCWL1.�/! xR D R [ ¹C1º defined by

jC.u/ D

8<: 
p.�/.ru
1
p� / if u � 0; u

1
p� 2 W 1;p.�/.�/;

C1 otherwise:

From Theorem 2.2 of Takáč–Giacomoni [20], see also Díaz–Saá [5] for the isotropic
case, we have that jCWL1.�/! R [ ¹C1º is convex.
Suppose that Qy2W 1;p.�/.�/ is another positive solution of problem (3.18). As be-

fore, we have Qy 2 int.C 1.x�/C/. Using Proposition 4.1.22 of Papageorgiou–Rădulescu–
Repovš [16, p. 274], we see that

(3.21)
Qu

Qy
2 L1.�/ and

Qy

Qu
2 L1.�/:

Let hD Qup� � Qyp� 2W 1;p.�/.�/. Then, from (3.21) and if jt j< 1 is small enough,
we conclude that

Qup� C th 2 dom jC and Qyp� C th 2 dom jC:

Hence, on account of the convexity of jC, we infer that jC is Gateaux differentiable
at Qup� and at Qyp� in the direction h. Using Green’s identity, see Takáč–Giacomoni
[20, Remark 2.6], and the chain rule, we obtain

j 0C. Qu
p�/.h/ D

1

p�

Z
�

��p.�/ QuC �.x/ Qu
p.x/�1

Qup��1
h dx

D
1

p�

Z
�

Œ
c2

Qup���.x/
� c3 Qu

r.x/�p� �h dx;

j 0C. Qy
p�/.h/ D

1

p�

Z
�

��p.�/ Qy C �.x/ Qy
p.x/�1

Qyp��1
h dx

D
1

p�

Z
�

Œ
c2

Qyp���.x/
� c3 Qy

r.x/�p� �h dx:

The convexity of jC implies the monotonicity of j 0C. Therefore, we have

0 �

Z
�

c2

h 1

Qup���.x/
�

1

Qyp���.x/

i
. Qup� � Qyp�/ dx

C

Z
�

c3Œ Qy
r.x/�p� � Qur.x/�p� �. Qup� � Qyp�/ dx:

Recall that �C < p� < �.x/ for all x 2 x�, we conclude that Qu D Qy. This proves the
uniqueness of the positive solution Qu 2 int.C 1.x�/C/ for problem (3.18).
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Since the problem is odd, Qv D�Qu 2 � int.C 1.x�/C/ is the unique negative solution
of (3.18).

We introduce the following two sets:

�C D
®
u W u is a positive solution of problem (1.1)

¯
;

�� D
®
u W u is a negative solution of problem (1.1)

¯
:

We have already seen in Proposition 3.1 that

; ¤ �C � int
�
C 1.x�/C

�
and ; ¤ �� � � int

�
C 1.x�/C

�
:

The solutions Qu; Qv of (3.18) provide bounds for the sets �C and ��, where Qu 2
int.C 1.x�/C/ is a lower bound for �C and Qv 2 � int.C 1.x�/C/ is an upper bound
for ��.

Proposition 3.4. If hypotheses (H0), (H1) hold, then Qu � u for all u 2 �C and v � Qv
for all v 2 ��.

Proof. Let u 2 �C and consider the Carathéodory function kCW� �R! R defined
by

(3.22) kC.x; s/ D

8<: c2.sC/�.x/�1 � c3.sC/r.x/�1 if s � u.x/;

c2
�
u.x/

��.x/�1
� c3

�
u.x/

�r.x/�1 if u.x/ < s:

We set KC.x; s/ D
R s
0
kC.x; t/ dt and consider the C 1-functional y#CWW 1;p.�/.�/!

R defined by

y#C.u/ D 
p.�/.u/ �

Z
�

KC.x; u/ dx for all u 2 W 1;p.�/.�/:

Evidently, y#CWW 1;p.�/.�/!R is coercive, see (3.22) and Proposition 2.3, and sequen-
tially weakly lower semicontinuous. Hence, we find Qu� 2 W 1;p.�/.�/ such that

(3.23) y#C. Qu�/ D min
�
y#C.u/ W u 2 W

1;p.�/.�/
�
:

As before, see the proof of Proposition 3.3, if w 2 int.C 1.x�/C/ and t 2 .0; 1/ suffi-
ciently small, at least so that tw�u, we have y#C.tw/<0, recall that u2 int.C 1.x�/C/,
and use Proposition 4.1.22 of Papageorgiou–Rădulescu–Repovš [16, p. 274]. Then,
due to (3.23), it follows that y#C. Qu�/ < 0 D y#C.0/. Hence, Qu� ¤ 0.
From (3.23) we have .y#C/0. Qu�/ D 0; that is,

(3.24)
˝

 0p.�/. Qu�/; h

˛
D

Z
�

kC.x; Qu�/h dx for all h 2 W 1;p.�/.�/:
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First we choose hD�Qu� 2W 1;p.�/.�/ and obtain Qu� � 0 with Qu� ¤ 0; see (3.22).
Next, we take h D . Qu� � u/C 2 W 1;p.�/.�/. Then, from (3.22), (3.17), and the fact
that u 2 �C, we obtain˝


 0p.�/. Qu�/; . Qu� � u/
C
˛
D

Z
�

Œc2u
�.x/�1

� c3u
r.x/�1�. Qu� � u/

C dx

�

Z
�

f .x; u/. Qu� � u/
C dx

D
˝

 0p.�/.u/; . Qu� � u/

C
˛
:

Hence, Qu� � u. So, we have proved

(3.25) Qu� 2 Œ0; u�; Qu� ¤ 0:

From (3.25), (3.22), (3.24), and Proposition 3.3, it follows that Qu� D Qu. Thus, see
(3.25), Qu � u for all u 2 �C.
Similarly, we show that v � Qv for all v 2 ��.

Now we are ready to produce extremal constant sign solutions for problem (1.1).

Proposition 3.5. If hypotheses (H0), (H1) hold, then problem (1.1) has a smallest pos-
itive solution u� 2 int.C 1.x�/C/ and a greatest negative solution v� 2 � int.C 1.x�/C/.

Proof. From the proof of Proposition 7 of Papageorgiou–Rădulescu–Repovš [15], we
know that �C is downward directed, that is, if u1; u2 2 �C, then we can find u 2 �C

such that u � u1 and u � u2. Then Lemma 3.10 of Hu–Papageorgiou [13, p. 178]
implies that there exists a decreasing sequence ¹unºn2N � �C such that

inf �C D inf
n2N

un:

On account of Proposition 3.1 we have that ¹unºn2N � W
1;p.�/.�/ is bounded.

Hence, we may assume that

(3.26) un
w
! u� in W 1;p.�/.�/ and un ! u� in Lp.�/.�/ and in Lp.�/.@�/:

Since un 2 �C, we have

(3.27)
˝

 0p.�/.un/; h

˛
D

Z
�

f .x; un/h dx

for all h 2 W 1;p.�/.�/ and for all n 2 N. Choosing h D un � u� 2 W 1;p.�/.�/ in
(3.27), passing to the limit as n!1 and using (3.26), we obtain

lim
n!1

˝
Ap.�/.un/; un � u�

˛
D 0:



n. s. papageorgiou and p. winkert 18

Then, from Proposition 2.2, we infer that

(3.28) un ! u� in W 1;p.�/.�/:

So, passing to the limit as n!1 in (3.27) and using (3.28), one gets˝

 0p.�/.u�/; h

˛
D

Z
�

f .x; u�/h dx for all h 2 W 1;p.�/.�/:

Furthermore, by Proposition 3.4, we conclude that Qu� � u�. It follows that u� 2 �C

and u� D inf �C.
Similarly, we show that there exists v� 2 �� such that v � v� for all v 2 ��. We

mention that �� is upward directed, that is, if v1; v2 2 ��, we can find v 2 �� such
that v1 � v and v2 � v.

4. Nodal solution

In this section, using the extremal constant sign solutions of problem (1.1) obtained in
Proposition 3.5, we show the existence of a nodal solution located between them.

Proposition 4.1. If hypotheses (H0), (H1) hold, then problem (1.1) admits a nodal
solution

y0 2 Œv�; u�� \ C
1.x�/:

Proof. Let u� 2 int.C 1.x�/C/ and v� 2 � int.C 1.x�/C/ be the two extremal constant
sign solutions produced in Proposition 3.5. We introduce the Carathéodory function
l W� �R! R defined by

(4.1) l.x; s/ D

8̂̂<̂
:̂
f
�
x; v�.x/

�
if s < v�.x/;

f .x; s/ if v�.x/ � s � u�.x/;

f
�
x; u�.x/

�
if u�.x/ < s:

We also consider the positive and negative truncations of l.x; �/, namely the Cara-
théodory functions l˙W� �R! R defined by

(4.2) l˙.x; s/ D l.x;˙s
˙/:

We set L.x; s/ D
R s
0
l.x; t/ dt and L˙.x; s/ D

R s
0
l˙.x; t/ dt and consider the C 1-

functional �;�˙WW 1;p.�/.�/! R defined by

�.u/ D 
p.�/.u/ �

Z
�

L.x; u/ dx for all u 2 W 1;p.�/.�/;

�˙.u/ D 
p.�/.u/ �

Z
�

L˙.x; u/ dx for all u 2 W 1;p.�/.�/:
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Using (4.1) and (4.2) we easily show that

K� � Œv�; u�� \ C
1.x�/;

K�C � Œ0; u�� \ C
1.x�/C;

K�� � Œv�; 0� \
�
� C 1.x�/C

�
:

The extremality of the solutions u� and v� implies that

(4.3) K� � Œv�; u�� \ C
1.x�/; K�C D ¹0; u�º; K�� D ¹v�; 0º:

Due to (4.1) and (4.2) it is clear that �CWW 1;p.�/.�/! R is coercive and it is also
sequentially weakly lower semicontinuous. Hence, Ou� 2 W 1;p.�/.�/ exists such that

�C. Ou�/ D min
�
�C.u/ W u 2 W

1;p.�/.�/
�
< 0 D �C.0/I

see the proof of Proposition 3.3. Hence, Ou� ¤ 0 and so, Ou� D u�; see (4.3).
It is clear that

�jC1.x�/C D �CjC1.x�/C :

Since u� 2 int.C 1.x�/C/, it follows that u� is a local C 1.x�/-minimizer of �. There-
fore,

(4.4) u� is a local W 1;p.�/.�/-minimizer of �I

see Fan [8] and Gasiński–Papageorgiou [11].
Similarly, working this time with the functional ��, we show that

(4.5) v� is a local W 1;p.�/.�/-minimizer of �:

We may assume that �.v�/ � �.u�/. The reasoning is similar if the opposite
inequality holds using (4.5) instead of (4.4). From (4.3) it is clear that we may assume
thatK� is finite. Otherwise, taking (4.1) and the extremality of the solutions u� and v�
into account, we already have an infinity of smooth nodal solutions and so we are done.
Then, from (4.4) and Theorem 5.7.6 of Papageorgiou–Rădulescu–Repovš [16, p. 449],
we know that we can find � 2 .0; 1/ small enough such that

(4.6) �.v�/ � �.u�/ < inf
�
�.u/ W ku � u�k D �

�
D m�; ku� � v�k > �:

The coercivity of � implies that � satisfies the C -condition; see Papageorgiou–
Rădulescu–Repovš [16, Proposition 5.1.15 on p. 369]. This fact along with (4.6)
permit the use of the mountain pass theorem. So, there exists y0 2 W 1;p.�/.�/ such
that

(4.7) y0 2 K� � Œv�; u�� \ C
1.x�/; m� � �.y0/:
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From (4.6) and (4.7) it follows that y0 62 ¹v�; u�º. Moreover, from Corollary 6.6.9 of
Papageorgiou–Rădulescu–Repovš [16, p. 533] we have

(4.8) C1.�; y0/ ¤ 0:

On the other hand, from hypothesis (H1)(iv) and Proposition 3.7 of Papageorgiou–
Rădulescu [14], we obtain

(4.9) Ck.�; 0/ D 0 for all k 2 N0:

Comparing (4.8) and (4.9), we conclude that y0 ¤ 0. Since y0 2 Œv�; u�� \ C 1.x�/
with y0 62 ¹0; u�; v�º, the extremality of u� and v� implies that y0 is a smooth nodal
solution of (1.1).

Finally, we can state the following multiplicity theorem for problem (1.1); see
Propositions 3.1, 3.2, and 4.1.

Theorem 4.2. If hypotheses (H0), (H1) hold, then problem (1.1) has at least five
nontrivial smooth solutions

u0; Ou 2 int
�
C 1.x�/C

�
and v0; Ov 2 � int

�
C 1.x�/C

�
and y0 2 C

1.x�/ nodal

with u0 ¤ Ou, v0 ¤ Ov and

Ov.x/ � v0.x/ � y0.x/ � u0.x/ � Ou.x/ for all x 2 x�

as well as
�� < v0.x/ < 0 < u0.x/ < �C for all x 2 �:
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