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This paper is concerned with the existence of solutions to the following double phase 
equation with logarithmic nonlinearity

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
+ |u|p−2u + μ(x)|u|q−2u

= K1(x)|u|p∗−2u + λK2(x)|u|r−2u log(|u|) + γK3(x)|u|β−2u in RN ,

with dimension N ≥ 2, parameters λ, γ > 0, 1 < p < q < N , μ : RN → [0,∞)
is a Lipschitz continuous function, exponents q ≤ r < p∗ and 1 < β < p∗. Here, 
the weight functions K1 and K3 are positive, while K2 may change sign on RN . 
First, under quite general assumptions, we give basic properties of the corresponding 
function space and prove a compactness results. Then, we study the equation above 
for the two cases: the superlinear case (q < β < r < p∗) and the linear case 
(β < r = q < p∗). Moreover, we deal with the radial situation in the two previous 
cases.

© 2025 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we study the existence and properties of solutions for a quasilinear equation, driven by an 
operator of double phase type and involving a logarithmic nonlinearity as well as a critical Sobolev term. 
Namely, we deal with the following equation
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− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
+ |u|p−2u + μ(x)|u|q−2u

= K1(x)|u|p∗−2u + λK2(x)|u|r−2u log(|u|) + γK3(x)|u|β−2u, in RN ,
(1.1)

where the main operator on the left-hand side is the so-called double phase operator satisfying the structural 
assumption:

(H1) 1 < p < q < N , q < p∗ = Np 
N−p and μ : RN → R+ = [0,∞) is Lipschitz continuous such that 

μ(·) ∈ L∞(RN ).

Here, we consider parameters λ, γ > 0 and exponents q ≤ r < p∗, 1 < β < p∗. Concerning the functions 
K1, K2, K3 : RN → R, along the paper, we assume the following conditions:

(H2) K1 ∈ C(RN )∩L∞(RN ), K1(x) > 0 for all x ∈ RN and if {An}n∈N ⊂ RN is a sequence of Borel sets 
such that the Lebesgue measure |An| ≤ R for all n ∈ N and some R > 0, then

lim
n→∞

∫
An∩Bc

ρ(0)

K1(x) dx = 0,

for some ρ > 0.
(H3) K3 ∈ L∞(RN ,R+), 0 < K3 < K1 on RN , K2 ∈ L1(RN ) ∩ L∞(RN ), |K2| ≤ K1 on RN and there 

exist x0 ∈ RN and ρ̃ > 0 such that

K2(x) > 0 for x ∈ B(x0, ρ̃).

The novelty of our work is the fact that we combine several different and interesting phenomena in one 
single equation. More precisely, problem (1.1) contains

(i) a double phase operator;
(ii) a double lack of compactness, due to the free action of translation group in RN and the critical Sobolev 

nonlinearity;
(iii) a logarithmic nonlinearity.

To the best of our knowledge, this is the first paper proving the existence of solutions with the combined 
effects generated by the above features.

The double phase operator is related to the energy functional

u 	→
∫
Ω 

(
|∇u|p + μ(x)|∇u|q

)
dx, (1.2)

where Ω is an arbitrary domain in RN . Clearly, the integrand has unbalanced growth. The integral functional 
(1.2) was first introduced by Zhikov [33--35] to provide models for strongly anisotropic materials in the 
framework of homogenization. This functional belongs to a class of functionals with non-standard growth 
conditions introduced by Marcellini in [25,26]. The main characteristic of the double phase functional (1.2)
is the change of ellipticity on the set {x ∈ Ω : μ(x) = 0}. Indeed, its energy density exhibits ellipticity in 
the gradient of order q in the set {x ∈ Ω : μ(x) > ε} for any fixed ε > 0 and of order p on the points x
where μ(x) vanishes. Thus, the integrand in (1.2) switches between two different phases of elliptic behaviors. 
The analysis of non-autonomous energy functionals with energy density changing its ellipticity and growth 
properties according to a point has been developed in several remarkable papers, see for example, the works 
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of Baroni-Colombo-Mingione [7], Baroni-Kuusi-Mingione [8] and Colombo-Mingione [11]. A regularity theory 
for local minimizers of energy functionals such as (1.2) was recently developed in the papers of De Filippis 
[14] and De Filippis-Mingione [15,16]. Recently, some contributions devoted to solve equations driven by 
the double phase operator in RN have been published, we refer to Ambrosio-Essebei [2], Arora-Fiscella
Mukherjee-Winkert [3], Bahrouni-Rădulescu [5], Bahrouni-Rădulescu-Repovš [6], Ge-Pucci [17], Ge-Yuan 
[18], Le [20], Liu-Dai [21], Li-Liu [22], Liu-Winkert [24] and Stegliński [28]. However, all these works do not 
allow a logarithmic term on the right-hand side of the problem.

Problems involving nonlinearities of logarithmic type have been widely studied in literature dealing 
both with a local and a nonlocal structure and different types of operators. In this context we refer to 
the contributions by Biswas-Bahrouni-Fiscella [9], d’Avenia-Squassina-Zenari [13], Liang-Pu-Rădulescu [23], 
Tian [29] and Truong [30] and the references therein. In particular in [29], Tian proved that the following 
problem {

−Δu = a(x)u log(|u|) in Ω,

u = 0 on ∂Ω

has at least two nontrivial solutions provided that a(·) changes sign on Ω ⊂ RN with Ω being bounded. In 
[13], d’Avenia-Squassina-Zenari considered the following fractional logarithmic Schrödinger equation

(−Δ)su + W (x)u = u log
(
|u|2

)
, x ∈ RN ,

where W : RN → R+ is a continuous function. By employing the fractional logarithmic Sobolev inequality, 
the authors of [13] showed the existence of ifinitely many solutions. Moreover, Truong [30] studied the 
following fractional p-Laplacian equations with logarithmic nonlinearity

(−Δ)spu + V (x)|u|p−2 = λl(x)|u|p−2u log(|u|), x ∈ RN ,

where l : RN → R is a sign-changing weight function. Using the Nehari manifold approach, the author in 
[30] proved the existence of at least two nontrivial solutions, see also Biswas-Bahrouni-Fiscella [9] for the 
case of logarithmic fractional equations with variable exponent.

Concerning a double phase situation, we can just refer to Aberqi-Benslimane-Elmassoudi-Ragusa [1] who 
studied the problem

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
+ V (x)|u|p−2u

= λK(x)|u|r−2u log(|u|) in D, u
∣∣
∂D

= 0,
(1.3)

where D ⊂ M is an open bounded subset of a smooth complete compact Riemannian N -manifold. By a 
variational technique on a suitable Nehari manifold, the existence of a nonnegative solution of (1.3) has 
been proved whenever r ∈ (1, p).

Motivated by the above papers, in this work we are interested in finding nontrivial solutions for equation 
(1.1) in RN . First, we are going to prove a compactness result for the double phase space W 1,H(RN ) into a 
suitable weighted Lebesgue space, in order to deal with the critical term. Then, we establish a result which 
provides an estimate for the logarithmic nonlinearity. As applications of these abstract tools, we distinguish 
two main situations for (1.1) depending on the behavior of r: the superlinear case q < β < r < p∗ and the 
linear case β < r = q < p∗.

As we will see, the effects of the logarithmic nonlinearity and of the double lack of compactness, due to 
the unboundedness of the domain and the presence of criticality, prevent us from using variational methods 
in a standard way. In particular, in order to deal with the superlinear logarithmic term, we strongly need 
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the nonlinearity of β exponent in (1.1). Indeed, we want to get a mountain pass solution for (1.1) in this 
case. For this, we need a delicate asymptotic property of the mountain pass level, as λ goes to ∞. The proof 
of this asymptotic condition is obtained by a tricky combination of the superlinear logarithmic term and of 
the β-nonlinearity. Concerning the linear logarithmic case, we can get a solution of (1.1) by minimization, 
under more delicate assumptions on data, in particular considering K3 sufficiently small.

The outline of the paper is the following: in Section 2, we collect some preliminary results and we present 
the variational setting in which equation (1.1) will be studied. In Section 3 we prove some abstract results 
as explained above. In Section 4 we deal with the two situations, that is, the superlinear and linear cases. 
Finally, in the last section we study the existence of radial solution for equation (1.1), see Section 5.

2. Variational setting

In this section, we first recall basic results about Musielak-Orlicz spaces in RN . As usual, we denote by 
Lm(RN ) the classical Lebesgue space equipped with the norm ‖ · ‖m for 1 ≤ m ≤ ∞. Moreover, W 1,m(RN )
stands for the Sobolev spaces endowed with the norm ‖∇ · ‖m + ‖ · ‖m, for any 1 < m < ∞.

Let us consider the nonlinear function H : RN × [0,∞) → [0,∞) dfined by

H(x, t) := tp + μ(x)tq,

by assuming that (H1) holds true. Then, the Musielak-Orlicz Lebesgue space LH(RN ) is given by

LH(RN ) :=

⎧⎨⎩u 
∣∣∣ u : RN → R is measurable and �H(u) :=

∫
RN

H(x, |u|) dx < ∞

⎫⎬⎭
endowed with the Luxemburg norm

‖u‖H := inf
{
τ > 0 

∣∣ �H (u
τ

)
≤ 1

}
,

where the modular function is given by

�H(u) :=
∫
RN

H(x, |u|) dx =
∫
RN

[
|u|p + μ(x) |u|q

]
dx.

In addition, we introduce the weighted space

Lq
μ(RN ) :=

⎧⎨⎩u 
∣∣∣ u : RN → R is measurable and 

∫
RN

μ(x)|u|q dx < ∞

⎫⎬⎭
with the seminorm

‖u‖q,μ :=

⎛⎝ ∫
RN

μ(x)|u|q dx

⎞⎠
1 
q

.

While, the corresponding Musielak-Orlicz Sobolev space W 1,H(RN ) is dfined by

W 1,H(RN ) :=
{
u ∈ LH(RN ) 

∣∣∣ |∇u| ∈ LH(RN )
}
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endowed with the norm

‖u‖1,H := ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. Note that the norm ‖u‖1,H on W 1,H(RN ) is equivalent to

‖u‖ := inf

⎧⎨⎩τ > 0 

∣∣∣∣ ∫
RN

[(
|∇u|
τ

)p

+ μ(x)
(
|∇u|
τ

)q

+
∣∣∣u
τ

∣∣∣p + μ(x)
∣∣∣u
τ

∣∣∣q] dx ≤ 1

⎫⎬⎭ ,

where

�(u) :=
∫
RN

[
|∇u|p + μ(x) |∇u|q + |u|p + μ(x)|u|q

]
dx

is the associated modular. We know that LH(RN ) and W 1,H(RN ) are separable rflexive Banach spaces, see 
Liu-Dai [21, Theorem 2.7]. Moreover, C∞

c (RN ) is dense in W 1,H(RN ), see Harjulehto-Hästö [19, Proposition 
6.4.4] and Crespo-Blanco-Gasiński-Harjulehto-Winkert [12, Theorems 2.24 and 2.28].

The following relations between the norm ‖ · ‖ and the corresponding modular function �(·) can be found 
in Liu-Dai [21, Proposition 2.6].

Lemma 2.1. Let (H1) be satified, u ∈ W 1,H(RN ) and c > 0. Then the following hold:

(i) for u �= 0 we have ‖u‖ = c if and only if �(uc ) = 1;
(ii) ‖u‖ < 1 implies ‖u‖q ≤ �(u) ≤ ‖u‖p;
(iii) ‖u‖ > 1 implies ‖u‖p ≤ �(u) ≤ ‖u‖q.

The following embedding result can be found in Liu-Dai [21, Theorem 2.7].

Lemma 2.2. Let (H1) be satified. Then, the embedding W 1,H(RN ) ↪→ Lm(RN ) is continuous for any m ∈
[p, p∗]. Also, W 1,H(RN ) ↪→ Lm

loc(RN ) is compact for any m ∈ [1, p∗).

Let us denote

W 1,H
rad (RN ) :=

{
u ∈ W 1,H(RN ) : u is radially symmetric

}
.

By u being radially symmetric, we mean a function u : RN → R satisfying u(x) = u(y) for any x, y ∈ RN

with |x| = |y|. In the last section, we look for solutions of (1.1) in W 1,H
rad (RN ). For this, we need the following 

compact result given in Liu-Dai [21, Theorem 2.8].

Lemma 2.3. Let (H1) be satified. Then, the embedding W 1,H
rad (RN ) ↪→ Lm(RN ) is compact for any m ∈

(p, p∗).

Now, let us recall the definition of a weak solution of equation (1.1).

Definition 2.4. We say that u ∈ W 1,H(RN ) is a weak solution of (1.1) if∫
RN

[
|∇u|p−2 ∇u · ∇v + μ(x) |∇u|q−2 ∇u · ∇v

]
dx
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+
∫
RN

[
|u|p−2

uv + μ(x) |u|q−2
uv
]

dx

=
∫
RN

K1(x)|u|p∗−2uv dx + λ

∫
RN

K2(x)|u|r−2u log(|u|)v dx

+ γ

∫
RN

K3(x)|u|β−2uv dx,

for any v ∈ W 1,H(RN ) \ {0}.

The energy functional Iλ : W 1,H(RN ) → R associated to equation (1.1) is dfined by

Iλ(u) =1 
p

(
‖∇u‖pp + ‖u‖pp

)
+ 1

q

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
−
∫
RN

K1(x) |u|
p∗

p∗
dx

− λ

∫
RN

K2(x)
r

|u|r log(|u|) dx + λ

∫
RN

K2(x)
r2 |u|r dx− γ

∫
RN

K3(x)
β

|u|β dx.

Of course, weak solution of (1.1) are critical points of Iλ. By Lemma 3.3, we will see that Iλ is well dfined 
and of class C1(W 1,H(RN ),R). Also, for Iλ we do not specify dependence on parameter γ since in Sections 4
and 5 we will consider either γ = λ or γ = 1.

A delicate property for Iλ concerns the study of compactness in W 1,H(RN ). For this, we say that 
{un}n∈N ⊂ W 1,H(RN ) is a Palais-Smale sequence for Iλ at level c ∈ R if

Iλ(un) → c and I ′λ(un) → 0 in 
(
W 1,H(RN )

)∗ as n → ∞. (2.1)

We say that Iλ satifies the Palais-Smale condition at level c ((PS)c condition for short) if any Palais-Smale 
sequence {un}n∈N at level c admits a convergent subsequence in W 1,H(RN ).

3. The weighted Lebesgue space and the logarithmic term

In this section, we examine the continuous and the compact embedding of W 1,H(RN ) in a suitable 
weighted Lebesgue spaces. Moreover, we give some new logarithmic estimations that will be useful in the 
sequel. For this purpose we dfine, for any 1 < s < ∞, the following Lebesgue space

Ls
K1

(RN ) :=

⎧⎨⎩u : RN → R 
∣∣∣ u is measurable and 

∫
RN

K1(x)|u|s dx < ∞

⎫⎬⎭ ,

where K1 satisfying (H2) multiplies the critical Sobolev term in (1.1).
We can prove the following compactness result.

Proposition 3.1. Let (H2) be satified. Then, W 1,H(RN ) ↪→ Ls
K1

(RN ) is compact for any s ∈ (p, p∗).

Proof. Let us fix s ∈ (p, p∗) and let ε > 0. It is easy to see that

lim
t→0

|t|s
|t|p = lim

t→∞
|t|s
|t|p∗ = 0.

Thus, there exist numbers 0 < t0 < t1 and a positive constant C > 0 such that
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K1(x)|t|s ≤ εC(|t|p + |t|p∗
) + χ[t0,t1](x)K1(x)|t|p,

for any t ∈ R and any x ∈ RN . We set

F (u) := ‖u‖pp + ‖u‖p
∗

p∗ .

Let {un}n∈N ⊂ W 1,H(RN ) be a sequence such that un ⇀ u in W 1,H(RN ). By Lemma 2.2 we have that 
{F (un)}n∈N is bounded in R. Denoting

An := {x ∈ RN : t0 < |un(x)| < t1},

it holds supn∈N |An| < ∞. Hence, from (H2), there exists a positive radius ρ > 0 such that∫
Bc

ρ(0)

K1(x)|un|s dx ≤ εCF (un) +
∫

Bc
ρ(0)

χ[t0,t1](|un(x)|)K1(x)|un|p dx

≤ εCF (un) + tp1

∫
Bc

ρ(0)∩An

K1(x) dx

≤ (C ′ + tq1)ε,

(3.1)

for any n ∈ N sufficiently large. On the other hand, since u ∈ Ls
K1

(RN ), we know that

lim
r→∞

∫
Bc

r(0)

K1(x)|u|s dx = 0.

From this, there exists rε > ρ > 0 such that∫
Bc

rε(0)

K1(x)|u|s dx ≤ ε (3.2)

and by applying (3.1) we get∫
Bc

rε
(0)

K1(x)|un|s dx ≤
∫

Bc
ρ(0)

K1(x)|un|s dx ≤ (C ′ + tq1)ε. (3.3)

Therefore, by combining (3.2) and (3.3), we deduce that∫
Bc

rε
(0)

K1(x)|un − u|s dx ≤ 2s−1
∫

Bc
rε

(0)

K1(x)(|un|s + |u|s) dx

≤ 2s−1(1 + C ′ + tq1)ε.

(3.4)

Now, since s ∈ (p, p∗) and K1 ∈ L∞(RN ), by Lemma 2.2 we get that

lim
n→∞

∫
Brε (0)

K1(x)|un − u|s dx = 0. (3.5)

Combining (3.4) and (3.5), we conclude for ε > 0 small enough, that
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lim
n→∞

∫
RN

K1(x)|un − u|s dx = 0.

Consequently, we infer that

un → u in Ls
K1

(RN ) for any s ∈ (p, p∗).

This finishes the proof. �
We conclude the section proving results which allow us to handle the logarithmic nonlinearity in (1.1). 

First, we recall the following technical tool, whose proof can be found in Xiang-Hu-Yang [32].

Lemma 3.2. 

(i) For any σ > 0, we have

log(t) ≤ 1 
eσ

tσ for any t ∈ [1,∞).

(ii) For any σ > 0, we have

tσ| log(t)| ≤ 1 
eσ

for any t ∈ (0, 1).

Lemma 3.3. Let (H1) -- (H3) be satified, u ∈ W 1,H(RN ) \ {0} and r ∈ (p, p∗). Moreover, we assume that

‖u‖ = 1 or
∫
RN

K2(x)|u|r dx = 0. (3.6)

Then, there is a constant C(p, q, r,K1,K2) > 0 such that∫
RN

K2(x)|u|r log(|u|) dx ≤ C(p, q, r,K1,K2)‖u‖r.

Proof. It is easy to see that, due to assumption (3.6), we have∫
RN

K2(x)|u|r log(|u|) dx =
∫
RN

K2(x)|u|r log
(

|u| 
‖u‖

)
dx = J1 + J2,

where

J1 :=
∫

{x∈RN : K2(x)≥0}

K2(x)|u|r log
(

|u| 
‖u‖

)
dx,

J2 :=
∫

{x∈RN : K2(x)<0}

K2(x)|u|r log
(

|u| 
‖u‖

)
dx.

Let σ1 > 0 be such that r + σ1 ∈ (p, p∗). Therefore, by Proposition 3.1, Lemma 3.2(ii) and condition 
(H3), we obtain
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J1 =
∫

{x∈RN : K2(x)>0}

K2(x)|u|r log
(

|u| 
‖u‖

)
dx

≤ 1 
eσ1

‖u‖−σ1

∫
{x∈RN : K2(x)>0}

K2(x)|u|r+σ1 dx

≤ 1 
eσ1

‖u‖−σ1

∫
{x∈RN : K2(x)>0}

K1(x)|u|r+σ1 dx ≤ C‖u‖r,

for some constant C > 0. We set

Ω− :=
{
x ∈ RN : K2(x) < 0 and |u(x)| ≤ ‖u‖

}
.

Then we get

J2 ≤
∫

Ω−

K2(x)|u|r log
(

|u| 
‖u‖

)
dx

=
∫

Ω−

−K2(x)|u|r log
(
‖u‖
|u| 

)
dx.

Let σ2 > 0 such that r − σ2 ∈ (p, p∗). Then, from Proposition 3.1, Lemma 3.2(ii) and condition (H3) it 
follows that

J2 ≤ 1 
eσ2

‖u‖σ2

∫
Ω−

−K2(x)|u|r−σ2 dx

≤ 1 
eσ2

‖u‖σ2

∫
Ω−

K1(x)|u|r−σ2 dx

≤ C‖u‖r,

for suitable constant C > 0. This concludes the proof. �
Lemma 3.4. Let (H1) -- (H3) be satified, u ∈ W 1,H(RN ) \ {0} and r ∈ (p, p∗). Then it holds∫

RN

K2(x)|u|r log(|u|) dx ≤ C‖u‖r + log(‖u‖)
∫
RN

K2(x)|u|r dx,

where C = C(K2, p, r, p
∗) is a positive constant.

Proof. We set

Ω1 :=
{
x ∈ RN : |u(x)| ≤ ‖u‖

}
and Ω2 :=

{
x ∈ RN : |u(x)| ≥ ‖u‖

}
.

Then, we have ∫
RN

K2(x)|u|r log
(

|u| 
‖u‖

)
dx =

∫
Ω1

K2(x)|u|r log
(

|u| 
‖u‖

)
dx

+
∫
Ω2

K2(x)|u|r log
(

|u| 
‖u‖

)
dx.
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Let us check the first integration. Taking into account Lemma 3.2(ii) with σ = ε, for a suitable ε > 0, joint 
with Lemma 2.2, we get ∫

Ω1

K2(x)|u|r log
(

|u| 
‖u‖

)
dx

≤ ‖u‖r
∫
Ω1

|K2(x)|
(

|u| 
‖u‖

)r ∣∣∣∣log
(

|u| 
‖u‖

)∣∣∣∣ dx

≤ ‖K2‖∞‖u‖r
∫
Ω1

(
|u| 
‖u‖

)r−ε( |u| 
‖u‖

)ε ∣∣∣∣log
(

|u| 
‖u‖

)∣∣∣∣ dx

≤ 1 
eε

‖K2‖∞‖u‖r
∫
Ω1

(
|u| 
‖u‖

)r−ε

dx

≤ C‖u‖r,

(3.7)

for a suitable constant C > 0.
Next, we calculate the second integral. For that, using Lemma 3.2(i) with σ = p∗ − r, along with 

Lemma 2.2 again, we obtain∫
Ω2

K2(x)|u|r log
(

|u| 
‖u‖

)
dx ≤ ‖K2‖∞

∫
Ω2

|u|r log
(

|u| 
‖u‖

)
dx

≤ ‖K2‖∞
1 

e(p∗ − r)

∫
Ω2

|u|r
(

|u| 
‖u‖

)p∗−r

dx

≤
‖K2‖∞ 1 

e(p∗−r)

‖u‖p∗−r
‖u‖p∗

= C‖u‖r,

(3.8)

for a suitable C = C(K2, p, r, p
∗) > 0. Combining (3.7) and (3.8), we get the desired assertion of the 

lemma. �
4. The existence results

In this section, we distinguish two situations depending on the behavior of r.

4.1. The superlinear case

In this part, we discuss the existence of solutions for (1.1) when the logarithmic term is superlinear, 
namely r > q. In order to handle this sign-changing nonlinearity, we need that γ = λ. Hence, we consider 
the following equation

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
+ |u|p−2u + μ(x)|u|q−2u

= K1(x)|u|p∗−2u + λK2(x)|u|r−2u log(|u|) + λK3(x)|u|β−2u in RN ,
(4.1)

where 1 < p < q < β < r < p∗. Moreover, we assume a further assumption for weight functions, such that
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(H4) K2, K3 ∈ L1(RN ,R+) and there exists q < σ < β such that

K2(x) ≤ e (r − β) r (β − σ)
β(r − σ) K3(x), for any x ∈ RN .

Our main result is the existence of a mountain pass solution for (4.1).

Theorem 4.1. Let (H1) -- (H4) be satified and let 1 < p < q < β < r < p∗. Then, there exists λ∗ > 0 such 
that, if λ ≥ λ∗, equation (4.1) admits at least one nontrivial weak solution.

Hence, we first study the mountain pass geometry of the functional Iλ.

Lemma 4.2. Let (H1) -- (H3) be satified and let λ > 0. Then we have the following statements:

(i) there exist δ = δ(λ) > 0 and α = α(λ) > 0 such that Iλ(u) ≥ α for any u ∈ W 1,H(RN ) with ‖u‖ = δ;
(ii) there exist ψ ∈ W 1,H(RN ) and T = T (λ, ψ) > 0 such that ‖Tψ‖ > δ and Iλ(Tψ) < 0.

Proof. (i) Let u ∈ W 1,H(RN ) with ‖u‖ ≤ 1 and let s > 0 such that r + s ∈ (q, p∗). By Proposition 3.1, 
Lemmas 2.1, 3.2, Hölder’s and Young’s inequalities, we get

Iλ(u) ≥ 1
q
�(u) − λ

r

∫
{x∈RN : |u(x)|>1}

K2(x)|u|r log(|u|) dx

− 1 
p∗

∫
RN

K1(x)|u|p∗
dx− λ 

β

∫
RN

K3(x)|u|β dx

≥ 1
q
‖u‖q − C1

p∗
‖u‖p∗ − C2λ

r
‖u‖r+s − λC3

β
‖u‖β

≥ 1 
2q ‖u‖

q −
(
C1

p∗
+ C2λ

r
+ λC3

β

)
‖u‖β ,

(4.2)

where C1, C2, C3 are positive constants. Now, we take δ > 0 such that

δ < min

⎧⎨⎩1,

⎡⎣ 1 

4q
(

C1
p∗ + C2λ

r + λC3
β

)
⎤⎦⎫⎬⎭

1 
β−q

.

Then, by (4.2), we infer that Iλ(u) ≥ δq

4q =: α for any u ∈ W 1,H(RN ) with ‖u‖ = δ.

(ii) Let ψ ∈ W 1,H(RN ) with ψ ≥ 0 such that

∫
RN

K2(x)|ψ|r log(|ψ|) dx > 0. (4.3)

For t > 1, we have
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Iλ(tψ) = 1 
p

(
‖∇tψ‖pp + ‖tψ‖pp

)
+ 1

q

(
‖∇tψ‖qq,μ + ‖tψ‖qq,μ

)
−
∫
RN

K1(x)
p∗

|tψ|p∗
dx− λ

∫
RN

K2(x)
r

|tψ|r log(|tψ|) dx

+ λ

∫
RN

K2(x)
r2 |tψ|r dx− λ

∫
RN

K3(x)
β

|tψ|β dx

≤ tp

p 

(
‖∇ψ‖pp + ‖ψ‖pp

)
+ tq

q

(
‖∇ψ‖qq,μ + ‖ψ‖qq,μ

)
+ λtr

∫
RN

K2(x)
r2 |ψ|r − tp

∗
∫
RN

K1(x)
p∗

|ψ|p∗
dx.

(4.4)

Since p < q < r < p∗, we can take v0 = Tψ with T = T (λ) > 1 large enough, concluding the proof. �
Thanks to Lemma 4.2, by Willem [31] we can set the positive critical mountain pass value by

cλ := inf
γ∈Γ

sup 
t∈[0,1]

Iλ(γ(t))

with

Γ :=
{
γ ∈ C

(
[0, 1],W 1,H(RN )

)
: γ(0) = 0, Iλ (γ(1)) < 0

}
.

We first prove that cλ can be controlled by the threshold c set as

c :=
(

1 
σ
− 1 

p∗

)
S

p∗
p∗−p > 0, (4.5)

where σ is given in (H4), while S > 0 is the best constant of the Sobolev embedding W 1,p(RN ) ↪→ Lp∗

K1
(RN ), 

considering K1 ∈ L∞(RN ), set here as

S := inf
u∈W 1,p(RN )

‖∇u‖pp + ‖u‖pp∥∥∥[K1]
1 
p∗ u

∥∥∥p
p∗

. (4.6)

Lemma 4.3. Let (H1) -- (H4) be satified. Then there exists λ∗ > 0 such that cλ < c for any λ ≥ λ∗.

Proof. Fix λ > 0 and let ψ ∈ W 1,H(RN ) as constructed in Lemma 4.2. That is, ψ ≥ 0 and (4.3) holds 
true. By (4.4) we have limt→∞ Iλ(tψ) = −∞. Then, there exists tλ > 0 satisfying Iλ(tλψ) = supt≥0 Iλ(tψ). 
Hence, 〈I ′λ(tλψ), ψ〉 = 0 so that

tp−1
λ

(
‖∇ψ‖pp + ‖ψ‖pp

)
+ tq−1

λ

(
‖∇ψ‖qq,μ + ‖ψ‖qq,μ

)
= tp

∗−1
λ

∫
RN

K1(x)|ψ|p∗
dx + λtr−1

λ

∫
RN

K2(x)|ψ|r log(|tλψ|) dx

+ λtβ−1
λ

∫
RN

K3(x)|ψ|β dx.

(4.7)

We claim that {tλ}λ>0 is bounded. Indeed, denoting by Λ = {λ > 0 : tλ ≥ 1}, we see that
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tq−1
λ �(ψ) ≥ tp

∗−1
λ

∫
RN

K1(x)|ψ|p∗
dx for any λ ∈ Λ

as λ > 0, ψ ≥ 0 and by (4.3). Hence, we get the boundedness of {tλ}λ∈Λ. Clearly by the construction of Λ
also {tλ}λ∈(R\Λ) is bounded. This proofs the claim.

We fix now a sequence {λn}n∈N ⊂ R+ such that λn → ∞ as n → ∞. Clearly {tλn
}n∈N is bounded. 

Hence, there exist a number t0 ≥ 0 and a subsequence of {λn}n∈N , that we still denote by {λn}n∈N , such 
that tλn

→ t0 as n → ∞.
We claim that t0 = 0. Indeed, if t0 > 0 then by the dominated convergence theorem we have

∫
RN

K2(x)|ψ|r log(|tλn
ψ|) dx →

∫
RN

K2(x)|ψ|r log(|t0ψ|) dx as n → ∞. (4.8)

Also, by Lemma 3.2 with σ = r − β, we get

∫
RN

K3(x)|t0ψ|β dx +
∫
RN

K2(x)|t0ψ|r log(|t0ψ|) dx

=
∫
RN

K3(x)|t0ψ|β dx +
∫

{x∈RN : |t0ψ(x)|<1}

K2(x)|t0ψ|r log(|t0ψ|) dx

+
∫

{x∈RN : |t0ψ(x)|≥1}

K2(x)|t0ψ|r log(|t0ψ|) dx

≥
∫
RN

K3(x)|t0ψ|β dx−
∫

{x∈RN : |t0ψ(x)|<1}

K2(x)|t0ψ|r |log(|t0ψ|)| dx

≥
∫
RN

[
K3(x) − 1 

e(r − β)K2(x)
]
|t0ψ|β dx > 0

(4.9)

where the last inequality follows from (H4), since r(β−σ)
β(r−σ) < 1 being r > β. Thus, recalling that λn → ∞, 

from (4.7) with λ = λn, we get

tp−1
0

(
‖∇ψ‖pp + ‖ψ‖pp

)
+ tq−1

0
(
‖∇ψ‖qq,μ + ‖ψ‖qq,μ

)
= lim

n→∞

⎡⎣tp∗−1
λn

∫
RN

K1(x)|ψ|p∗
dx + λn

⎛⎝tr−1
λn

∫
RN

K2(x)|ψ|r log(|tλn
ψ|) dx

+tβ−1
λn

∫
RN

K3(x)|ψ|β dx

⎞⎠⎤⎦ = ∞,

that is the desired contradiction. Hence, t0 = 0 and tλ → 0 as λ → ∞, since the sequence {λn}n∈N is 
arbitrary.

Consider now the path γ0(t) = tTψ for t ∈ [0, 1], with T given in Lemma 4.2. Clearly, γ0 ∈ Γ. Then, 
Lemma 4.2 gives
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0 < cλ ≤ max
t∈[0,1]

Iλ(γ0(t)) ≤ sup
t≥0 

Iλ(tψ) = Iλ(tλψ)

≤ �(tλψ) + λ

∫
RN

K2(x)
r2 |tλψ|r dx− λ

∫
RN

K2(x)
r

|tλψ|r log(|tλψ|) dx

− λ

∫
RN

K3(x)
β

|tλψ|β dx.

(4.10)

We claim that {λtβλ}λ>0 is bounded. Suppose not, then there exists a sequence {λnt
β
λn

}n≥1 such that 
λnt

β
λn

→ ∞ as n → ∞. Thus, by (4.10) along with the fact that tλn
→ 0 as n → ∞, we get

0 <
cλn

λnt
β
λn

≤ �(tλn
ψ)

λnt
β
λn

+ tr−β
λn

∫
RN

K2(x)
r2 |ψ|r dx

+ tr−β
λn

∫
RN

K2(x)
r

|ψ|r| log(|tλn
ψ|) | dx−

∫
RN

K3(x)
β

|ψ|β dx

from which we conclude that, by sending n → ∞ and since β < r,

0 ≤ −
∫
RN

K3(x)|ψ|β dx < 0.

This is a contradiction.
Thus, being {λtβλ}λ>0 bounded and considering r > β, by (4.10) again we get limλ→∞ cλ = 0. Then, we 

can conclude the proof of the lemma. �

Now, we discuss the compactness property for the functional Iλ given by the Palais-Smale condition.

Lemma 4.4. Let (H1) -- (H3) be satified and let λ > 0. Let {un}n∈N ⊂ W 1,H(RN ) be a bounded (PS)c
sequence with c ∈ R. Then, up to a subsequence, ∇un(x) → ∇u(x) a.e. in RN as n → ∞.

Proof. Since {un}n∈N ⊂ W 1,H(RN ) is bounded, using the rflexivity of W 1,H(RN ), there exists u ∈
W 1,H(RN ) such that un ⇀ u in W 1,H(RN ).

For any k ∈ N, let Tk : R → R be the truncation function dfined by

Tk(t) =
{
t if |t| ≤ k,

k t 
|t| if |t| > k.

Let ε > 0 be a constant such that r + ε− 1 ∈ (p, p∗). By Proposition 3.1 and Lemma 3.2 we have
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∣∣∣ ∫
RN

K2(x)|un|r−2un log(|un|)Tk(un − u) dx
∣∣∣

≤
∫
RN

|K2(x)| |un|r−1 | log(|un|)| |Tk(un − u)| dx

≤
∫

{x∈RN : |un(x)|<1}

|K2(x)| |un|r−1 | log(|un|)| |Tk(un − u)| dx

+
∫

{x∈RN : |un(x)|>1}

|K2(x)| |un|r−1 | log(|un|)| |Tk(un − u)| dx

≤ 1 
e(r − 1)

∫
RN

|K2(x)| |Tk(un − u)| dx

+ 1 
eε

∫
RN

|K2(x)| |un|r+ε−1 |Tk(un − u)| dx

≤ k

e(r − 1)

∫
RN

|K2(x)| dx + C k

eε 

≤ C ′k,

(4.11)

where C, C ′ are two positive constants. Using (4.11) and considering a cut-off function ϕR ∈ C∞
c (RN , [0, 1])

with ϕR ≡ 1 on a ball BR with generic radius R > 0, the rest of the proof is similar to that of Autuori-Pucci 
[4, Theorem 4.4]. �
Lemma 4.5. Let (H1) -- (H4) be satified and let λ > 0. Let {un}n∈N ⊂ W 1,H(RN ) be a bounded (PS)c
sequence with c < c as given in (4.5). Then there exists u ∈ W 1,H(RN ) such that, up to a subsequence, 
un → u in W 1,H(RN ) as n → ∞.

Proof. Fix c < c and let {un}n∈N be a bounded (PS)c sequence in W 1,H(RN ), satisfying (2.1). By Propo
sition 3.1 and Lemma 4.4, there exists a subsequence, still denoted by {un}n∈N , and u ∈ W 1,H(RN ) such 
that

un ⇀ u in W 1,H(RN ), un ⇀ u in Lp∗
(RN ),∥∥∥[K1]

1 
p∗ (un − u)

∥∥∥
p∗

→ l, un → u in Ls
K1

(RN ) for any s ∈ (p, p∗),

un(x) → u(x) a.e. in RN , ∇un(x) → ∇u(x) a.e. in RN .

(4.12)

Since the sequences {|∇un|p−2∇un}n∈N and {μ(x)
1 
q′ |∇un|q−2∇un}n∈N are bounded in Lp′(RN ) and 

Lq′(RN ), respectively, we deduce that

lim
n→∞

∫
RN

|∇un|p−2∇un · ∇u dx = ‖∇u‖pp, (4.13)

lim
n→∞

∫
RN

μ(x)|∇un|q−2∇un · ∇u dx = ‖∇u‖qq,μ. (4.14)

Furthermore, using Lemma 4.4 and the Lemma of Brézis-Lieb [10], we obtain
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‖∇un‖pp − ‖∇un −∇u‖pp = ‖∇u‖pp + o(1),

‖un‖pp − ‖un − u‖pp = ‖u‖pp + o(1),

‖∇un‖qq,μ − ‖∇un −∇u‖qq,μ = ‖∇u‖qq,μ + o(1),

‖un‖qq,μ − ‖un − u‖qq,μ = ‖u‖qq,μ + o(1),∥∥∥[K1]
1 
β un

∥∥∥β
β
−
∥∥∥[K1]

1 
β (un − u)

∥∥∥β
β

=
∥∥∥[K1]

1 
β u
∥∥∥β
β

+ o(1)∥∥∥[K1]
1 
p∗ un

∥∥∥p∗

p∗
−
∥∥∥[K1]

1 
p∗ (un − u)

∥∥∥p∗

p∗
=
∥∥∥[K1]

1 
p∗ u

∥∥∥p∗

p∗
+ o(1),

(4.15)

as n → ∞.
Now, let s ∈ (p, r) and let ε > 0 be such that r + ε ∈ (p, p∗). In light of Proposition 3.1 and Lemma 3.2, 

condition (H3) and Hölder’s inequality, we infer that

∣∣∣ ∫
RN

K2(x)|un|r−2un log(|un|)(un − u) dx
∣∣∣

≤
∫
RN

|K2(x)| |un|r−1 | log(|un|)| |un − u| dx

=
∫

{x∈RN : |un(x)|<1}

|K2(x)| |un|r−1 | log(|un|)| |un − u| dx

+
∫

{x∈RN : |un(x)|>1}

|K2(x)| |un|r−1 | log(|un|)| |un − u| dx

≤ 1 
e(r − s)

∫
RN

|K2(x)| |un|s−1 |un − u| dx

+ 1 
e(r + ε)

∫
RN

|K2(x)| |un|r+ε−1 |un − u| dx

≤ 1 
e(r − s)

∥∥∥[K1]
1
s un

∥∥∥s−1

s

∥∥∥[K1]
1
s |un − u|

∥∥∥s
s

+ 1 
e(r + ε)

∥∥∥[K1]
1 

r+εun

∥∥∥r+ε−1

r+ε

∥∥∥[K1]
1 

r+ε |un − u|
∥∥∥r+ε

r+ε

→ 0 as n → ∞,

(4.16)

for a suitable C > 0. Thus, by (2.1) and (4.12) -- (4.16), we get

o(1) = 〈I ′λ(un), un − u〉

=
∫
RN

(|∇un|p−2∇un + μ(x)|∇un|q−2∇un) · (∇un −∇u) dx

+
∫
RN

(|un|p−2un + μ(x)|un|q−2un)(un − u) dx

−
∫
RN

K1(x)|un|p
∗−2un(un − u) dx
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− λ

∫
RN

K2(x)|un|r−2un log(|un|)(un − u) dx

− λ

∫
RN

K3(x)|un|β−2un(un − u) dx

= ‖∇un‖pp − ‖∇u‖pp + ‖un‖pp − ‖u‖pp + ‖∇un‖qq,μ − ‖∇u‖qq,μ

+ ‖un‖qq,μ − ‖u‖qq,μ −
∥∥∥[K1]

1 
p∗ un

∥∥∥p∗

p∗
−
∥∥∥[K1]

1 
p∗ u

∥∥∥p∗

p∗
+ o(1),

as n → ∞. Hence by (4.12) and (4.15), we conclude that

‖∇un −∇u‖pp + ‖un − u‖pp + ‖∇un −∇u‖qq,μ + ‖un − u‖qq,μ

=
∥∥∥[K1]

1 
p∗ (un − u)

∥∥∥p∗

p∗
+ o(1) = lp

∗
+ o(1).

(4.17)

We claim that l = 0. Assume instead l > 0. Then, by (4.6) and (4.17), we can see that

l ≥ S
1 

p∗−p . (4.18)

On the other hand, by Lemma 3.2 and condition (H4), we have

Iλ(un) − 1 
σ
〈I ′λ(un), un〉

≥
(

1 
p
− 1 

σ

)
�(un) +

(
1 
σ
− 1 

p∗

) ∫
RN

K1(x)|un|p
∗
dx

+ λ

(
1 
σ
− 1 

β

) ∫
RN

K3(x)|un|β dx + λ

(
1 
σ
− 1

r

) ∫
RN

K2(x)|un|r log(|un|) dx

≥
(

1 
σ
− 1 

p∗

) ∫
RN

K1(x)|un|p
∗
dx + λ

(
1 
σ
− 1 

β

) ∫
{x∈RN : |un(x)|<1}

K3(x)|un|β dx

+ λ

(
1 
σ
− 1

r

) ∫
{x∈RN : |un(x)|≤1}

K2(x)|un|r log(|un|) dx

≥
(

1 
σ
− 1 

p∗

) ∫
RN

K1(x)|un|p
∗
dx + λ

(
1 
σ
− 1 

β

) ∫
{x∈RN : |un(x)|<1}

K3(x)|un|β dx

−
(

λ 
e(r − β)

)(
1 
σ
− 1

r

) ∫
{x∈RN : |un(x)|≤1}

K2(x)|un|β dx

≥
(

1 
σ
− 1 

p∗

) ∫
RN

K1(x)|un|p
∗
dx

+ λ

∫
{x∈RN : |un(x)|≤1}

[(
1 
σ
− 1 

β

)
K3(x) −

(
1 

e(r − β)

)(
1 
σ
− 1

r

)
K2(x)

]
|un|β dx

≥
(

1 
σ
− 1 

p∗

) ∫
RN

K1(x)|un|p
∗
dx,
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which implies, by using (2.1), (4.12) and (4.15), that

c ≥
(

1 
σ
− 1 

p∗

)(
lp

∗
+
∥∥∥[K1]

1 
p∗ u

∥∥∥p∗

p∗

)
.

Therefore, from (4.5) and (4.18) we conclude that

c > c ≥
(

1 
σ
− 1 

p∗

)
S

p∗
p∗−p .

Thus, we get a contradiction which yields that l = 0. Hence, by (4.17), we prove our desired result. �
Proof of Theorem 4.1 completed. We show the statement via the mountain pass theorem. Indeed, by 

Lemma 4.2 together with the mountain pass theorem without (PS) condition, see Willem [31, Theorems 
1.15 and 2.8], there exists a (PS)cλ sequence {un}n∈N ⊂ W 1,H(RN ) of Iλ.

Now, we show that {un}n∈N is bounded in W 1,H(RN ) arguing by contradiction. Then, going to a sub
sequence, still denoted by {un}n∈N , we have lim

n→∞
‖un‖ = ∞ and ‖un‖ ≥ 1 for any n ∈ N. Let σ > 0 be 

such that 1 < p < q < σ < β < r < p∗. Thus, invoking Lemmas 2.1 and 3.2 along with Young’s inequality, 
we get

o(1) + c + C‖un‖

= I(un) − 1 
σ
〈I ′(un), un〉

≥
(

1 
p
− 1 

σ

)(
‖∇un‖pp + ‖un‖pp

)
+
(

1
q
− 1 

σ

)(
‖∇un‖qq,μ + ‖un‖qq,μ

)
−
(

1 
p∗

− 1 
σ

) ∫
RN

K1(x)|un|p
∗
dx− λ

(
1
r
− 1 

σ

) ∫
RN

K2(x)|un|r log(|un|) dx

≥
(

1
q
− 1 

σ

)
‖un‖p − λ

(
1
r
− 1 

σ

) ∫
{x∈RN : |un(x)|>1|}

K2(x)|un|r log(|un|) dx

− λ

(
1
r
− 1 

σ

) ∫
{x∈RN : |un|<1|}

K2(x)|un|r log(|un|) dx

≥
(

1
q
− 1 

σ

)
‖un‖p + Cσ

(
1
r
− 1 

σ

) ∫
RN

K2(x) dx,

where C is a positive constant. This leads to a contradiction. Hence {un}n∈N is bounded in W 1,H(RN ). By 
Lemma 4.3 we can apply Lemma 4.5 to {un}n∈N , so that there exists a weak solution u ∈ W 1,H(RN ) of 
(4.1) such that Iλ(u) = cλ > 0.

4.2. The linear case

In this subsection, we study equation (1.1) when the logarithmic term is linear, namely r = q. Here, we 
assume that γ = 1. More precisely, we consider the equation

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
+ |u|p−2u + μ(x)|u|q−2u

= K1(x)|u|p∗−2u + λK2(x)|u|q−2u log(|u|) + K3(x)|u|β−2u in RN ,
(4.19)
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where 1 < β < p < q < p∗. For this, we assume a new structural assumption

(H̃3) K2 ∈ L1(RN ,R+)∩L∞(RN ,R+) with 0 < K2 < K1 in RN , while K3 ∈ L1(RN ,R+)∩L
q

q−β (RN ,R+)
with 0 < K3 < K1 on RN .

The main result of this part is the following theorem.

Theorem 4.6. Let (H1) -- (H2) and (H̃3) be satified and let 1 < p < β < q < p∗. Then, for any λ > 0, 
there exists kλ > 0 such that if

max
{
‖K3‖1 , ‖K3‖ q

q−β

}
< kλ,

equation (4.19) admits at least one nontrivial weak solution.

Lemma 4.7. Let (H1) -- (H2) and (H̃3) be satified and let λ > 0. Then, there exist δλ, αλ, mλ > 0 such 
that Iλ(u) ≥ αλ > 0 for any u ∈ W 1,H(RN ) with ‖u‖ = δλ, whenever

‖K3‖ q
q−β

< mλ.

Proof. Let u ∈ W 1,H(RN ) with ‖u‖ ≤ 1 and let λ > 0. Let us choose s > 0 such that q + s ∈ (q, p∗). By 
Lemmas 2.1 and 3.2, Hölder and Young inequalities, we get

Iλ(u) ≥ 1
q
�(u) − λ

q

∫
{x∈RN : |u(x)|>1}

K2(x)|u|q log(|u|) dx

− 1 
p∗

∫
RN

K1(x)|u|p∗
dx−

∫
RN

K3(x)|u|β dx

≥ 1
q
‖u‖q −

(
C1

p∗
+ λ

C2

q

)
‖u‖q+s − C3‖K3‖ q

q−β
‖u‖β

≥ 1 
2q ‖u‖

q −
(
C1

p∗
+ λ

C2

q

)
‖u‖q+s − (q − β) (2βC3)

β
q−β

q
‖K3‖

q
q−β
q

q−β

(4.20)

where C3 is a positive constant. Set δλ > 0 such that

δλ < min

⎛⎜⎝1,

⎡⎣ 1 

4q
(

C1
p∗ + λC2

r

)
⎤⎦

1
s 
⎞⎟⎠ .

Then, by (4.20), we infer that

I(u) ≥ δqλ
4q − (q − β) (2βC3)

β
q−β

q
‖K3‖

q
q−β
q

q−β
, for ‖u‖ = δλ.

Let

mλ :=
δq−β
λ[

8(q − β) (2βC3)
β

q−β

] q−β
q

. (4.21)
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Then, if ‖K3‖ q
q−β

< mλ, we obtain

I(u) ≥ �qλ
8q =: αλ

for any u ∈ W 1,H(RN ) with ‖u‖ = δλ. The proof is completed. �
Consider the minimizer

Mλ := inf
u∈B(0,δλ)

Iλ(u),

where δλ is dfined in Lemma 4.7. For this, we have the following control.

Lemma 4.8. Let (H1) -- (H2) and (H̃3) be satified and let λ > 0. Then −∞ < Mλ < 0.

Proof. Exploiting the proof of Lemma 4.7, we prove that Mλ > −∞. Using (H̃3), there is a function 
ψ ∈ W 1,H(RN ) such that

Iλ(tψ) = tβ
[
tp−β

p 

(
‖∇ψ‖pp + ‖ψ‖pp

)
+ tq−β

q

(
‖∇ψ‖qq,μ + ‖∇ψ‖qq,μ

− λ

∫
RN

K2(x)|ψ|q log(|tψ|) dx + λ

q

∫
RN

K2(x)|ψ|q dx
)

− tp
∗−β

p∗

∫
RN

K1(x)|ψ|p∗
dx−

∫
RN

K3(x)
β

|ψ|β dx

⎤⎦ < 0,

for t > 0 small enough. In the previous inequality we used the fact that β < p. Thus we conclude the 
proof. �

Now, we get the compactness property for Iλ, under the threshold cK given by

cK :=
(
p∗ − q

2p∗q

)
S

p∗
p∗−p − p∗ − β

β

(
q − β

qβ

) p∗
p∗−β

(
2qβ

p∗ − q

) β
p∗−β

‖K3‖1 (4.22)

with S set as in (4.6).

Lemma 4.9. Let (H1) -- (H2) and (H̃3) be satified and let λ > 0. Let {un}n∈N ⊂ W 1,H(RN ) be a bounded 
(PS)c sequence with c < cK . Then there exists u ∈ W 1,H(RN ) such that, up to a subsequence, un → u in 
W 1,H(RN ) as n → ∞.

Proof. Fix c < cK and let {un}n∈N be a bounded (PS)c sequence in W 1,H(RN ) satisfying (2.1). Arguing 
as in the proof of Lemma 4.5, we can find that

l ≥ S
1 

p∗−p , (4.23)

with l given in (4.12).
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Next, by Lemma 3.2 and Young’s inequality, considering also assumption (H̃3), we have

Iλ(un) − 1
q
〈I ′λ(un), un〉

≥
(

1
q
− 1 

p∗

) ∫
RN

K1(x)|un|p
∗
dx +

(
1
q
− 1 

β

) ∫
RN

K3(x)|un|β dx

≥
(
p∗ − q

2p∗q

) ∫
RN

K1(x)|un|p
∗
dx− p∗ − β

β

(
q − β

qβ

) p∗
p∗−β

(
2qβ

p∗ − q

) β
p∗−β

‖K3‖1,

which implies, by using (2.1), (4.12) and (4.15), that

c ≥
(
p∗ − q

2p∗q

)(
lp

∗
+
∥∥∥[K1]

1 
p∗ u

∥∥∥p∗

p∗

)

− p∗ − β

β

(
q − β

qβ

) p∗
p∗−β

(
2qβ

p∗ − q

) β
p∗−β

‖K3‖1.

Therefore, from (4.23) and again (H̃3), we conclude that

c >

(
p∗ − q

2p∗q

)
S

p∗
p∗−p

− p∗ − β

β

(
q − β

qβ

) p∗
p∗−β

(
2qβ

p∗ − q

) β
p∗−β

‖K3‖1.

Thus, we get a contradiction from (4.22) and we know that l = 0. Hence, by (4.17), our desired result 
follows. �

Proof of Theorem 4.6 completed. Let λ > 0 and let us set

m :=
(
p∗ − r

2p∗r

)
Sp

p∗
p∗−p

⎡⎣p∗ − β

β

(
r − β

rβ

) p∗
p∗−β

(
2rβ

p∗ − r

) β
p∗−β

⎤⎦−1

.

Then, we dfine κλ := min {mλ,m}, with mλ given in (4.21).
Now, let us assume that

max
{
‖K3‖1, ‖K3‖ q

q−β

}
< κλ.

By Lemmas 4.7, 4.8 and applying the Ekeland’s variational principle for the complete metric space B(0, δλ), 
then there exists a (PS)Mλ

sequence {vn}n ⊂ B(0, δλ). Again, from Lemma 4.8 we have Mλ < 0. Thus, 
since when ‖K3‖1 < m we have that cK > 0, with cK given in (4.22), we can apply Lemma 4.9 to {vn}n, 
and this time we get v ∈ W 1,H(RN ) a weak solution of (4.19) such that Iλ(v) = Mλ < 0.

5. Radial solution for the double phase equation

In this section, we study the existence of radial solution for equation (1.1) when K1 = 1. In addition, we 
need the following structural assumption



22 A. Bahrouni et al. / J. Math. Anal. Appl. 547 (2025) 129311 

(H5) μ, K2 and K3 are three radial functions.

The main result of this section reads as follows.

Theorem 5.1. Let (H1) -- (H2) and (H5) be satified.

(i) Suppose that (H3) -- (H4) hold true. If 1 < p < q < β < r < p∗ and γ = λ, then for any λ ≥ λ∗, with 
λ∗ as given in Lemma 4.3, equation (1.1) admits at least one nontrivial radial weak solution.

(ii) Suppose that (H̃3) holds true. If 1 < β < p < q = r < p∗ and γ = 1, then for any λ > 0 equation (1.1)
admits at least one nontrivial radial weak solution.

Proof. (i) Using Theorem 2.3 and replacing W 1,H(RN ) by W 1,H
rad (RN ) in combination with the argument 

employed in the proof of Theorem 4.1, Iλ admits a nontrivial critical point u0 ∈ W 1,H
rad (RN ). Next, we will 

show that u is a critical point of Iλ in the space W 1,H(RN ). To this end, we will apply the Principle of 
Symmetric Criticality, see Palais [27]. Thus, let O(N) denotes the group of rotations in RN and the action 
O(N) ×W 1,H(RN ) → W 1,H(RN ) is given by

(gu)(x) = u(g(x)) for any x ∈ RN ,

which is isometric. Furthermore, since μ is a radial function, the functional Iλ is invariant under the action 
of g, since for any g ∈ O(N) and any u ∈ W 1,H(RN ), we have

Iλ(gu) = �(gu) −
∫
RN

|gu|p∗

p∗
dx− λ

∫
RN

K2(x)
r

|gu|r log(|gu|) dx

+ λ

∫
RN

K2(x)
r2 |gu|r dx− λ

∫
RN

K3(x)
β

|gu|β dx

= �(u) −
∫
RN

|u|p∗

p∗
dx− λ

∫
RN

K2(x)
r

|u|r log(|gu|) dx

+ λ

∫
RN

K2(x)
r2 |u|r dx− λ

∫
RN

K3(x)
β

|u|β dx.

From the above information, it is easy to check that

Fix(O(N)) =
{
u ∈ W 1,H(RN ) : gu = u for any g ∈ O(N)

}
= W 1,H

rad (RN ).

Hence by the Principe of Symmetric Criticality of Palais, u0 is a nontrivial critical point of Iλ in W 1,H(RN ).
(ii) The second assertion follows by combining the above argument with the existence result of Theo
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