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This paper is concerned with multiplicity results for parametric singular double 
phase problems in RN via the Nehari manifold approach. It is shown that the 
problem under consideration has at least two nontrivial weak solutions provided 
the parameter is sufficiently small. The idea is to split the Nehari manifold into 
three disjoint parts minimizing the energy functional on two of them. The third set 
turns out to be the empty set for small values of the parameter.
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1. Introduction

In this paper we consider quasilinear elliptic equations in RN driven by the double phase operator and 
a right-hand side consisting of a singular and a parametric term. Recall that the double phase operator is 
defined by

div(A(u)) := div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
for u ∈ W 1,H(RN ), (1.1)

where 1 < p < q and with a nonnegative weight function μ ∈ L1(RN ) while W 1,H(RN ) is the appropriate 
Musielak-Orlicz Sobolev function space, see Section 2 for more details. Note that the operator in (1.1)
is closely related to the p-Laplacian (for μ ≡ 0) and the (q, p)-Laplacian (for infΩ μ > 0). The physical 
motivation of such operator goes back to Zhikov [44] who introduced the functional

J(u) =
∫
Ω

(
|∇u|p + μ(x)|∇u|q

)
dx (1.2)
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in order to provide models for strongly anisotropic materials where Ω is a bounded domain. Other appli-
cations can be found in the works of Bahrouni-Rădulescu-Repovš [1] on transonic flows, Benci-D’Avenia-
Fortunato-Pisani [6] on quantum physics and Cherfils-Il′yasov [10] on reaction diffusion systems.

It is easy to see that J(·) defined in (1.2) has unbalanced growth and the ellipticity of J(·) changes on 
the set where the weight function is zero. For further studies of functionals with (p, q)-growth we refer to 
the works of Baroni-Colombo-Mingione [4,5], Byun-Oh [8], Colombo-Mingione [12,13], De Filippis-Palatucci 
[15], Marcellini [28,29], Ok [34,35], Ragusa-Tachikawa [40] and the references therein.

In this paper we study the following singular problem

− div(A(u)) + up−1 + μ(x)uq−1 = ξ(x)u−α + λuν−1 in RN , (1.3)

with λ > 0 being the parameter to be specified where we assume the following assumptions on the data:

(H): (i) 1 < p < q < N , q < p∗ = Np
N−p and 0 ≤ μ(·) ∈ L∞(RN );

(ii) 0 < α < 1 and q < ν < p∗;
(iii) ξ(x) > 0 for a.a. x ∈ RN and ξ ∈ Lσ(RN ) ∩ L∞(RN ), where σ > 1 and there exists κ ≥ 1 such 

that

p < κ ≤ p∗ and 1
σ

+ 1 − α

κ
= 1.

We call a function u ∈ W 1,H(RN ) a weak solution of problem (1.3) if ξ(·)u−αv ∈ L1(RN ), u > 0 for a.a. 
x ∈ RN and if ∫

RN

(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
· ∇v dx +

∫
RN

(
up−1 + μ(x)uq−1

)
v dx

=
∫
RN

ξ(x)u−αv dx + λ

∫
RN

uν−1v dx
(1.4)

is satisfied for all v ∈ W 1,H(RN ). It is easy to see that the definition of a weak solution in (1.4) is well-defined. 
The corresponding energy functional Ψλ : W 1,H(RN ) → R for problem (1.3) is given by

Ψλ(u) = 1
p
‖u‖p1,p + 1

q

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
− 1

1 − α

∫
RN

ξ(x)|u|1−α dx− λ

ν
‖u‖νν .

Our main result reads as follows.

Theorem 1.1. Let hypotheses (H) be satisfied. Then there exists λ∗ > 0 such that for all λ ∈ (0, λ∗] problem 
(1.3) has at least two weak solutions u∗, v∗ ∈ W 1,H(RN ) such that Ψλ(u∗) < 0 < Ψλ(v∗).

The idea in the proof of Theorem 1.1 is the usage of the so-called Nehari manifold which is defined by

Nλ =

⎧⎨
⎩u ∈ W 1,H(RN ) \ {0} : ‖u‖p1,p + ‖∇u‖qq,μ + ‖u‖qq,μ =

∫
RN

ξ(x)|u|1−α dx + λ‖u‖νν

⎫⎬
⎭ .

We point out that Nλ contains all nontrivial weak solutions of problem (1.3) but Nλ is smaller than the 
whole space W 1,H(RN ). We are going to split Nλ into three disjoint parts and the minimizers of two of 
them provide us the two different weak solutions. The third set turns out to be the empty set.
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This method was introduced by Nehari [32,33] and turned into a very powerful tool in order to find 
solutions for differential equations, especially when no regularity theory exists as it is the case for our 
problem. We refer to Szulkin-Weth [41] for a nice introduction to this technique.

To the best of our knowledge this is the first work dealing with a singular double phase problem on the 
whole of RN . The motivation of the paper comes from a recent work of Liu-Dai-Papageorgiou-Winkert [27]
who studied a similar problem but on bounded domains Ω ⊆ RN and solutions in the space W 1,H

0 (Ω). In 
our setting, the situation is different because we do not have simple embeddings of the form Ls1(RN ) ↪→
Ls2(RN ) for s2 ≤ s1 due to the unboundedness of the domain. Instead we need to strengthen the hypotheses 
on ξ(·), see (H)(iii). On the other hand, since we do not use an equivalent norm as it is the case in 
[27], we were able to relax the assumptions on the weight function μ(·) and also on the exponents p and 
q. Indeed, in [27] it is supposed that μ ∈ C0,1(Ω) while we only need μ to be bounded. Moreover, the 
condition

q

p
< 1 + 1

N
(1.5)

is required in [27] which was used for the first time by Baroni-Colombo-Mingione [4, see (1.8)] in order to 
obtain regularity results of local minimizers for double phase integrals. The condition is needed, for instance, 
for the density of smooth functions in suitable Musielak-Orlicz Sobolev spaces. In our paper it is enough to 
suppose that q < p∗ which is weaker than inequality (1.5).

Existence results for singular double phase problems on bounded domains have only been done in few 
recent works. Chen-Ge-Wen-Cao [9] treated the problem

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
= b(x)|u|−ϑ−1u + λf(x, u) in Ω, u = 0 on ∂Ω,

where 0 < ϑ < 1 and f is a Carathéodory function. It is shown that the problem has at least one weak 
solution with negative energy. Singular Finsler double phase problems have been recently studied by Farkas-
Winkert [17] where the existence of a weak solution to the problem

− div
(
F p−1(∇u)∇F (∇u) + μ(x)F q−1(∇u)∇F (∇u)

)
= up∗−1 + λ

(
uα−1 + g(u)

)
in Ω,

with u = 0 on ∂Ω is shown by applying variational tools, while (RN , F ) stands for a Minkowski space. 
This work was extended to singular Finsler problems with nonlinear boundary condition by Farkas-Fiscella-
Winkert [18]. In all these works, the domain is bounded, only the existence of one weak solution is shown 
and the methods are different from ours.

Finally, we mention some papers dealing with existence results for a double phase setting (or non-
standard growth) on bounded domains without singular term by applying different tools like critical 
point theory, Moses theory and variational tools as comparison and truncation techniques. We refer to 
Bahrouni-Rădulescu-Winkert [2], Barletta-Tornatore [3], Colasuonno-Squassina [11], El Manouni-Marino-
Winkert [16], Gasiński-Papageorgiou [19], Gasiński-Winkert [20–22], Liu-Dai [24,25], Marino-Winkert [30], 
Papageorgiou-Rădulescu-Repovš [36], Papageorgiou-Vetro-Vetro [37], Perera-Squassina [38], Rădulescu [39], 
Zeng-Bai-Gasiński-Winkert [42,43] and the references therein. Only the work of Liu-Dai [26] deals with a 
double phase operator on the whole of RN but without a singular term.

The paper is organized as follows. In Section 2 we present the main properties of the Musielak-Orlicz 
Sobolev spaces defined on RN including some embedding results. Section 3 is devoted to the proof of 
Theorem 1.1 which is splited into several propositions.
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2. Preliminaries

This section is concerned to the main properties of Musielak-Orlicz Sobolev spaces defined on RN . The 
results are mainly taken from Colasuonno-Squassina [11], Harjulehto-Hästö [23], Musielak [31] and Liu-Dai 
[26].

For 1 ≤ r < ∞, Lr(RN ) and Lr(RN ; RN ) stand for the usual Lebesgue spaces endowed with the norm 
‖ · ‖r. Furthermore, we denote by W 1,r(RN ) (1 < r < ∞) the usual Sobolev space equipped with the norm

‖u‖1,r =
(
‖∇u‖rr + ‖u‖rr

) 1
r .

Suppose condition (H)(i) and let M(RN ) be the space of all measurable functions u : RN → R. Moreover, 
let H : RN × [0, ∞) → [0, ∞) be the function defined by

H(x, t) = tp + μ(x)tq.

Then, by LH(RN ) we denote the Musielak-Orlicz Lebesgue space given by

LH(RN ) =

⎧⎨
⎩u ∈ M(RN ) :

∫
RN

H(x, |u|) dx < +∞

⎫⎬
⎭ ,

which is endowed with the Luxemburg norm

‖u‖H = inf

⎧⎨
⎩τ > 0 :

∫
RN

H
(
x,

|u|
τ

)
dx ≤ 1

⎫⎬
⎭ .

From Liu-Dai [26, Theorem 2.7 (i)] we know that the space LH(RN ) is a reflexive Banach space.
Furthermore, we introduce the seminormed space

Lq
μ(RN ) =

⎧⎨
⎩u ∈ M(RN ) :

∫
RN

μ(x)|u|q dx < +∞

⎫⎬
⎭

with the seminorm

‖u‖q,μ =

⎛
⎝∫
RN

μ(x)|u|q dx

⎞
⎠

1
q

.

Similarly, we define Lq
μ(RN ; RN ).

The Musielak-Orlicz Sobolev space W 1,H(RN ) is defined by

W 1,H(RN ) =
{
u ∈ LH(RN ) : |∇u| ∈ LH(RN )

}
equipped with the norm

‖u‖ = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. As before, it is clear that W 1,H(RN ) is a reflexive Banach space, see Liu-Dai 
[26, Theorem 2.7 (ii)].
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Moreover, we have the continuous embedding

W 1,H(RN ) ↪→ Lr(RN ) for all r ∈ [p, p∗], (2.1)

see Liu-Dai [26, Theorem 2.7(iii)].
Let

�(u) =
∫
RN

(
|∇u|p + μ(x)|∇u|q + |u|p + μ(x)|u|q

)
dx. (2.2)

The norm ‖ · ‖ and the modular function � are related as follows, see Liu-Dai [24, Proposition 2.1] or 
Crespo-Blanco-Gasiński-Harjulehto-Winkert [14, Proposition 2.15].

Proposition 2.1. Let (H)(i) be satisfied, let y ∈ W 1,H(RN ) and let � be defined by (2.2). Then the following 
hold:

(i) If y �= 0, then ‖y‖ = λ if and only if �( y
λ ) = 1;

(ii) ‖y‖ < 1 (resp. > 1, = 1) if and only if �(y) < 1 (resp. > 1, = 1);
(iii) If ‖y‖ < 1, then ‖y‖q ≤ �(y) ≤ ‖y‖p;
(iv) If ‖y‖ > 1, then ‖y‖p ≤ �(y) ≤ ‖y‖q;
(v) ‖y‖ → 0 if and only if �(y) → 0;
(vi) ‖y‖ → +∞ if and only if �(y) → +∞.

3. Proof of Theorem 1.1

We recall that the corresponding energy functional Ψλ : W 1,H(RN ) → R of problem (1.3) is defined by

Ψλ(u) = 1
p
‖u‖p1,p + 1

q

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
− 1

1 − α

∫
RN

ξ(x)|u|1−α dx− λ

ν
‖u‖νν .

We know that Ψλ is not a C1-functional because of the singular term in problem (1.3). For u ∈ W 1,H(RN ) \
{0}, we introduce the fibering function ωu : [0, +∞) → R given by

ωu(t) = Ψλ(tu) for all t ≥ 0.

Clearly, ωu ∈ C∞((0, ∞)). The idea in the proof of Theorem 1.1 is to minimize the energy functional 
Ψλ : W 1,H(RN ) → R on the so-called Nehari manifold Nλ. This manifold is defined as

Nλ =
{
u ∈ W 1,H(RN ) \ {0} : ‖u‖p1,p + ‖∇u‖qq,μ + ‖u‖qq,μ =

∫
RN

ξ(x)|u|1−α dx + λ‖u‖νν
}

=
{
u ∈ W 1,H(RN ) \ {0} : ω′

u(1) = 0
}
.

In order to find our two different weak solutions stated in Theorem 1.1 we have to decompose the set Nλ

into three disjoint sets. To this end, let

N+
λ =

{
u ∈ Nλ : (p + α− 1)‖u‖p1,p + (q + α− 1)

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
> λ(ν + α− 1)‖u‖νν

}
,

= {u ∈ Nλ : ω′′
u(1) > 0} ,
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N 0
λ =

{
u ∈ Nλ : (p + α− 1)‖u‖p1,p + (q + α− 1)

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
= λ(ν + α− 1)‖u‖νν

}
,

= {u ∈ Nλ : ω′′
u(1) = 0} ,

N−
λ =

{
u ∈ Nλ : (p + α− 1)‖u‖p1,p + (q + α− 1)

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
< λ(ν + α− 1)‖u‖νν

}
= {u ∈ Nλ : ω′′

u(1) < 0} .

The next proposition will show that the functional Ψλ restricted to Nλ is coercive.

Proposition 3.1. Let hypotheses (H) be satisfied. Then Ψλ

∣∣
Nλ

is coercive.

Proof. Taking u ∈ Nλ with ‖u‖ > 1, we obtain from the definition of Nλ that

−λ

ν
‖u‖νν = −1

ν

(
‖u‖p1,p + ‖∇u‖qq,μ + ‖u‖qq,μ

)
+ 1

ν

∫
RN

ξ(x)|u|1−α dx. (3.1)

Combining (3.1) with Ψλ, using Proposition 2.1 (iv) along with Hölder’s inequality, see hypothesis (H)(iii), 
and applying the embedding (2.1) leads to

Ψλ(u) =
[
1
p
− 1

ν

]
‖u‖p1,p +

[
1
q
− 1

ν

] (
‖∇u‖qq,μ + ‖u‖qq,μ

)
+

[
1
ν
− 1

1 − α

] ∫
RN

ξ(x)|u|1−α dx

≥
[
1
q
− 1

ν

]
�(u) +

[
1
ν
− 1

1 − α

]
‖ξ‖σ‖u‖1−α

κ

≥ c1‖u‖p − c2‖u‖1−α

for some constants c1, c2 > 0 since p < q < ν by hypotheses (H)(i), (ii). Therefore, because of 1 −α < 1 < p, 
the assertion is proved. �

We define m+
λ = infN+

λ
Ψλ.

Proposition 3.2. Let hypotheses (H) be satisfied and suppose that N+
λ �= ∅. Then m+

λ < 0.

Proof. Choosing u ∈ N+
λ �= ∅ and noticing that N+

λ ⊆ Nλ gives

− 1
1 − α

∫
RN

ξ(x)|u|1−α dx = − 1
1 − α

(
‖u‖p1,p + ‖∇u‖qq,μ + ‖u‖qq,μ

)
+ λ

1 − α
‖u‖νν . (3.2)

Since u ∈ N+
λ , we have

λ‖u‖νν <
p + α− 1
ν + α− 1‖u‖

p
1,p + q + α− 1

ν + α− 1
(
‖∇u‖qq,μ + ‖u‖qq,μ

)
. (3.3)

Combining (3.2) and (3.3) with the definition of Ψλ leads to

Ψλ(u) = 1
p
‖u‖p1,p + 1

q

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
− 1

1 − α

∫
RN

ξ(x)|u|1−α dx− λ

ν
‖u‖νν

=
[
1 − 1

]
‖u‖p1,p +

[
1 − 1

] (
‖∇u‖qq,μ + ‖u‖qq,μ

)
+ λ

[
1 − 1

]
‖u‖νν
p 1 − α q 1 − α 1 − α ν
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<

[
−(p + α− 1)
p(1 − α) + p + α− 1

ν + α− 1 · ν + α− 1
ν(1 − α)

]
‖u‖p1,p

+
[
−(q + α− 1)
q(1 − α) + q + α− 1

ν + α− 1 · ν + α− 1
ν(1 − α)

] (
‖∇u‖qq,μ + ‖u‖qq,μ

)

= p + α− 1
1 − α

[
1
ν
− 1

p

]
‖u‖p1,p + q + α− 1

1 − α

[
1
ν
− 1

q

] (
‖∇u‖qq,μ + ‖u‖qq,μ

)
< 0,

due to p < q < ν. Therefore, Ψλ

∣∣
N+

λ
< 0 which implies m+

λ < 0. �
Proposition 3.3. Let hypotheses (H) be satisfied. Then there exists λ > 0 such that N 0

λ = ∅ for all (0, λ).

Proof. We are going to prove the assertion via contradiction. To this end, let us assume that for every λ > 0
there exists λ ∈ (0, λ) such that N 0

λ �= ∅. Thus, for any given λ > 0 there exists an element u ∈ N 0
λ such 

that

(p + α− 1)‖u‖p1,p + (q + α− 1)
(
‖∇u‖qq,μ + ‖u‖qq,μ

)
= λ(ν + α− 1)‖u‖νν . (3.4)

Because of u ∈ Nλ we have

(ν + α− 1)‖u‖p1,p + (ν + α− 1)
(
‖∇u‖qq,μ + ‖u‖qq,μ

)
= (ν + α− 1)

∫
RN

ξ(x)|u|1−α dx + λ(ν + α− 1)‖u‖νν .
(3.5)

Subtracting (3.4) from (3.5) results in

(ν − p)‖u‖p1,p + (ν − q)
(
‖∇u‖qq,μ + ‖u‖qq,μ

)
= (ν + α− 1)

∫
RN

ξ(x)|u|1−α dx. (3.6)

From (3.6) we obtain by using Proposition 2.1(iii), (iv), hypothesis H(iii) and (2.1) that

min {‖u‖p, ‖u‖q} ≤ c3‖u‖1−α

for some c3 > 0 since 1 − α < 1 < p < q < ν. Therefore,

‖u‖ ≤ c4 (3.7)

for some c4 > 0.
On the other hand, from (3.4), taking Proposition 2.1(iii), (iv) and (2.1) into account, we obtain

min {‖u‖p, ‖u‖q} ≤ λc5‖u‖ν

for some c5 > 0. This leads to

‖u‖ ≥
(

1
λc5

) 1
ν−p

or ‖u‖ ≥
(

1
λc5

) 1
ν−q

.

Due to p < q < ν, we see that if λ → 0+, then ‖u‖ → +∞ contradicting (3.7). �
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Proposition 3.4. Let hypotheses (H) be satisfied. Then there exists λ̂ ∈ (0, λ] such that N±
λ �= ∅ for all 

λ ∈ (0, ̂λ). Furthermore, for any λ ∈ (0, ̂λ), there exists u∗ ∈ N+
λ such that Ψλ(u∗) = m+

λ < 0 and 
u∗(x) ≥ 0 for a.a. x ∈ RN .

Proof. Let u ∈ W 1,H(RN ) \ {0}. We introduce the function ψ̂u : (0, +∞) → R given by

ψ̂u(t) = tp−ν‖u‖p1,p − t−ν−α+1
∫
RN

ξ(x)|u|1−α dx.

First note, since ν − p < ν + α− 1, there exists t̂0 > 0 such that

ψ̂u

(
t̂0
)

= max
t>0

ψ̂u(t).

Thus, ψ̂′
u(t̂0) = 0, or equivalently

(p− ν)t̂p−ν−1
0 ‖u‖p1,p + (ν + α− 1)t̂−ν−α

0

∫
RN

ξ(x)|u|1−α dx = 0,

which implies

t̂0 =
[

(ν + α− 1)
∫
RN ξ(x)|u|1−α dx

(ν − p)‖u‖p1,p

] 1
p+α−1

.

Furthermore, we obtain

ψ̂u

(
t̂0
)

=

[
(ν − p)‖u‖p1,p

] ν−p
p+α−1

[
(ν + α− 1)

∫
RN ξ(x)|u|1−α dx

] ν−p
p+α−1

‖u‖p1,p

−

[
(ν − p)‖u‖p1,p

] ν+α−1
p+α−1

[
(ν + α− 1)

∫
RN ξ(x)|u|1−α dx

] ν+α−1
p+α−1

∫
RN

ξ(x)|u|1−α dx

=
(ν − p)

ν−p
p+α−1

(
‖u‖p1,p

) ν+α−1
p+α−1

(ν + α− 1)
ν−p

p+α−1

[ ∫
RN ξ(x)|u|1−α dx

] ν−p
p+α−1

−
(ν − p)

ν+α−1
p+α−1

(
‖u‖p1,p

) ν+α−1
p+α−1

(ν + α− 1)
ν+α−1
p+α−1

[ ∫
RN ξ(x)|u|1−α dx

] ν−p
p+α−1

= p + α− 1
ν − p

[
ν − p

ν + α− 1

] ν+α−1
p+α−1

(
‖u‖p1,p

) ν+α−1
p+α−1[ ∫

RN ξ(x)|u|1−α dx
] ν−p

p+α−1
.

(3.8)

Moreover, from hypothesis H(iii), Hölder’s inequality and the continuous embedding W 1,p(RN ) ↪→ Lκ(RN ), 
we get ∫

RN

ξ(x)|u|1−α dx ≤ c6‖u‖1−α
1,p (3.9)
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for some c6 > 0. Combining (3.8) and (3.9) along with the continuous embedding W 1,p(RN ) ↪→ Lν(RN )
leads to

ψ̂u

(
t̂0
)
− λ‖u‖νν

= p + α− 1
ν − p

[
ν − p

ν + α− 1

] ν+α−1
p+α−1

(
‖u‖p1,p

) ν+α−1
p+α−1[ ∫

RN ξ(x)|u|1−α dx
] ν−p

p+α−1
− λ‖u‖νν

≥ p + α− 1
ν − p

[
ν − p

ν + α− 1

] ν+α−1
p+α−1

(
‖u‖p1,p

) ν+α−1
p+α−1

(
c6‖u‖1−α

1,p
) ν−p

p+α−1
− λc7‖u‖ν1,p

=
[
c8 − λc7

]
‖u‖ν1,p

for some c7, c8 > 0. Hence, we can find λ̂ ∈ (0, λ] independent of u such that

ψ̂u

(
t̂0
)
− λ‖u‖νν > 0 for all λ ∈

(
0, λ̂

)
. (3.10)

Let us now introduce the function ψu : (0, +∞) → R given by

ψu(t) = tp−ν‖u‖p1,p + tq−ν
(
‖∇u‖qq,μ + ‖u‖qq,μ

)
− t−ν−α+1

∫
RN

ξ(x)|u|1−α dx.

Due to ν − q < ν − p < ν + α− 1 there exists t0 > 0 such that

ψu(t0) = max
t>0

ψu(t).

Since ψu ≥ ψ̂u and because of (3.10) we are able to find λ̂ ∈ (0, λ] independent of u such that

ψu (t0) − λ‖u‖νν > 0 for all λ ∈
(
0, λ̂

)
.

Hence, there exist unique t1u < t0 < t2u satisfying

ψu(t1u) = λ‖u‖νν = ψu(t2u) and ψ′
u(t2u) < 0 < ψ′

u(t1u), (3.11)

where

ψ′
u(t) = (p− ν)tp−ν−1‖u‖p1,p + (q − ν)tq−ν−1(‖∇u‖qq,μ + ‖u‖qq,μ

)
− (−ν − α + 1)t−ν−α

∫
RN

ξ(x)|u|1−α dx. (3.12)

Recall that the fibering function ωu : [0, +∞) → R is given by

ωu(t) = Ψλ(tu) for all t ≥ 0.

We have

ω′
u

(
t1u
)

=
(
t1u
)p−1 ‖u‖p1,p +

(
t1u
)q−1 (‖∇u‖qq,μ + ‖u‖qq,μ

)
−

(
t1u
)−α

∫
RN

ξ(x)|u|1−α dx− λ
(
t1u
)ν−1 ‖u‖νν
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and

ω′′
u

(
t1u
)

= (p− 1)
(
t1u
)p−2 ‖u‖p1,p + (q − 1)

(
t1u
)q−2 (‖∇u‖qq,μ + ‖u‖qq,μ

)
+ α

(
t1u
)−α−1

∫
RN

ξ(x)|u|1−α dx− λ(ν − 1)
(
t1u
)ν−2 ‖u‖νν .

(3.13)

Taking (3.11) into account we have

(
t1u
)p−ν ‖u‖p1,p +

(
t1u
)q−ν (‖∇u‖qq,μ + ‖u‖qq,μ

)
−

(
t1u
)−ν−α+1

∫
RN

ξ(x)|u|1−α dx = λ‖u‖νν .

We multiply the equation above with α
(
t1u
)ν−2 and −(ν − 1) 

(
t1u
)ν−2, respectively. This gives

α
(
t1u
)p−2 ‖u‖p1,p + α

(
t1u
)q−2 (‖∇u‖qq,μ + ‖u‖qq,μ

)
− αλ

(
t1u
)ν−2 ‖u‖νν

= α
(
t1u
)−α−1

∫
RN

ξ(x)|u|1−α dx (3.14)

and

− (ν − 1)
(
t1u
)p−2 ‖u‖p1,p − (ν − 1)

(
t1u
)q−2 (‖∇u‖qq,μ + ‖u‖qq,μ

)
+ (ν − 1)

(
t1u
)−α−1

∫
RN

ξ(x)|u|1−α dx

= −λ(ν − 1)
(
t1u
)ν−2 ‖u‖νν .

(3.15)

Now we combine (3.13) and (3.14) in order to obtain

ω′′
u

(
t1u
)

= (p + α− 1)
(
t1u
)p−2 ‖u‖p1,p + (q + α− 1)

(
t1u
)q−2 (‖∇u‖qq,μ + ‖u‖qq,μ

)
− λ(ν + α− 1)

(
t1u
)ν−2 ‖u‖νν

=
(
t1u
)−2

[
(p + α− 1)

(
t1u
)p ‖u‖p1,p + (q + α− 1)

(
t1u
)q (‖∇u‖qq,μ + ‖u‖qq,μ

)
− λ(ν + α− 1)

(
t1u
)ν ‖u‖νν].

(3.16)

Applying (3.12), (3.13) and (3.15) results in

ω′′
u

(
t1u
)

= (p− ν)
(
t1u
)p−2 ‖u‖p1,p + (q − ν)

(
t1u
)q−2 (‖∇u‖qq,μ + ‖u‖qq,μ

)
+ (ν + α− 1)

(
t1u
)−α−1

∫
RN

ξ(x)|u|1−α dx

=
(
t1u
)ν−1

ψ′
u

(
t1u
)
> 0.

(3.17)

Combining (3.16) and (3.17) we see that

(p + α− 1)
(
t1u
)p ‖u‖p1,p + (q + α− 1)

(
t1u
)q (‖∇u‖qq,μ + ‖u‖qq,μ

)
− λ(ν + α− 1)

(
t1u
)ν ‖u‖νν > 0.

Therefore,
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t1uu ∈ N+
λ for all λ ∈

(
0, λ̂

]

and so, N+
λ �= ∅. A similar treatment can be used for the point t2u in order to show that N−

λ �= ∅.
We are now going to prove the second assertion of the proposition. For this purpose, let {un}n∈N ⊂ N+

λ

be a minimizing sequence, that is,

Ψλ(un) ↘ m+
λ < 0 as n → ∞. (3.18)

Since N+
λ ⊂ Nλ we deduce from Proposition 3.1 that {un}n∈N ⊂ W 1,H(RN ) is bounded. So, we can assume 

that

un ⇀ u∗ in W 1,H(RN ), un → u∗ in Lν
loc(RN ) and un → u∗ a. e. in RN . (3.19)

From (3.18), (3.19) and Proposition 3.2 along with the first part of the proof we see that

Ψλ(u∗) ≤ lim inf
n→+∞

Ψλ(un) < 0 = Ψλ(0).

Thus, u∗ �= 0.
Let us now prove that

lim inf
n→+∞

�(un) = � (u∗) . (3.20)

We argue by contradiction and suppose that

lim inf
n→+∞

�(un) > �(u∗).

Applying the representation in (3.11), we deduce that

lim inf
n→+∞

ω′
un

(t1u∗)

= lim inf
n→+∞

⎡
⎣(t1u∗

)p−1 ‖un‖p1,p +
(
t1u∗

)q−1 (‖∇un‖qq,μ + ‖un‖qq,μ
)
−

(
t1u∗

)−α
∫
RN

ξ(x)|un|1−α dx

−λ
(
t1u∗

)ν−1 ‖un‖νν
]

>
(
t1u∗

)p−1 ‖u∗‖p1,p +
(
t1u∗

)q−1 ( ‖∇u∗‖qq,μ + ‖u∗‖qq,μ
)
−

(
t1u∗

)−α
∫
RN

ξ(x)|u∗|1−α dx

− λ
(
t1u∗

)ν−1 ‖u∗‖νν
= ω′

u∗(t1u∗) = tν−1
u∗

[
ψu∗

(
t1u∗

)
− λ‖u∗‖νν

]
= 0.

From this we conclude that there exists n0 ∈ N such that ω′
un

(
t1u∗

)
> 0 for all n > n0. Since un ∈ N+

λ ⊂ Nλ

and ω′
un

(t) = tν−1 [ψun
(t) − λ‖un‖νν ] we derive that ω′

un
(t) < 0 for all t ∈ (0, 1) and ω′

un
(1) = 0. Hence, 

t1u∗ > 1.
We know that ωu∗ is decreasing on [0, t1u∗ ]. Therefore,

Ψλ

(
t1u∗u∗) ≤ Ψλ (u∗) < m+

λ .

Since t1u∗u∗ ∈ N+ we then obtain
λ
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m+
λ ≤ Ψλ

(
t1u∗u∗) < m+

λ ,

which is a contradiction. This shows (3.20).
From (3.20) we conclude that there exists a subsequence (still denoted by un) such that �(un) → �(u∗). 

Using Proposition 2.1(v) we see that un → u in W 1,H(RN ) and so Ψλ(un) → Ψλ(u∗). Therefore, Ψλ(u∗) =
m+

λ . As un ∈ N+
λ for all n ∈ N, we have

(p + α− 1)‖un‖p1,p + (q + α− 1)
(
‖∇un‖qq,μ + ‖un‖qq,μ

)
− λ(ν + α− 1)‖un‖νν > 0,

which by letting n → +∞ results in

(p + α− 1) ‖u∗‖p1,p + (q + α− 1)
(
‖∇u∗‖qq,μ + ‖u∗‖qq,μ

)
− λ(ν + α− 1) ‖u∗‖νν ≥ 0. (3.21)

Since λ ∈ (0, ̂λ) and λ̂ ≤ λ we are able to apply Proposition 3.3 in order to know that the left-hand side in 
(3.21) is strictly positive. Consequently, we deduce that u∗ ∈ N+

λ . As we can always use |u∗| instead of u∗, 
we may assume that u∗(x) ≥ 0 for a.a. x ∈ RN with u∗ �= 0. This finishes the proof. �
Proposition 3.5. Let hypotheses (H) be satisfied, let v ∈ W 1,H(RN ) and let λ ∈ (0, ̂λ]. Then there exists 
ζ > 0 such that Ψλ(u∗) ≤ Ψλ(u∗ + tv) for all t ∈ [0, ζ].

Proof. Let u ∈ N+
λ and let Ξ: W 1,H(RN ) × (0, ∞) → R be defined by

Ξ(y, t) = tp+α−1‖u + y‖p1,p + tq+α−1
(
‖∇(u + y)‖qq,μ + ‖u + y‖qq,μ

)
−

∫
RN

ξ(x)|u + y|1−α dx

− λtν+α−1‖u + y‖νν for all y ∈ W 1,H(RN ).

First note that Ξ(0, 1) = 0 because u ∈ N+
λ ⊂ Nλ. Furthermore, due to u ∈ N+

λ , we have

Ξ′
t(0, 1) = (p + α− 1)‖u‖p1,p + (q + α− 1)

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
− λ(ν + α− 1)‖u‖νν > 0.

Thus, we may apply the implicit function theorem, see Berger [7, p. 115], in order to find ε > 0 and a 
continuous function ϕ : Bε(0) → (0, ∞) such that

ϕ(0) = 1 and ϕ(y)(u + y) ∈ Nλ for all y ∈ Bε(0),

where

Bε(0) =
{
u ∈ W 1,H(RN ) : ‖u‖ < ε

}
.

If we choose ε > 0 sufficiently small, we can have that

ϕ(0) = 1 and ϕ(y)(u + y) ∈ N+
λ for all y ∈ Bε(0). (3.22)

Now we introduce the function ηv : [0, +∞) → R given by

ηv(t) = (p− 1) ‖u∗ + tv‖p1,p + (q − 1)
(
‖∇u∗ + t∇v‖qq,μ + ‖u∗ + tv‖qq,μ

)
+ α

∫
RN

ξ(x) |u∗ + tv|1−α dx− λ(ν − 1) ‖u∗ + tv‖νν .
(3.23)
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Since u∗ belongs to both N+
λ and Nλ we obtain

α

∫
RN

ξ(x) |u∗|1−α dx = α ‖u∗‖p1,p + α
(
‖∇u∗‖qq,μ + ‖u∗‖qq,μ

)
− λα ‖u∗‖νν (3.24)

and

(p + α− 1) ‖u∗‖p1,p + (q + α− 1)
(
‖∇u∗‖qq,μ + ‖u∗‖qq,μ

)
− λ(ν + α− 1) ‖u∗‖νν > 0. (3.25)

From (3.23), (3.24) and (3.25) we conclude that ηv(0) > 0 and due to the continuity of ηv : [0, +∞) → R

there exists ζ0 > 0 such that

ηv(t) > 0 for all t ∈ [0, ζ0].

From the first part of the proof, see (3.22), we know that for every t ∈ [0, ζ0] there exists ϕ(t) > 0 such that

ϕ(t) (u∗ + tv) ∈ N+
λ and ϕ(t) → 1 as t → 0+. (3.26)

Furthermore, Proposition 3.4 implies that

m+
λ = Ψλ (u∗) ≤ Ψλ (ϕ(t) (u∗ + tv)) for all t ∈ [0, ζ0].

Using this fact and (3.26) there exists ζ ∈ (0, ζ0] sufficiently small such that

m+
λ = Ψλ (u∗) ≤ Ψλ (u∗ + tv) for all t ∈ [0, ζ].

This follows from the fact that ω′′
u∗(1) > 0 and its continuity in t which gives ω′′

u∗+tv(1) > 0 for t ∈ [0, ζ]
with ζ ∈ (0, ζ0]. The proof is finished. �

Now we are in the position to show that u∗ is indeed a nontrivial weak solution of problem (1.3) with 
negative energy.

Proposition 3.6. Let hypotheses (H) be satisfied and let λ ∈ (0, ̂λ]. Then u∗ is a weak solution of problem 
(1.3) such that Ψλ(u∗) < 0.

Proof. From Proposition 3.4 we already know that u∗ ≥ 0 for a.a. x ∈ RN and Ψλ(u∗) < 0. We claim that 
u∗ > 0 for a.a. x ∈ RN . Suppose this is not the case and assume that there exists a set C of positive measure 
such that u∗ = 0 in C. Let v ∈ W 1,H(RN ), v > 0, and let t ∈ (0, ζ) (see Proposition 3.5) small enough such 
that (u∗ + tv)1−α > (u∗)1−α a.e. in RN \ C. Therefore, from Proposition 3.5 we get

0 ≤ Ψλ(u∗ + tv) − Ψλ(u∗)
t

= 1
p

‖u∗ + tv‖p1,p − ‖u∗‖p1,p
t

+ 1
q

‖∇(u∗ + tv)‖qq,μ − ‖∇u∗‖qq,μ
t

+ 1
q

‖u∗ + tv‖qq,μ − ‖u∗‖qq,μ
t

− 1
(1 − α)tα

∫
C

ξ(x)v1−α dx− 1
1 − α

∫
RN\C

ξ(x) (u∗ + tv)1−α − (u∗)1−α

t
dx

− λ ‖u∗ + tv‖νν − ‖u∗‖νν

ν t
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<
1
p

‖u∗ + tv‖p1,p − ‖u∗‖p1,p
t

+ 1
q

‖∇(u∗ + tv)‖qq,μ − ‖∇u∗‖qq,μ
t

+ 1
q

‖u∗ + tv‖qq,μ − ‖u∗‖qq,μ
t

− 1
(1 − α)tα

∫
C

ξ(x)v1−α dx− λ

ν

‖u∗ + tv‖νν − ‖u∗‖νν
t

.

Hence

0 ≤ Ψλ(u∗ + tv) − Ψλ(u∗)
t

→ −∞ as t → 0+,

which is a contradiction. Therefore, u∗ > 0 a.e. in RN .
Next, we will show that

ξ(·)(u∗)−αv ∈ L1(RN ) for all v ∈ W 1,H(RN ) (3.27)

and ∫
RN

(
|∇u∗|p−2∇u∗ + μ(x)|∇u∗|q−2∇u∗

)
· ∇v dx +

∫
RN

(
(u∗)p−1 + μ(x)(u∗)q−1

)
v dx

�
∫
RN

ξ(x)(u∗)−αv dx + λ

∫
RN

(u∗)ν−1v dx for all v ∈ W 1,H(RN ) with v ≥ 0.
(3.28)

Let v ∈ W 1,H(RN ), v ≥ 0 and choose a decreasing sequence {tn}n∈N ⊆ (0, 1] such that lim
n→∞

tn = 0. For 
n ∈ N, the functions

fn(x) = ξ(x) (u∗(x) + tnv(x))1−α − u∗(x)1−α

tn

are measurable, nonnegative and it holds

lim
n→∞

fn(x) = (1 − α)ξ(x)u∗(x)−αv(x) for a. a.x ∈ RN .

Applying Fatou’s lemma yields∫
RN

ξ(x) (u∗)−α
v dx ≤ 1

1 − α
lim inf
n→∞

∫
RN

fn dx. (3.29)

Using again Proposition 3.5 one has for n ∈ N large enough

0 ≤ Ψλ(u∗ + tnv) − Ψλ(u∗)
tn

= 1
p

‖u∗ + tnv‖p1,p − ‖u∗‖p1,p
tn

+ 1
q

‖∇(u∗ + tnv)‖qq,μ − ‖∇u∗‖qq,μ
tn

+ 1
q

‖u∗ + tnv‖qq,μ − ‖u∗‖qq,μ
tn

− 1
1 − α

∫
RN

fn dx− λ

ν

‖u∗ + tnv‖νν − ‖u∗‖νν
tn

.

Passing to the limit as n → ∞ and applying (3.29) we obtain first (3.27) and it also follows (3.28). We point 
out that it is sufficient to show (3.27) for nonnegative v ∈ W 1,H(RN ).

Now, we can conclude that u∗ is a weak solution of (1.3), see, for example, Farkas-Winkert [17, Proof of 
Theorem 1.1] for the full calculation. We skip these long calculations as it is quite standard. �
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Now we are interested in a second nontrivial solution of (1.3) by applying the manifold N−
λ .

Proposition 3.7. Let hypotheses (H) be satisfied. Then there exists λ∗ ∈ (0, ̂λ] such that Ψλ

∣∣
N−

λ
> 0 for all 

λ ∈ (0, λ∗].

Proof. First note that N−
λ �= ∅ by Proposition 3.4 and so we can pick u ∈ N−

λ . Applying the continuous 
embedding W 1,p(RN ) → Lν(RN ) and the definition of the manifold N−

λ it is easy to see that

λ(ν + α− 1)cν9‖u‖ν1,p � λ(ν + α− 1)‖u‖νν
> (p + α− 1)‖u‖p1,p + (q + α− 1)

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
≥ (p + α− 1)‖u‖p1,p

for some c9 > 0 which gives

‖u‖1,p ≥
[

p + α− 1
λcν9(ν + α− 1)

] 1
ν−p

. (3.30)

Let us now suppose that the assertion of the proposition is not true. Then there exists u ∈ N−
λ such that 

Ψλ(u) ≤ 0, which means,

1
p
‖u‖p1,p + 1

q

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
− 1

1 − α

∫
RN

ξ(x)|u|1−α dx− λ

ν
‖u‖νν ≤ 0. (3.31)

On the other hand, as N−
λ ⊆ Nλ, we obtain

1
q

(
‖∇u‖qq,μ + ‖u‖qq,μ

)
= 1

q

∫
RN

ξ(x)|u|1−α dx + λ

q
‖u‖νν − 1

q
‖u‖p1,p. (3.32)

Now we can use (3.32) in (3.31) which results in
(

1
p
− 1

q

)
‖u‖p1,p +

(
1
q
− 1

1 − α

) ∫
RN

ξ(x)|u|1−α dx + λ

(
1
q
− 1

ν

)
‖u‖νν ≤ 0.

Since p < q < ν and by applying hypothesis (H)(ii) we derive from the inequality above that

q − p

pq
‖u‖p1,p ≤ q + α− 1

q(1 − α)

∫
RN

ξ(x)|u|1−α dx ≤ q + α− 1
q(1 − α) c10‖u‖1−α

1,p

for some c10 > 0. Hence,

‖u‖1,p ≤ c11 (3.33)

for some c11 > 0. Using (3.33) in (3.30) then yields

0 <
c12
c11

≤ λ
1

ν−p with c12 =
[

p + α− 1
cν9(ν + α− 1)

] 1
ν−p

> 0.

Letting λ → 0+ gives a contradiction as 1 < p < ν. Therefore, there exists λ∗ ∈ (0, ̂λ] such that Ψλ

∣∣
N−

λ
> 0

for all λ ∈ (0, λ∗]. �



16 W. Liu, P. Winkert / J. Math. Anal. Appl. 507 (2022) 125762
Now we minimize Ψλ on the manifold N−
λ . To this end, let m−

λ = infN−
λ

Ψλ.

Proposition 3.8. Let hypotheses (H) be satisfied and let λ ∈ (0, λ∗]. Then there exists v∗ ∈ N−
λ with v∗ ≥ 0

such that m−
λ = Ψλ (v∗) > 0.

Proof. For v ∈ N−
λ �= ∅, using the embedding W 1,p(RN ) ↪→ Lν(RN ), we obtain

λ(ν + α− 1)‖v‖νν ≥ (p + α− 1)‖v‖p1,p ≥ (p + α− 1) 1
cp9

‖v‖pν

for c9 > 0, see the proof of Proposition 3.7. Therefore,

‖v‖ν ≥
[

p + α− 1
λcp9(ν + α− 1)

] 1
ν−p

. (3.34)

Let {vn}n∈N ⊂ N−
λ ⊂ Nλ be a minimizing sequence. From Proposition 3.1 we know that {vn}n∈N ⊂

W 1,H(RN ) is bounded. So, we may assume that

vn ⇀ v∗ in W 1,H(RN ) vn → v∗ in Lν
loc(RN ) and vn → v∗ a. e. in RN ,

due to (2.1). Note that v∗ �= 0 by (3.34). Now we can use the point t2v∗ > 0 (see (3.11)) for which we have

ψv∗(t2v∗) = λ ‖v∗‖νν and ψ′
v∗(t2v∗) < 0.

Note that in the proof of Proposition 3.4 we showed that t2v∗v∗ ∈ N−
λ .

We are going to prove that limn→+∞ �(vn) = �(v∗) for a subsequence (still denoted by vn). Suppose this 
is not true, then we have for a subsequence if necessary that

Ψλ

(
t2v∗v∗

)
< lim

n→∞
Ψλ

(
t2v∗vn

)
.

Note that Ψλ(t2v∗vn) ≤ Ψλ(vn) since it is the global maximum because of ω′′
vn(1) < 0. Using this along with 

t2v∗v∗ ∈ N−
λ it follows

m−
λ ≤ Ψλ(t2v∗v∗) < m−

λ ,

a contradiction. Hence, for a subsequence, we have limn→+∞ �(vn) = �(v∗) and since the integrand 
corresponding to the modular function �(·) is uniformly convex, this implies �(vn−v∗

2 ) → 0. Then Propo-
sition 2.1(v) implies that vn → v∗ in W 1,H(RN ) and the continuity of Ψλ gives Ψλ(vn) → Ψλ(v∗) and so 
Ψλ(v∗) = m−

λ .
Because of vn ∈ N−

λ for all n ∈ N, we have the inequality

(p + α− 1)‖vn‖p1,p + (q + α− 1)
(
‖∇vn‖qq,μ + ‖vn‖qq,μ

)
− λ(ν + α− 1)‖vn‖νν < 0. (3.35)

Passing to the limit (3.35) as n → +∞ we get

(p + α− 1)‖v∗‖p1,p + (q + α− 1)
(
‖∇v∗‖qq,μ + ‖v∗‖qq,μ

)
− λ(ν + α− 1)‖v∗‖νν ≤ 0.

Taking Proposition 3.3 into account, we conclude that v∗ ∈ N−
λ . Since the treatment also works for |v∗|

instead of v∗, we may assume that v∗(x) ≥ 0 for a.a. x ∈ RN such that v∗ �= 0. Proposition 3.7 finally shows 
that m− > 0. �
λ
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Now we obtain a second weak solution of problem (1.3).

Proposition 3.9. Let hypotheses (H) be satisfied and let λ ∈ (0, λ∗]. Then v∗ is a weak solution of problem 
(1.3) such that Ψλ(v∗) > 0.

Proof. As in the proof of Proposition 3.5 replacing u∗ by v∗ in the definition of ηv we can prove that for 
every t ∈ [0, ζ0] there exists ϕ(t) > 0 such that

ϕ(t) (v∗ + tv) ∈ N−
λ and ϕ(t) → 1 as t → 0+.

Applying Proposition 3.8 gives

m−
λ = Ψλ (v∗) ≤ Ψλ (ϕ(t) (v∗ + tv)) for all t ∈ [0, ζ0]. (3.36)

Let us prove that v∗ > 0 for a.a. x ∈ RN . Suppose there is a set C with positive measure such that 
v∗ = 0 in C. Choosing v ∈ W 1,H(RN ) with v > 0 and let t ∈ (0, ζ0), see (3.36), we have (ϕ(t)(v∗ +
tv))1−α > (ϕ(t)v∗)1−α a.e. in RN \ C. From (3.36) and since ωv∗(1) is the global maximum which implies 
Ψλ(v∗) = ωv∗(1) ≥ ωv∗(ϕ(t)) = Ψλ(ϕ(t)v∗), we then obtain

0 ≤ Ψλ(ϕ(t)(v∗ + tv)) − Ψλ(v∗)
t

≤ Ψλ(ϕ(t)(v∗ + tv)) − Ψλ(ϕ(t)v∗)
t

= 1
p

‖ϕ(t)(v∗ + tv)‖p1,p − ‖ϕ(t)v∗‖p1,p
t

+ 1
q

‖∇(ϕ(t)(v∗ + tv))‖qq,μ − ‖∇(ϕ(t)v∗)‖qq,μ
t

+ 1
q

‖ϕ(t)(v∗ + tv)‖qq,μ − ‖ϕ(t)v∗‖qq,μ
t

− ϕ(t)1−α

(1 − α)tα

∫
C

ξ(x)h1−αdx

− 1
1 − α

∫
RN\C

ξ(x) (ϕ(t)(v∗ + tv))1−α − (ϕ(t)v∗)1−α

t
dx− λ

ν

‖ϕ(t)(v∗ + tv)‖νν − ‖ϕ(t)v∗‖νν
t

<
1
p

‖ϕ(t)(v∗ + tv)‖p1,p − ‖ϕ(t)v∗‖p1,p
t

+ 1
q

‖∇(ϕ(t)(v∗ + tv))‖qq,μ − ‖∇(ϕ(t)v∗)‖qq,μ
t

+ 1
q

‖ϕ(t)(v∗ + tv)‖qq,μ − ‖ϕ(t)v∗‖qq,μ
t

− ϕ(t)1−α

(1 − α)tα

∫
C

ξ(x)h1−αdx

− λ

ν

‖ϕ(t)(v∗ + tv)‖νν − ‖ϕ(t)v∗‖νν
t

.

From the considerations above we see that

0 ≤ Ψλ(ϕ(t)(v∗ + tv)) − Ψλ(ϕ(t)v∗)
t

→ −∞ as t → 0+,

which is a contradiction. This shows that v∗ > 0 a.e. in RN .
The rest of the proof is similar to the one of Proposition 3.6. Note that (3.27) and (3.28) can be proven 

similarly using again (3.36) and the inequality ωv∗(1) ≥ ωv∗(ϕ(t)) along with v∗ > 0. From Proposition 3.8
we know that Ψλ(v∗) > 0. �

Finally, the proof of Theorem 1.1 is now a direct consequence of Propositions 3.6 and 3.9.
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