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The main goal of this paper is the study of an elliptic obstacle problem with a 
double phase phenomena and a multivalued reaction term which also depends on 
the gradient of the solution. Such term is called multivalued convection term. Under 
quite general assumptions on the data, we prove that the set of weak solutions to 
our problem is nonempty, bounded and closed. Our proof is based on a surjectivity 
theorem for multivalued mappings generated by the sum of a maximal monotone 
multivalued operator and a bounded multivalued pseudomonotone mapping.
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1. Introduction

Let Ω ⊆ RN be a bounded domain with Lipschitz boundary ∂Ω and let 1 < p < q < N . We study the 
following double phase problem with a multivalued convection term and obstacle effect

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
∈ f(x, u,∇u) in Ω,

u(x) ≤ Φ(x) in Ω,

u = 0 on ∂Ω,

(1.1)
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where μ : Ω → [0, ∞) is Lipschitz continuous, f : Ω ×R ×RN → 2R is a multivalued function depending on 
the gradient of the solution and Φ: Ω → R is a given function. The precise conditions on the data will be 
presented in Section 3.

The novelty of our work is the fact that we combine several different phenomena in one problem. To be 
more precise problem (1.1) contains

(1) a double phase operator;
(2) a multivalued convection term;
(3) an obstacle restriction.

To the best of our knowledge, this is the first work which combines all these phenomena in one problem. 
We are going to prove that problem (1.1) has at least one solution. The proof is based on a surjectivity result 
of Le [19] for multivalued mappings generated by the sum of a maximal monotone multivalued operator 
and a bounded multivalued pseudomonotone mapping.

Since (1.1) is an obstacle problem, the solutions of (1.1) are supposed to be in the set{
u ∈ W 1,H

0 (Ω)
∣∣ u(x) ≤ Φ(x) for a.a. x ∈ Ω

}
with a given obstacle Φ: Ω → R+ = [0, ∞] where W 1,H(Ω) denotes the Sobolev-Musielak-Orlicz space, see 
Section 2 for its definition. When Φ ≡ +∞, problem (1.1) becomes the following double phase problem with 
multivalued convection term

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
∈ f(x, u,∇u) in Ω,

u = 0 on ∂Ω.

In addition, when f is a single-valued function, the above problem reduces to

− div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
= f(x, u,∇u) in Ω,

u = 0 on ∂Ω,
(1.2)

which was recently studied by Gasiński-Winkert in [17].
Problems of type (1.2) are driven by the so-called double phase operator whose name comes from the 

fact that its behavior depends on the points where μ vanishes or not. Such problems go back to Zhikov who 
introduced such classes of operators to describe models of strongly anisotropic materials by treating the 
functional

ω 	→
∫

(|∇ω|p + μ(x)|∇ω|q) dx, (1.3)

see [30], [31], [32] and the monograph of Zhikov-Kozlov-Oleinik [33]. Integral functionals of the form (1.3)
have been studied by several authors concerning regularity results and non-standard growth. We refer 
to Baroni-Colombo-Mingione [3], [4], [5], Baroni-Kussi-Mingione [6], Colombo-Mingione [10], [11], Cupini-
Marcellini-Mascolo [12] and Marcellini [21], [22] and the references therein.

Existence results for problems like (1.1) in the case of single-valued equations without convection term 
have been obtained by several authors, see, for example, Colasuonno-Squassina [9], Gasiński-Papageorgiou 
[15, Proposition 3.4], Gasiński-Winkert [16], Liu-Dai [20], Perera-Squassina [27] and problems with other 
general differential operator and a convection term by Gasiński-Papageorgiou [14].

Works which are closely related to ours dealing with certain types of double phase problems can be found 
in Bahrouni-Rădulescu-Repovš [1], [2], Cencelj-Rădulescu-Repovš [8], Papageorgiou-Rădulescu-Repovš [25], 
[24], Rădulescu [28] Zhang-Rădulescu [29] and the references therein.
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2. Preliminaries

Let Ω be a bounded domain in RN and let 1 ≤ r ≤ ∞. We denote by Lr(Ω) := Lr(Ω; R) and Lr(Ω; RN )
the usual Lebesgue spaces endowed with the norms

‖u‖r :=

⎛⎝∫
Ω

|u(x)|r dx

⎞⎠
1
r

for all u ∈ Lr(Ω),

and

‖w‖r,N :=

⎛⎝∫
Ω

‖w(x)‖rRN dx

⎞⎠
1
r

for all w ∈ Lr(Ω;RN ),

respectively. In what follows, for simplicity, the norms of Lr(Ω; R) and Lr(Ω; RN ) are both denoted ‖ · ‖r, 
even if we do not mention it explicitly. Moreover, W 1,r(Ω) and W 1,r

0 (Ω) stand for the Sobolev spaces 
endowed with the norms ‖ · ‖1,r and ‖ · ‖1,r,0, respectively. For any 1 < r < ∞ we denote by r′ the conjugate 
of r, that is, 1

r + 1
r′ = 1.

In the entire paper we suppose the following condition:

H(μ): μ : Ω → R+ = [0, ∞) is Lipschitz continuous and 1 < p < q < N are chosen such that

q

p
< 1 + 1

N
.

We consider the function H : Ω ×R+ → R+ defined by

H(x, t) = tp + μ(x)tq for all (x, t) ∈ Ω ×R+.

Based on the definition of H we are able to introduce the Musielak-Orlicz space LH(Ω) given by

LH(Ω) =

⎧⎨⎩u
∣∣∣ u : Ω → R is measurable and ρH(u) :=

∫
Ω

H(x, |u|) dx < +∞

⎫⎬⎭
endowed with the Luxemburg norm

‖u‖H = inf
{
τ > 0

∣∣ ρH (u
τ

)
≤ 1

}
.

We know that LH(Ω) turns out to be uniformly convex and so it is a reflexive Banach space. In addition, 
we introduce the seminormed function space

Lq
μ(Ω) =

⎧⎨⎩u
∣∣∣ u : Ω → R is measurable and

∫
Ω

μ(x)|u|q dx < +∞

⎫⎬⎭
which is equipped with the seminorm ‖ · ‖q,μ given by

‖u‖q,μ =

⎛⎝∫
Ω

μ(x)|u|q dx

⎞⎠
1
q

.
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It is known that the embeddings

Lq(Ω) ↪→ LH(Ω) ↪→ Lp(Ω) ∩ Lq
μ(Ω)

are continuous, see Colasuonno-Squassina [9, Proposition 2.15 (i), (iv) and (v)]. Taking into account these 
embeddings we have the inequalities

min {‖u‖pH, ‖u‖qH} ≤ ‖u‖pp + ‖u‖qq,μ ≤ max {‖u‖pH, ‖u‖qH} (2.1)

for all u ∈ LH(Ω).
By W 1,H(Ω) we denote the corresponding Sobolev space which is defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖|∇u|‖H.
By W 1,H

0 (Ω) we denote the completion of C∞
0 (Ω) in W 1,H(Ω), that is,

W 1,H
0 (Ω) = C∞

0 (Ω)
W 1,H(Ω)

Besides, from condition H(μ) and Colasuonno-Squassina [9, Proposition 2.18] we can see that

‖u‖1,H,0 = ‖∇u‖H for all u ∈ W 1,H
0 (Ω),

is an equivalent norm on W 1,H
0 (Ω). Now we are able to rewrite (2.1) for the space W 1,H

0 (Ω) in the form

min
{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
≤ ‖∇u‖pp + ‖∇u‖qq,μ ≤ max

{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
(2.2)

for all u ∈ W 1,H
0 (Ω). Since both spaces W 1,H(Ω) and W 1,H

0 (Ω) are uniformly convex, we know that they 
are reflexive Banach spaces.

Furthermore, we have the following compact embedding

W 1,H
0 (Ω) ↪→ Lr(Ω) (2.3)

for each 1 < r < p∗, where p∗ is the critical exponent to p given by

p∗ := Np

N − p
, (2.4)

see Colasuonno-Squassina [9, Proposition 2.15].
Let us now consider the eigenvalue problem for the r-Laplacian with homogeneous Dirichlet boundary 

condition and 1 < r < ∞ which is defined by

−Δru = λ|u|r−2u in Ω,

u = 0 on ∂Ω.
(2.5)
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A number λ ∈ R is an eigenvalue of 
(
−Δr,W

1,r
0 (Ω)

)
if problem (2.5) has a nontrivial solution u ∈

W 1,r
0 (Ω) which is called an eigenfunction corresponding to the eigenvalue λ. We denote by σr the set of 

eigenvalues of 
(
−Δr,W

1,r
0 (Ω)

)
. From Lê [18] we know that the set σr has a smallest element λ1,r which is 

positive, isolated, simple and it can be variationally characterized through

λ1,r = inf
{
‖∇u‖rr
‖u‖rr

: u ∈ W 1,r
0 (Ω), u �= 0

}
.

Let A : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ be the operator defined by

〈A(u), v〉H :=
∫
Ω

(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
· ∇v dx, (2.6)

for u, v ∈ W 1,H
0 (Ω), where 〈·, ·〉H is the duality pairing between W 1,H

0 (Ω) and its dual space W 1,H
0 (Ω)∗. 

The properties of the operator A : W 1,H
0 (Ω) → W 1,H

0 (Ω)∗ are summarized in the following proposition, see 
Liu-Dai [20].

Proposition 2.1. The operator A defined by (2.6) is bounded, continuous, monotone (hence maximal mono-
tone) and of type (S+).

Next, we recall the notions of pseudomonotonicity and generalized pseudomonotonicity for multivalued 
operators (see Gasiński-Papageorgiou [13, Definition 1.4.8]).

Definition 2.2. Let X be a real reflexive Banach space. The operator A : X → 2X∗ is called

(a) pseudomonotone if the following conditions hold:
(i) the set A(u) is nonempty, bounded, closed and convex for all u ∈ X.
(ii) A is upper semicontinuous from each finite-dimensional subspace of X to the weak topology on 

X∗.
(iii) if {un} ⊂ X with un ⇀ u in X and if u∗

n ∈ A(un) is such that

lim sup
n→∞

〈u∗
n, un − u〉X∗×X ≤ 0,

then to each element v ∈ X, exists u∗(v) ∈ A(u) with

〈u∗(v), u− v〉X∗×X ≤ lim inf
n→∞

〈u∗
n, un − v〉X∗×X .

(b) generalized pseudomonotone if the following holds: Let {un} ⊂ X and {u∗
n} ⊂ X∗ with u∗

n ∈ A(un) be 
such that un ⇀ u in X and u∗

n ⇀ u∗ in X∗. If

lim sup
n→∞

〈u∗
n, un − u〉X∗×X ≤ 0,

then the element u∗ lies in A(u) and

〈u∗
n, un〉X∗×X → 〈u∗, u〉X∗×X .

It is not difficult to see that every pseudomonotone operator is generalized pseudomonotone, see, for 
example, Carl-Le-Motreanu [7, Proposition 2.122] or Gasiński-Papageorgiou [13, Proposition 1.4.11]. How-
ever, under the additional assumption of boundedness, we obtain the converse statement, see, for example, 
Carl-Le-Motreanu [7, Proposition 2.123] or Gasiński-Papageorgiou [13, Proposition 1.4.12].
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Proposition 2.3. Let X be a real reflexive Banach space and assume that A : X → 2X∗ satisfies the following 
conditions:

(i) For each u ∈ X we have that A(u) is a nonempty, closed and convex subset of X∗.
(ii) A : X → 2X∗ is bounded.
(iii) If un ⇀ u in X and u∗

n ⇀ u∗ in X∗ with u∗
n ∈ A(un) and if

lim sup
n→∞

〈u∗
n, un − u〉X∗×X ≤ 0,

then u∗ ∈ A(u) and

〈u∗
n, un〉X∗×X → 〈u∗, u〉X∗×X .

Then the operator A : X → 2X∗ is pseudomonotone.

Furthermore, we will state the following surjectivity theorem for multivalued mappings which is for-
mulated by the sum of a maximal monotone multivalued operator and a bounded multivalued pseu-
domonotone mapping. The following theorem was proved in Le [19, Theorem 2.2]. We use the notation 
BR(0) := {u ∈ X : ‖u‖X < R}.

Theorem 2.4. Let X be a real reflexive Banach space, let F : D(F ) ⊂ X → 2X∗ be a maximal monotone 
operator, let G : D(G) = X → 2X∗ be a bounded multivalued pseudomonotone operator and let L ∈ X∗. 
Assume that there exist u0 ∈ X and R ≥ ‖u0‖X such that D(F ) ∩BR(0) �= ∅ and

〈ξ + η − L, u− u0〉X∗×X > 0

for all u ∈ D(F ) with ‖u‖X = R, for all ξ ∈ F (u) and for all η ∈ G(u). Then the inclusion

F (u) + G(u) � L

has a solution in D(F ).

3. Main results

We assume the following hypotheses on the multivalued nonlinearity f : Ω ×R ×RN → 2R.

H(f): The multivalued convection mapping f : Ω ×R ×RN → 2R has nonempty, compact and convex values 
such that
(i) the multivalued mapping x 	→ f(x, s, ξ) has a measurable selection for all (s, ξ) ∈ R ×RN ;
(ii) the multivalued mapping (s, ξ) 	→ f(x, s, ξ) is upper semicontinuous;
(iii) there exists α ∈ L

q1
q1−1 (Ω) and a1, a2 ≥ 0 such that

|η| ≤ a1|ξ|p
q1−1
q1 + a2|s|q1−1 + α(x)

for all η ∈ f(x, s, ξ), for a.a. x ∈ Ω, for all s ∈ R and for all ξ ∈ RN , where 1 < q1 < p∗ with the 
critical exponent p∗ given in (2.4);

(iv) there exist w ∈ L1
+(Ω) and b1, b2 ≥ 0 such that

b1 + b2λ
−1
1,p < 1,
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and

ηs ≤ b1|ξ|p + b2|s|p + w(x)

for all η ∈ f(x, s, ξ), for a.a. x ∈ Ω, for all s ∈ R and for all ξ ∈ RN , where λ1,p is the first 
eigenvalue of the Dirichlet eigenvalue problem for the p-Laplacian, see (2.5).

Let K be a subset of W 1,H
0 (Ω) defined by

K :=
{
u ∈ W 1,H

0 (Ω)
∣∣ u(x) ≤ Φ(x) for a.a. x ∈ Ω

}
, (3.1)

where Φ is a function such that

Φ: Ω → [0,+∞]. (3.2)

It is obvious that the set K is a nonempty, closed and convex subset of W 1,H
0 (Ω).

Remark 3.1. From assumption (3.2) we see that 0 ∈ K.

The weak solutions for problem (1.1) are understood in the following sense.

Definition 3.2. We say that u ∈ K is a weak solution of problem (1.1) if there exists η ∈ L
q1

q1−1 (Ω) such that 
η(x) ∈ f(x, u(x), ∇u(x)) for a.a. x ∈ Ω and∫

Ω

(
|∇u|p−2∇u · ∇(v − u) + μ(x)|∇u|q−2∇u · ∇(v − u)

)
dx =

∫
Ω

η(x)(v − u) dx

for all v ∈ K, where K is given by (3.1).

The main result of this paper is stated as the next theorem.

Theorem 3.3. Assume that H(μ) and H(f) hold. Then the set of solutions of problem (1.1), denoted by S, 
is nonempty, bounded and closed.

Proof. We first prove that problem (1.1) has at least one solution.
Let i : W 1,H

0 (Ω) → Lq1(Ω) be the embedding operator from W 1,H
0 (Ω) to Lq1(Ω) with its adjoint operator 

i∗ : Lq′1(Ω) → W 1,H
0 (Ω)∗. Since 1 < q1 < p∗ the embedding operator i is compact and so i∗ as well. However, 

from hypotheses H(f)(i) and (iii), we can use the same process as the proof of Papageorgiou-Vetro-Vetro 

[26, Proposition 3] to see that the Nemytskij operator Ñf : W 1,H
0 (Ω) ⊂ Lq1(Ω) → 2Lq′1 (Ω) associated to the 

multivalued mapping f given by

Ñf (u) :=
{
η ∈ Lq′1(Ω)

∣∣ η(x) ∈ f(x, u(x),∇u(x)) for a.a. x ∈ Ω
}

for all u ∈ W 1,H
0 (Ω) is well-defined.

Set Nf := i∗ ◦ Ñf : W 1,H
0 (Ω) → 2W

1,H
0 (Ω)∗ . Also, let us consider the indicator function IK : W 1,H

0 (Ω) →
R := R ∪ {+∞} of K defined by

IK(u) :=
{

0 if u ∈ K,

+∞ otherwise.
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Under the definitions above, it is not difficult to see that u ∈ K is a weak solution of problem (1.1), see 
Definition 3.2, if and only if u solves the following inequality:

Find u ∈ K and η ∈ Nf (u) such that

〈A(u) − η, v − u〉H + IK(v) − IK(u) ≥ 0 (3.3)

for all v ∈ W 1,H
0 (Ω) where A : W 1,H

0 (Ω) → W 1,H
0 (Ω)∗ is given in (2.6).

Consider the multivalued operator A : W 1,H
0 (Ω) → 2W

1,H
0 (Ω)∗ defined by

A(u) = A(u) −Nf (u) for all u ∈ W 1,H
0 (Ω).

Then, using a standard procedure, we can reformulate problem (3.3) to the following inclusion problem: 
Find u ∈ K such that

A(u) + ∂IK(u) � 0, (3.4)

where the notation ∂IK stands for the subdifferential of IK in the sense of convex analysis.
We are going to apply the surjectivity result for multivalued pseudomonotone operators, see Theorem 2.4. 

To this end, for any u ∈ W 1,H
0 (Ω) and η ∈ Nf (u), by condition H(f)(iii), we obtain

‖η‖q
′
1

W 1,H
0 (Ω)∗

≤ ‖i∗‖q′1‖ξ‖q
′
1

Lq′1 (Ω)
= ‖i∗‖q′1

∫
Ω

|ξ(x)|q′1 dx

≤ C0

∫
Ω

(
a1|∇u(x)|p

q1−1
q1 + a2|u(x)|q1−1 + α(x)

)q′1
dx

≤ C1

(
‖∇u‖pp + ‖u‖q1q1 + ‖α‖q

′
1

q′1

)
(3.5)

for some C0, C1 > 0, where ξ ∈ Ñf (u) is such that η = i∗ξ. This combined with W 1,H
0 (Ω) ⊂ W 1,p

0 (Ω), 
W 1,H

0 (Ω) ⊂ Lq1(Ω), 1 < q1 < p∗ and Proposition 2.1 implies that A : W 1,H
0 (Ω) → 2W

1,H
0 (Ω)∗ is a bounded 

mapping.
We claim that A is pseudomonotone. In order to prove this, we are going to apply Proposition 2.3. Indeed, 

by hypotheses H(f) we know that A has nonempty, closed and convex values. Moreover, as we just showed, 
A is a bounded mapping. So, it is enough to verify that A is a generalized pseudomonotone operator.

Let {un} ⊂ W 1,H
0 (Ω), {u∗

n} ⊂ W 1,H
0 (Ω)∗ and u ∈ W 1,H

0 (Ω) be such that

un ⇀ u in W 1,H
0 (Ω), u∗

n ⇀ u∗ in W 1,H
0 (Ω)∗, (3.6)

u∗
n ∈ A(un) for all n ∈ N,

lim sup
n→∞

〈u∗
n, un − u〉H ≤ 0. (3.7)

So, for each n ∈ N, we are able to find an element ξn ∈ Ñf (un) such that u∗
n = A(un) − i∗ξn. From the fact 

that the embedding from W 1,H
0 (Ω) to Lq1(Ω) is compact, see (2.3), we have un → u in Lq1(Ω). Moreover, 

from (3.5), we see that the sequence {ξn} is bounded in Lq′1(Ω). So, (3.7) leads to
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lim sup
n→∞

〈A(un), un − u〉H ≤ lim sup
n→∞

〈A(un), un − u〉H − lim sup
n→∞

〈ξn, un − u〉Lq1 (Ω)

≤ lim sup
n→∞

〈A(un) − i∗ξn, un − u〉H

= lim sup
n→∞

〈u∗
n, un − u〉H ≤ 0.

This fact along with (3.6) and the (S+)-property of A, see Proposition 2.1, implies that un → u in W 1,H
0 (Ω). 

This yields

〈u∗
n, un〉H → 〈u∗, u〉H and A(un) → A(u) in W 1,H

0 (Ω)∗,

due to the continuity of A, see Proposition 2.1.
Since ξn ∈ Ñf (un) we have ξn(x) ∈ f(x, un(x), ∇un(x)) for a.a. x ∈ Ω. However, (3.5) and (3.6) imply 

that the sequence {ξn} is bounded in Lq′1(Ω). Passing to a subsequence if necessary, we may suppose that 
ξn ⇀ ξ in Lq′1(Ω) for some ξ ∈ Lq′1(Ω). Employing Mazur’s theorem, we are able to find a sequence {ηn} of 
convex combinations of {ξn} such that

ηn → ξ in Lq′1(Ω).

Therefore, we can say that

ηn(x) → ξ(x) for a.a. x ∈ Ω, (3.8)

see Migórski-Ochal-Sofonea [23, Theorem 2.39].
From (3.6) and condition H(f)(iii) we see that the sequence {ξn(x)} is bounded for a.a. x ∈ Ω. So, by 

(3.8), we find a subsequence {ξn(x)} for a.a. x ∈ Ω, still denoted by {ξn(x)}, such that

ξn(x) → ξ(x) as n → ∞.

Keeping in mind that un → u in W 1,H
0 (Ω) and W 1,H

0 (Ω) ⊂ W 1,p
0 (Ω) leads to

un(x) → u(x) and ∇un(x) → ∇u(x) as n → ∞.

Combining the convergence properties above along with the upper semicontinuity of (s, ζ) 	→ f(x, s, ζ) and 
Proposition 3.12 in Migórski-Ochal-Sofonea [23] we obtain

ξ(x) ∈ f(x, u(x),∇u(x)) for a.a. x ∈ Ω.

This means that ξ ∈ Ñf (u), namely, i∗ξ ∈ Nf (u). Therefore, we have u∗ = A(u) + i∗ξ ∈ A(u) which implies 
that A is generalized pseudomonotone.

Because A is a bounded operator with nonempty, closed and convex values, we are now in the position 
to apply Proposition 2.3 in order to conclude that A is a pseudomonotone operator.

Furthermore, we are going to prove that there exists a constant R > 0 such that

〈u∗ + η, u〉H > 0 (3.9)

for all u∗ ∈ A(u), for all η ∈ ∂IK(u) and for all u ∈ W 1,H
0 (Ω) with ‖u‖1,H,0 = R.
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For any u∗ ∈ A(u), we can find ξ ∈ Ñf (u) such that u∗ = A(u) − i∗ξ. Recall that 0 ∈ K, one has

〈u∗ + η, u〉H ≥
∫
Ω

|∇u|p−2∇u · ∇u dx +
∫
Ω

μ(x)|∇u|q−2∇u · ∇u dx

−
∫
Ω

ξ(x)u(x) dx + IK(u) − IK(0)

≥
∫
Ω

|∇u|p−2∇u · ∇u dx +
∫
Ω

μ(x)|∇u|q−2∇u · ∇u dx

−
∫
Ω

ξ(x)u(x) dx + IK(u)

≥ ‖∇u‖pp + ‖∇u‖qq,μ −
∫
Ω

ξ(x)u(x) dx + IK(u).

(3.10)

Note that IK : W 1,H
0 → R is a proper, convex and lower semicontinuous function. Hence, we can apply 

Proposition 1.3.1 in Gasiński-Papageorgiou [13] to find aK , bK > 0 such that

IK(v) ≥ −aK‖v‖1,H,0 − bK for all v ∈ W 1,H
0 (Ω). (3.11)

Additionally, hypothesis H(f)(iv) implies∫
Ω

ξ(x)u(x) dx ≤ b1‖∇u‖pp + b2‖u‖pp + ‖w‖1. (3.12)

Applying (3.11) and (3.12) in (3.10) and taking W 1,H
0 (Ω) ⊆ W 1,p

0 (Ω) as well as

‖u‖pp ≤ λ−1
1,p‖∇u‖pp for all u ∈ W 1,p

0 (Ω),

into account, we get

〈u∗ + η, u〉H
≥ ‖∇u‖pp + ‖∇u‖qq,μ − b1‖∇u‖pp − b2‖u‖pp − ‖w‖1 − aK‖u‖1,H,0 − bK

≥
(
1 − b1 − b2λ

−1
1,p

)
‖∇u‖pp + ‖∇u‖qq,μ − ‖w‖1 − aK‖u‖1,H,0 − bK

≥
(
1 − b1 − b2λ

−1
1,p

) (
‖∇u‖pp + ‖∇u‖qq,μ

)
− ‖w‖1 − aK‖u‖1,H,0 − bK

≥
(
1 − b1 − b2λ

−1
1,p

)
min

{
‖u‖p1,H,0, ‖u‖

q
1,H,0

}
− ‖w‖1 − aK‖u‖1,H,0 − bK ,

where the last inequality is obtained by using inequality (2.2). Since 1 < p < q < N and b1 + b2λ
−1
1,p < 1, we 

can take R0 > 0 large enough such that for all R ≥ R0 it holds(
1 − b1 − b2λ

−1
1,p

)
min {Rp, Rq} − ‖w‖1 − aKR− bK > 0.

Therefore, inequality (3.9) is valid.
Note that ∂IK : W 1,H

0 (Ω) → 2W
1,H
0 (Ω)∗ is a maximal monotone operator. Therefore, we can apply Theo-

rem 2.4 for F = ∂IK , G = A and L = 0. This shows that inclusion (3.4) has at least one solution u ∈ K

which is a solution of (3.3) and so, a solution from (1.1) in the sense of Definition 3.2. Thus, S �= ∅.
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Next, we are going to show that the set of solutions of problem (1.1) is closed in W 1,H
0 (Ω). Let {un} ⊂ S

be a sequence such that

un → u in W 1,H
0 (Ω) (3.13)

for some u ∈ W 1,H
0 (Ω). So, for each n ∈ N, there exists ξn ∈ Ñf (un) such that

〈A(un), v − un〉H + 〈ξn, v − un〉Lq1 (Ω) + IK(v) − IK(un) ≥ 0 (3.14)

for all v ∈ W 1,H
0 (Ω). Hypothesis H(f)(iii) and the convergence in (3.13) ensure that {ξn} is bounded in 

Lq′1(Ω). So, we may assume that

ξn ⇀ ξ in Lq′1(Ω).

As before, from Mazur’s theorem and the upper semicontinuity of (s, η) 	→ f(x, s, η), we can show that

ξ(x) ∈ f(x, u(x),∇u(x)) for a.a. x ∈ Ω,

that is, ξ ∈ Ñf (u). Passing to the upper limit in (3.14) as n → ∞ and taking the lower semicontinuity of 
IK into account it follows that u ∈ K is a solution of problem (1.1). Hence, S is closed.

In the last part of the proof we need to show that S is bounded. If K is bounded, the desired conclusion 
holds automatically. Let us suppose that K is unbounded and in addition, let us assume that S is unbounded. 
Then, there exists a sequence {un} ⊆ S such that

‖un‖1,H,0 → +∞. (3.15)

As before, see (3.10), we can show via a simple calculation that

0 ≥ 〈A(un) − i∗ξn, un〉H
≥

(
1 − b1 − b2λ

−1
1,p

)
min

{
‖un‖p1,H,0, ‖un‖q1,H,0

}
− ‖w‖1 − aK‖un‖1,H,0 − bK

for some ξn ∈ Ñf (un) where we have used the fact that 0 ∈ K. Combining the inequality above and (3.15)
yields a contradiction. Therefore, S is bounded. �
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