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1. Introduction
In this paper we study the boundedness of weak solutions of the following quasilinear elliptic system

—div Ay (z,u, Vu) = Bi(z, u,v, Vu, Vv) in €,

—div As(z,v, Vv) = Ba(x, u, v, Vu, Vo) in Q,
Ai(z,u,Vu) v =Cy(z,u,v) on 09,
As(z,v, Vo) - v = Ca(z,u,v) on 95,

where 2 C RY with N > 1 is a bounded domain with Lipschitz boundary 9, v(z) denotes the outer unit
normal of Q at € 9 and the functions A;: @ x R x RY — RY, B;: O x R x R x RY x RN — R, and
Ci: 00 xR xR — R,i=1,2, satisfy suitable (p, g)-structure conditions with 1 < p,q < occ.
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The main goal of this paper is to prove the existence of a priori bounds for weak solutions of problem
(1.1) under very general conditions on the data. Indeed, the novelties of our work can be stated as follows:

(i) Problem (1.1) is fully coupled even with the gradient of the solutions and with a nonlinear boundary
condition.
(ii) Critical growth is allowed even on the boundary.

The proof of our result uses a modified version of Moser’s iteration technique whose arguments are essentially
based on the monographs of Drédbek-Kufner-Nicolosi [9] and Struwe [32]. We extend with our work recent
results of the authors [19] from the case of a single equation to a system which is a difficult task to undertake.
To the best of our knowledge, a priori bounds for problem (1.1) under such weak conditions have not been
published before and so our results extend several works in this direction.

Let us comment on some relevant references concerning a priori bounds for elliptic systems. In 1992,
Clément-de Figueiredo-Mitidieri [5] studied the semilinear elliptic system

—Au = f(v) in €, u=0 on 09, (12)
—Av = g(u) in , v=0 on 09, .
where f, g are smooth functions such that a, 5 € (0,00) exist with
lim & =« and lim @ =0,
s—0 &P s—oo  §9
where 1 < p,q < oo satisfy
1 1 N -2
if N > 3. (1.3)

p+1 g+l N

Condition (1.3) is the crucial assumption in their proof of a priori bounds for weak solutions of (1.2) and
it can be shown that this condition is optimal. The proof uses the methods applied in the paper of de
Figueiredo-Lions-Nussbaum [11] in which condition (1.3) first appeared. Since both papers deal not only
with a priori bounds but also with the existence of positive solutions, it is worth mentioning the pioneer
work of Lions in [16] concerning the existence of positive solutions for semilinear elliptic equations. An
extension of [5] was done by the same authors in [6] to problems of the form

1.4
—Av = g(SU,’LL,’U, DU7 D'U) in Q7 v=0 on GQ, ( )

{—Au = f(x,u,v, Du, Dv) in Q, u=0 on 09,
where a priori L -estimates are established for positive solutions of (1.4) via a method which combines
Hardy-Sobolev-type inequalities and interpolation. In de Figueiredo-Yang [12] a priori bounds for solutions
of (1.4) (without the gradient dependence on f and g) are obtained via the so-called blow up method and
the results are much more general than those in [6].

In 2004, a new method for a priori estimates for solutions of semilinear elliptic systems of the form

—Au = f(z,u,v) in Q, u=0 on 09,
—Av = g(x,u,v) in Q, v=0 on 99,

was presented by Quittner-Souplet [29] which is based on a bootstrap argument. In addition, we refer to
this work because it gives an overview about the different techniques concerning a priori estimates, see
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the Introduction of [29] and also the references. Concerning a priori estimates for very weak solutions with
power nonlinearities we mention the work of Quittner [28].

A priori bounds and existence of positive solutions for strongly coupled p-Laplace systems have been
established by Zou [37] for systems given by

—Aju+u® =0 in €, u=0 on 09,
—Apv+utvt =0 in Q, v=0 on 0N,

where A,,u = div(|Vu|™ 2Vu) denotes the m-Laplacian.
In 2010, Bartsch-Dancer-Wang [3] studied the local and global bifurcation structure of positive solutions
of the system

{—Au +u=pud+ Bv3u  inQ, u=0 on 09, (15)

—Av + v = pov? + fuv in €, v=0 on 99,

of nonlinear Schrodinger type equations. They developed a new Liouville type theorem for nonlinear elliptic
systems which provides a priori bounds for solution branches of (1.5). Singular quasilinear elliptic systems
in RY have been recently studied by Marano-Marino-Moussaoui [17] for (pi, p2)-Laplace systems given
by

—Apu=ai(z)f(u,v) in RY,
—Ap,v = as(x)g(u,v) in RY, (1.6)

u,v >0 in RV,

where a version of Moser’s iterations is applied in order to obtain L*°-bounds for solutions of (1.6), see also
Marino [18].

Finally, we refer to other works which are related to a priori bounds and existence of weak solutions
of elliptic systems of type (1.1), see, for example, Angenent-Van der Vorst [1], Bahri-Lions [2], Choi
[4], Damascelli-Pardo [8], D’Ambrosio-Mitidieri [7], Ghergu-Rédulescu [10], Hai [13], Kelemen-Quittner
[14], Kosirova-Quittner [15], Mavinga-Pardo [20], Mingione [21], Mitidieri [22], Motreanu [23], Motreanu-
Moussaoui [24], [25], Papageorgiou-Radulescu-Repovs [26], Peletier-Van der Vorst [27], Ramos [30], Souto
[31], Troy [33], Zhang [35], Zhou-Zhang-Liu [36], Zou [38] and the references therein.

The paper is organized as follows. In Section 2 we state the main preliminaries which will be used in the
paper. Section 3 contains the main results of our work. First, we prove that any weak solution of (1.1) belongs

to L"(Q2) x L™(Q) for any finite 7, see Theorem 3.1 and then, in the second part, we are able to show that
each weak solution of (1.1) is essentially bounded, that is, it belongs to L>(Q) x L>(Q), see Theorem 3.2.
Furthermore, we will mention that our results can also be applied to problems with homogeneous Dirichlet

condition, see Theorem 3.4.
2. Preliminaries

Throughout the paper we denote by | - | the norm of RY and - stands for the inner product in RY. For
r € [1,00) we denote by L"(), L"(Q;RY) and W (Q) the usual Lebesgue and Sobolev spaces endowed
with the norms || - ||, and || - |1, given by
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r

lufl, = / Wl dz | . |Vl = / Yl de |
Q Q
1

T T

1Lr = /|Vu|rdx + /|u\rdm

Q Q

[l

For r = oo, the norm of L () is given by

[ I—)
Q

By o we denote the (N — 1)-dimensional Hausdorff (surface) measure and L*(092), 1 < s < oo, stands for
the Lebesgue space on the boundary with the norms

1
s

fuloon = | [lultdr | (@ <s<00)  fulaon = esssuplul
Q

It is well known that the linear trace mapping v: W (Q) — L () is compact for every r5 € [1,r,) and
continuous for ro = r,, where r, is the critical exponent of r on the boundary given by

(N=1)r ifr< N
re =3 N7 reh (2.1)
any m € (1,00) ifr > N.

For simplification we will drop the usage of 7. Moreover, by the Sobolev embedding theorem, we know that
there exists a linear map i: W (Q) — L™ (Q) which is compact for every r; € [1,7*) and continuous for
r1 = r* where the critical exponent is given by

o if r <N
=N e (2.2)
any m € (1,00) if r > N.

For a € R, we set a® := max{+a, 0} and for u € W"(Q) we define u*(-) := u(-)*. It is clear that
uF e W (Q), |ul=ut4+u, w=ut—u". (2.3)

Moreover, | - | stands for the Lebesgue measure on RY and also for the Hausdorff surface measure and it

S
s—1
The following propositions are needed in the proofs of our main results.

will be clear from the context which one is used. If s > 1, then &' := denotes its conjugate.

Proposition 2.1. (/3/, Proposition 2.1]) Let Q C RN, N > 1, be a bounded domain with Lipschitz boundary
00, let 1 < p < o0, and let § be such that p < § < p,. with the critical exponent stated in (2.1) with r = p.
Then, for every € > 0, there exist constants ¢1 > 0 and ¢y > 0 such that

ullf o0 < ellully, + Ee™|lully,  for allu € WHP(Q).

Proposition 2.2. (/19, Proposition 2.2]) Let Q C RN, N > 1, be a bounded domain with Lipschitz boundary
O0N. Let uw € LP(Q2) withu >0 and 1 < p < oo such that

[ulla,, <C
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with a constant C > 0 and a sequence (o) € Ry with o, — 00 as n — co. Then, u € L>®(Q).

Proposition 2.3. (/19, Proposition 2.4]) Let Q C RN, N > 1, be a bounded domain with Lipschitz boundary
00 and let 1 < p < co. If u € WHP(Q) N L>®(Q), then u € L>(09).

In the following we will use the abbreviation
L>®(Q) == L>(Q) N L>®(09).
3. Main results
We now give the structure conditions on the nonlinearities in problem (1.1).

(H) The functions A;: QxR xRY — RN B;: OxRxRxRY xRY - RandC;: 92 xRxR — R,i=1,2,
are Carathéodory functions such that the following holds:

(H1) A, 5,6) < Arfef~" + Asls|™ ™5 + s,

(H2) [ As(w,t, Q)] < Ar[¢|7~! + Aot " + A,

(H3)  Ai(z,s,8) &> Agl¢]P — As|s|™ — Ag,

(H4)  As(z,t,() - ¢ = Agl¢|? — As|t]™ — A,

(H5)  |Bu(z,s,t,&,Q)| < Buls|™ + Balt|” + Bs|s|" t|" + Bal¢|” + Bs[¢|™ + Bol¢]™ [¢|** + Br,
(H6) |By(x,5,t,&,C)| < By|s| + Balt|P + Bs|s|P [t + Bal¢|” + Bs|c|" + Bs|€|"|¢|P* + B,
(H7) [Colw,s,t)] < Culs| + Calt|** + Csls|™ [t|* + Cu,

(H8) [Ca(w,s,1)| < Culs|™ + Calt|® + Cs|s|®|t]** + Cu,

for a.e. x € Q, respectively for a.e. z € 9, for all s, € R, for all £, ¢ € R, with nonnegative constants
Ay, A;, By, By, Cy,Cy, (i € {1,...,6}, j€{1,...,7}, k€ {1,...,4}) and with 1 < p,q < co. Moreover,
the exponents b;, b;, ¢j,¢j,r1,m2 (1€ {1,...,8},j € {1,...,4}) are nonnegative and satisfy the following

assumptions
(BL) <y (E2) n<q
q, . by bs p*—p
(EB) by <p*—1 (E4) be < —*(p —p) (E5) — + =< "
D p q p
by b -
5<p— 6<—("—p Z+=2<
(E6) bs<p—1 ET) by < L(p*—p) (E8) — 4=l P
p p a4 D
- * . bs b -
(£9) b<Z(¢r—q (B10) ba<g —1 B11) 24219
q P q
B . b: b -
(B12) bs < L(¢"—q) (E13) bs<q—1 (Bl4) L4819
q P a4 q
(E15) ¢ <pe—1 (B16) < L(p,—p) (B17) 242 B7P
Dx D qx D«
(B18) & < Z(q—q) (F19) & <q.—1 (B20) 242 14

qx D qx qx
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where the numbers p*, p., ¢*, ¢« are defined by (2.2) and (2.1).

A couple (u,v) € WHP(Q) x W4(Q) is said to be a weak solution of problem (1.1) if

/Al(%u,Vu)-chdx: /Bl(a:,u,v,Vu,Vv)godx+/C1(x,u,v)<pdo
Q Q o0

(3.1)
/Az(x7v,Vv)~Vz/1dx = /Bg(x,u,v,Vu,Vv)wdm—i—/Cg(x,u,v)1/1da
Q Q o)

holds for all (p,1) € WP(Q2) x Wh4(Q). By hypotheses (H) and the Sobolev embedding along with the
continuity of the trace operator it is clear that this definition of a weak solution is well-defined. Indeed, if
we estimate the integral concerning the function By: 2 x R x R x RY x RY — R using condition (H5) we
obtain several mixed terms. Let us consider, for example, the third term on the right-hand side of (H5).
Applying Holder’s inequality we get

B, / s o] o dac
Q

1
s1 e
< Bj /\u|b?’s1 dx /\v|b4s"‘ dx /\<p|s3 dx ,
Q Q Q

where (u,v) € WP (Q) x WH4(Q), p € WHP(Q) and

1 1 1
—+—+—=1
S1 S92 S3

Taking s3 = p* and using s; < %3 as well as sg < % leads to

b3 b4<p*—1

p* g p*

(3.3)

This condition is necessary for the finiteness of the integrals of the right-hand side of (3.2), see also
Remark 3.3. Since we need some stronger conditions in order to apply Moser’s iteration, we suppose condi-
tion (E5) which implies (3.3). In the same way we can prove the finiteness of all integrals in the definition
of (3.1).

Our first result shows that any weak solution of problem (1.1) belongs to the space L"(Q) x L"(Q) for
any finite r.

Theorem 3.1. Let 2 C RN, N > 1, be a bounded domain with Lipschitz boundary OS2 and let hypotheses (H)
be satisfied. Then, every weak solution (u,v) € WHP(Q) x WL4(Q) of problem (1.1) belongs to L" () x L" ()
for every r € (1,00).

Proof. Let (u,v) € WHP(Q) x W14(Q) be a weak solution of (1.1) in the sense of (3.1). We only show
that u € L"(€), the proof for v can be done in the same way. Moreover, taking (2.3) into account, without
any loss of generality, we can assume that u,v > 0 (otherwise we prove the result for u™,v* and v~ ,v ™,
respectively). Moreover, throughout the proof we will denote by M;, i = 1,2,..., constants which may

depend on some natural norms of u and v.
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For every h > 0 we set uj, := min{u, h} and choose ¢ = uu,?” € W'?(Q) for £ > 0 as test function in the
first equation of (3.1). Since Vi = u’Vu + npuuzp_IVuh this results in

/(A1 (x,u, Vu) - Vu)u,? dz + np/(.Al(x, u, Vu) - Vup)uui? ! de

¢ (3.4)

Q
— /Bl(x,u,v,Vu,Vv)uuZp dx+/C1(x,u,v)uqup do.
Q o0

Now we apply (H3) to the first term on the left-hand side of (3.4) which gives

/(Al (z,u, Vu) - Vu)u,? dz

Q

> /(A4|Vu\p — Asu" — Ag) up’ dx
Q

2A4/|vu|pugpdx— (A5+A6)/up*ugpdx— (As + Ag)|Q.
Q Q

In the same way we use (H3) to the second term on the left-hand side. This shows
/ip/(.Al(a?,u, Vu) - Vuh)uuflp_l dx
Q

= KD / (Ai(z,u, Vu) - Vu)u,? dx
{zeQ: u(z)<h}

> Kp / (A4 VulP — Asu™ — Ag) up? da
{eeQ: u(z)<h}

> Aykp / |VulPuy? dx

{zeQ: u(z)<h}

— kp(As + Ag)/up*uzp dx — kp(As + A6)|9.
Q

Taking (H5) into account we get for the first term on the right-hand side of (3.4) the following estimate

/ Bi(z,u,v, Vu, Vo)uu,” d
Q

< / (Biu®* + Bov®? + Baubsvb + By |Vul|* (3.5)
Q
+B5|Vo|’ + Bs|Vu|" Vol + Br) uuf? da.

We are going to estimate each term of the inequality above separately. First, taking into account assumption
(E3), we have

Bl/ubluuzpdx < Bl/up*uzpdx—i—Bﬂm.
Q Q
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Moreover, thanks to Holder’s inequality with s; > 1 such that bes; = ¢*, which is possible by (E4), we have

1/s1 1/s}

By /vbzuuzp dr < By /vbQSl dz /(uuzp)sll dx

Q Q Q

< 8y (1 i)

Applying again Holder’s inequality with exponents x1,y1, 21 > 1 such that

. . 1 11
bsr1 =p*, by =¢q¢, —=1-—-— (3.6)
Z1 T Y1
leads to
Bg/ub%b“uuzp dz
Q
1/ 1/y1 1/21
< Bj /ub”l dx /vb“yl dx /(uuzp)z1 dx
Q Q Q
< M (14 fluuglb.,) .

Note that from (E5) it follows that b < p* as well as by < ¢* and so the choice in (3.6) is possible. Thanks
to Young’s inequality with l% > 1 we have

bs

A\ * Ag\ "~ (e
B4/|Vu|b5uuzp dm:B4/ <<ﬁ) Vu|b5u2b5> ((ﬁ) uul® b5)> dx
Q Q
A A\ 7
p—0b p
< 74/|VU‘puZpdaj+B4 (2‘&1) 5 /umuzpdﬂﬁ
Q Q

A «
< 74/|Vu\Puzpdx+M3 1+/up up? du
) Q

We apply Holder’s inequality with so > 1 such that bgse = ¢ in order to get

1/s2 1/s)

B5/|Vv|b€’uuzp dz < Bs /|vv|besz dr /(uuzp)s; dx
Q Q Q

< My (1 + ||uu2|\£5,2) .
As before, by Holder’s inequality with xo, 32, 20 > 1 such that

1 1 1
brzo = p, bgy2 = q, & 1- . (3.7)

we obtain



G. Marino, P. Winkert / J. Math. Anal. Appl. 482 (2020) 123555 9
B6/|Vu|b7|Vv|b8uuZpdx
Q

1/:132 1/y2 1/22

< Bg /|Vu|b””2 dz /|V1}|b8y2 dz /(uuﬁ)” dz
Q Q

Q
< Ms (1+ [luuzlp.,) .

pz2
which is possible because of (E8). Finally, for the last term on the right-hand side of (3.5) we have
B7/uu2p dx < B7/up*uzp dx + B7|Q|.
Q Q

Hypothesis (H7) gives the following estimate for the boundary term of (3.4)

/(31 (@, u, v)uu,” do < /(Cluc1 + Cov? 4+ Cu® v 4 Cy) uu,? do. (3.8)
a0 a0

Exploiting the condition on ¢; in the first term of (3.8) and applying Holder’s inequality with ¢; > 1 such
that cot1 = ¢« to the second one we have

C’l/uclﬂuzp do < C’l/u”*uzp do + C1]09|
a0 50

and

1/t1 1/t,

Cy /v”uuzp do < Cy /chtl do /(uuzp)t/l do
o9 Q Q

< Mo (1 -+ w1y o0 ) -

respectively. For the third term of (3.8) we apply Holder’s inequality with exponents 3, ys, 23 > 1 such that

1 1 1
33 = P, C4Y3 = Qs —=1-—-— (3.9)
Z3 z3 Ys
in order to get
Cs / uBvuuy’ do
o
1/:03 1/y3 1/23
< C4 /ucsg”3 do /vc4y3 do /(uuzp)z3 do
Q Q Q

< My (14 w2, 00) -

Finally, for the last term of (3.8) we have

C4/uuzpda < C4/up*uzpdo+6’4|89|.
o0 o0
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Note that from the choice of s1, s3 and ¢; in combination with (E4), (E7) and (E16) we have

sh,85 < P and th < Ly
p p

Furthermore, by (3.6), (3.7), (3.9) and the conditions (E5), (E8) and (E17) we see that

*
21,22<p— and 23<&.
p p

Now we combine all the calculations above and set

*

s 1= max{s}, s, 21,22} € (1, %) (3.10)
as well as
’ P+«
t:= max{ty, 23} € (1, ?> (3.11)

which finally gives

1
Ay <§/|Vupu2p dx + Kkp / |Vul|Pup® dm)
Q {z€Q: u(z)<h}

< [(kp+1)(As + Ag) + By + By + M3] /up*uzp dz + (C1 + Cy) /up*uzp do
Q a0
+ Mg |luuyllps + Mo |luug||?, o0 + Mio(k + 1).

Simplifying the inequality above leads to

Ay kp+1

Q
< My (kp + 1)/ p*uzp dx + M2 /Up*uzp do + Mg |luup|Ds
Q 8Q

+ Mo|luug[; oo + Mio(k + 1),

(3.12)

see Marino-Winkert [19, Inequality after (3.7)]. Dividing by %, summarizing the constants and adding on
both sides of (3.12) the nonnegative term <2+

||uu§||g gives

(k+1)P

kp+1
m”u“hHZf,p

wp+1 KNP L DT p* Kp g M Peq,fP g
_mﬂuuhﬂp—i— 13(kp+1) [ P up’ de+ My | uPrup do

Q o0
+ M15||UUZ||£S + MlG””“’ZHZt,aQ + Miz(k +1) (3.13)
kp+1 " :
S M]_g <m + 1) ||U’U,hH£S + M]_?,(Kp + 1)/Up UZP dx
Q

+ My / uP up do + Maglluug||?, o0 + Miz(k + 1),
o0
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where we applied Holder’s inequality in the last passage.
Now, let L,G > 0 and set a := u* ~? and b := u?*~?. By using Holder’s inequality and the continuous
embeddings i: WP (Q) — LP"(Q) and ~: WHP(Q) — LP+(9Q) we obtain

/ uP wy? dx

Q
= a(uup)P dx + a(uuf)P dx
{zeQ: a(z)<L} {z€Q: a(z)>L}
< L/(uuﬁ)p dx
@ (3.14)
B 2
+ / a7 do /(uu;’j)p dx
{z€Q:a(x)>L} Q
<Ll | [ oFde | il
{z€Q: a(z)>L}
and
/up*uzp do
2Q
= / b(uuf)P do + / b(uuf )P do
{z€dQ: b(x)<G} {z€dQ: b(z)>G}
< G/(uuﬁ)p do
oQ (3.15)
e 2
+ / b7 do / (wuf )P+ do
{z€d: b(z)>G} Q
Px—p
< GO [[uuflyn.on + b=z do | cholluuf,
{z€dQ: b(z)>G}
with the embedding constants cq and cyn. We point out that
P —p
H(L):= / a7 do —0 as L — oo,
{z€Q: a(z)>L} (3 16)
Bt
K(G) := / b do —0 as G — .

{z€0Q: b(z)>G}
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Combining (3.13), (3.14), (3.15) and (3.16) yields

kp+1
(k4 1)

llwug Iy,

Kkp+1 1/s’ K(|P
< Mg (m + 1+ (kp+1)L[Q| l[uug ][5 (3.17)

+ Mus(sp + D H(L)eh luuf |}, + (Mg + MiaGloQ ) Juuf |12, o0,
+ My K (G)chg lluug |}, + Miz(k +1).

Taking (3.16) into account we choose L = L(k,u) > 0 and G = G(k,u) > 0 such that

kp+1 kp+1
M NWH(L)E = ———— d MuKG)E, = ———.
13(kp + 1) H(L)cg Wty M@ 1K (G)chq Hr 1)
Therefore, inequality (3.17) can be written as
kp+1
m”uuﬂ :i),p

wp +1 1/s' K 3.18
< Mg (m + 1+ (kp+ 1) L(K, u) [ / > (|wug |5 ( )

+ (Mg + M1aG(s,u) [0 ) |uuf |2, oo + Mz (s + 1).

Taking into account (3.11) we have pt < p,. Thus, we can apply Proposition 2.1 to estimate the boundary
term in (3.18). This gives

il o0 < exlluwugllf , + ey luug

o (3.19)
< erfluuf ||}, + érer 210 Juug| B,
by Holder’s inequality. Now we choose 1 such that
’ + 1
Mig + MiaGr, )00/ ) = P
81( 16 + M14G (K, u)|0Q| Ak + 1P
Applying (3.19) to (3.18) and summarizing the constants results in
luui |l < Mao(r, u, v)[[Juug ||}, + 1] (3:20)

with a constant Mg (k,u,v) depending on x and on the solution pair (u,v), see the calculations above.
Now we are in the position to use the Sobolev embedding theorem on the left-hand side of (3.20). We
have

Sl=

gl < calluugllp < Mo(s, u,v) [[luag |, + 1] (3.21)

Since, due to (3.10), ps < p*, we can start with the bootstrap arguments. Choosing 1 such that (k1+1)ps =
p*, (3.21) becomes

1
luwy! lp- < Mo (1, u,v) [[luwy |7, + 1] 7

T l=

< Moy (k1,u,v) [Hu’“HHgS + 1] (3.22)

(k1+1)p
P

1
= Ms1(K1,u,v) [Hu + 1] " < 0,
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where we have used the estimate up(z) < u(z) for a.e. € Q. The usage of Fatou’s Lemma as h — oo in
(3.22) gives

k1+1)p

1
el a1y = M T < Mo (s, ,0) [ [Jufl 5597 41

1
] P (3.23)

Hence, u € L*1+DP"(Q). Repeating the steps from (3.21)-(3.23) for each &, we choose a sequence with the

following properties

Ko : (ko + 1)ps = (k1 + 1)p",
K3 : (k3 + 1)ps = (ko + 1)p",

Observe that the sequence (ky) is constructed in such a way that k, +1 = (2—;)" for every n € N, with
g—; > 1, taking into account (3.10). This implies that
||u||(f£+1)p* < MZS(“% u, ’U) (324)

for any finite k > 0 with Ma3(k, u, v) being a positive constant which depends both on « and on the solution
pair (u,v) itself. Therefore, v € L"(Q) for any r < co.

Now we are going to prove that u € L"(9Q) for any finite r. To this end, let us consider again inequality
(3.18), that is,

kp+1
2(k+1)P

luag |7,

kp+1 1/s' K 3.25
< My (2L 4 1+ (st DLl ) (3.2

+ (M6 + M14G(k, U)|5’Q|1/tl)||1m2||5t,a§z + Miz7(k +1).

Exploiting (3.24), inequality (3.25) can be written in the simple form

Tl=

g, < Mas(r, 0, 0) [, o0 +1) 7 (3.26)
Applying the embedding v: WP(Q) — LP+(9€) to the right-hand side of (3.26) gives

1
P

i . o0 < conlluillp < Mas (s, u,0) [luvi ] o0 + 1]

Since pt < p., we can proceed as before with a bootstrap argument, thus obtaining
1l (k1)p. .00 < Mag(k,u,v)

for any finite number k with Mag(k, u,v) being a positive constant depending on k£ and on the solution
pair (u,v). Hence, u € L"(99Q) for every r < oo. Combining this with the first part of the proof shows that

u € L™(Q) for every finite r. The same arguments can be applied for the function v starting with the second
equation in (3.1). This completes the proof. O

The next result states the L>°-boundedness of weak solutions of problem (1.1).
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Theorem 3.2. Let Q@ € RN, N > 1, be a bounded domain with a Lipschitz boundary 02 and let the
hypotheses (H) be satisfied. Then, for any weak solution (u,v) € WYP(Q) x Wh4(Q) it holds (u,v) €

L) x L®(9).

Proof. Let (u,v) € WhP(Q) x W4(Q) be a weak solution of problem (1.1). As in the proof of Theorem 3.1

we will suppose that u,v > 0 and we only prove that u € L*(2), since the proof that v € L*°(€2) works in
a similar way. We repeat the proof of Theorem 3.1 until inequality (3.13), that is

kp+1
(k+1)p

§M27(

[uug |7,

kp+1

(K'+ 1)1) + 1) HUU}HLHZ;Q + MQS(HP‘F 1)/Up Uzp d;p

Q

(3.27)

+ Msg /up*uzp do + M30||uu2||£t789 + Mgl(li + ].)
oN

Recall that ps < p* and pt < p.. Hence, we can fix numbers p; € (ps,p*) and ps € (pt,ps). Then, by

Holder’s inequality and the L"(€2)-boundedness of w for any finite r, see Theorem 3.1, we have for the terms
on the right-hand side of (3.27) the following

D

P1

/ ()" dz | < Mg uuf],
Q

/up up? do = /up “P(uup)P dz

Q Q

P1=ps
1s

[wupllps < 192

p1—
P

p
1
LkipP K
< uri—rPt dg (uuf)Pt dx
Q

Q

< Mas||uup|lp, ,

/up*uzp do = /u”_p(uug)p do

o0 o0

(3.28)

pP2—p P

P2
Px—DpD
< /um—l’p2 do /(uuﬁ)p2 do
Q

Q

il
N

< Maalluug || 50,

P
P2
p2—pt

a2, oo < 1092 /(uui)”da < Mgl |

p2,002"
Q

Observe that Mss, M3y are finite thanks to Theorem 3.1. More precisely, they are such that

M3z = M33 (||U|

i) Moo= M (10l gzg.0)

Then (3.27) becomes
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kp+1
(k4 1)

kp+1
Juup |y, < Mss (7 + kp + 2) (|uuf||?
Hitp (k+1)7 i (3.29)

+ Maz|luuglly, oo + Msi(k + 1),

where we used the estimates in (3.28). Now we are going to apply again Proposition 2.1 to the boundary
term. This gives, after using Holder’s inequality,

luuillp, 00 < 2lluwillf , + crey ™ uukll}

) (3.30)
< ealuug|]f , 4 crey @ Mag|luuy ||b,
Choosing 5 such that Ms7eq = 2(/<a+1) and applying (3.30) to (3.29) yields
kp+1
CESE luwi][f, < [Mag(kp +2) + MaoErey ] [luufi|[h, + M1 (k +1). (3.31)
Inequality (3.31) can be written in the form
luwillf , < Mar (5 + 1P)Me2 [fluagi D, +1]
By the Sobolev embedding and the L"(€2)-boundedness of u we obtain
ol < callup < M-+ ) [l +1ﬁ
(3.32)
< Mys(k + 1)Mas [\|u”+1||p + 1]
Applying Fatou’s Lemma to (3.32) then gives
l[ull (et 1)p = lu < M (k 4+ D)Moy T [l tp, 1] s (3.33)
Since
((k+1)M) 7T > 1 and Tim ((x+ 1)Maa) 7oTT = 1,
there exists Mys > 1 such that
(k4 D)Moy < 2T (3.34)
From (3.33), taking (3.34) into account, we have
ol anype < METMFTT [ 8, + 17 (335)

Suppose now there exists a sequence k,, — oo such that

lum*Hp, <1

)

that is

[l st 1yp0 < 1

Then, Proposition 2.2 implies that ||u||cc < 0o. On the contrary, suppose that there exists ko > 0 such that
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[u [P > 1 for every k> ko.

Then, (3.35) becomes
TR S T 1
lell sy < MT M (20l HIE ] 07 < MG Mg [ull ey,

for every kK > Ko.
Now we choose « in the following way

k1t (k1 + 1)p1 = (ko + 1)p",
Ko i (K2 +1)p1 = (k1 + 1)p",
k3t (k3 + 1)p1 = (k2 + 1)p*,

This leads to

S S S
[ull g 1ype < Mg Mgg™ ™l s, 1)

for every n € N with (k) given by (k, + 1) = (ko + 1) (g—j) . Tt follows
T
24 kg & Vet
||u||(nn+1)p* < Migl ]\4451 HuH(noJrl)p*-
Since
L = ! 8 i and 2 <1
ki +1 Ko+ 1\p* ’

there exists My7 > 0 such that

0l (o 1)p= < Maz|tl] (oo 41)p- < 00,

where the right-hand side is finite thanks to Theorem 3.1. Now we may apply again Proposition 2.2. This

ensures that v € L>(Q). Moreover, Proposition 2.3 gives u € L*(0) and so, u € L>(Q). O

Remark 3.3. The conditions on the exponents in hypotheses (H) are not the natural ones. Precisely, in order
to have a well-defined weak solution it is enough to require the following assumptions

(E1) r <p* (E2) re <gq*
* b b -1
(E3) b <p—1 B4) b<lpr-1 (@) 242<Po
p q p
(E6) b <p—1 E7) bo<Lpr-1)  (By) LB Pl
- - pr p g  p*
- pt . . bs by _q—1
E9) b < (¢ -1 E10) by <q* —1 E1l) — 4+ =<
(E9) b q*( ) (E10)  bo (E117) e p
7 p * 7 b7 68 q* -1
(E12) bs< P —1)  (E13) bs<q—1 (E14") <
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) -1
(E15) e <p.—1 (B16) o< Lp,—1) (B17) 248 P
P+ P« qx P«
* . C C « — 1
(E18) & <@ -1  (B19) & <q —1 (B20) 2844 "2
dx P« qx Ax

In order to apply Moser’s iteration we needed to strengthen the hypotheses for (E4’), (E5’), (E7), (E),
(E9), (E11), (E12%), (E14’), (E16°), (E17’), (E18’), and (E20’). We also point out that hypotheses (H1)
and (H2) are not explicitly needed in the proofs of Theorems 3.1 and 3.2, but they are necessary to have a

well-defined weak solution as defined in (3.1).
Furthermore, the bounds obtained in Theorem 3.1 and 3.2 depend on the data in hypotheses (H) and
also on the solution pair (u,v). In particular, the bound for u also depends on v and vice-versa.

In the last part we want to mention that the results obtained in Theorems 3.1 and 3.2 can be easily
applied to problems of the form (1.1) with a homogeneous Dirichlet condition. Indeed, consider the problem

—div Ay (z,u, Vu) = Bi(z, u,v, Vu, Vv) in €,
—div Ay (z, v, Vv) = Ba(x, u, v, Vu, Vo) in ©, (3.36)
u=0v=0 on Jf).

We suppose the following assumptions on the data in problem (3.36).

(H) The functions A;: Q@ x R x RY — RN and B;: @ x R xR x RN x RY — R, i = 1,2, are Carathéodory

functions such that

p—

(A1) |Ai(z,5,6)] < A€ + Aols| T + A,

(12) | As(a,t, Q) < Ay|¢o + Aglt "5 + A,

(H3)  Ay(z,5,6) - &> Agl¢P — As|s|™ — Ag,

(H4)  As(z,t,() - ¢ > Agl¢|? — As|t]™ — A,

(5) [By(,5,4,€,C)| < Bulsl" + Balt™ + Balsl" |t + Bal€]" + Bs|C|" + Bale|" |c1™ + Br,
(H6)  |Ba(w,s,4.&, Q)| < Bilsl™ + Balt| + Bals|" t/"* + Bul¢|™ + Bs|c|"™ + Bsl¢[""|¢|™ + Br,
for a.e. x € Q, for all s,t € R, and for all £,¢ € RY, with nonnegative constants Ai,Ai,Bj,Bj (i €

{1,...,6},5 € {1,...,7}) and with 1 < p,q < co. Moreover, the exponents b;, b;, 1,75 (i € {1,...,8})
are nonnegative and satisfy the following assumptions

(E1) r <p* (E2) 1y <¢*
N a, . bs by p*—p
E3) b <p"-1 E4) by < —(p " —p E5) —+—<
(E3) b (E4) by p*( ) (E5) p p
by b -
(B6) by <p—1 (E7) bs< (" —p) (B8) —4B<P P
p p q p
. * . bs b *
(E9) b < (¢ 0 (E10) by <g¢* —1 EB11) 242411
q P q q
B - by b —
(E12) b5<§(q*—q) (E13) be<q-—1 (E14) ;7+;8<qq*q,

where the numbers p*, p., ¢*, ¢ are defined by (2.1) and (2.2).
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A couple (u,v) € WyP(€) x W,9(Q) is said to be a weak solution of problem (3.36) if

/Al(x,u,Vu) -Vodx = /Bl(:z:,u,’u,Vu,V'u)cp dx
Q Q

/AQ(I,’U,V’U) -V dx = /BQ(x,u,v,Vu,Vv)w dx
Q Q

holds for all (¢, 1) € Wy (Q) x Wy 4(RQ).
We can state the following result for problem (3.36).

Theorem 3.4. Let 2 C RV, N > 1, be a bounded domain with Lipschitz boundary 0Q and let hypotheses ( ~)
be satisfied. Then, every weak solution (u,v) € W(}’p(Q) X Wol’q(Q) of problem (3.36) belongs to L>(Q) x

L>(Q).
The proof of Theorem 3.4 works exactly in the same way as the proofs of Theorems 3.1 and 3.2.
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