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The main goal of this paper is to present multiple solution results for elliptic inclusions
of Clarke’s gradient type under nonlinear Neumann boundary conditions involving the p-
Laplacian and set-valued nonlinearities. To be more precise, we study the inclusion

−�pu ∈ ∂ F (x, u) − |u|p−2u in Ω

with the boundary condition

|∇u|p−2 ∂u

∂ν
∈ a

(
u+)p−1 − b

(
u−)p−1 + ∂G(x, u) on ∂Ω.

We prove the existence of two constant-sign solutions and one sign-changing solution
depending on the parameters a and b. Our approach is based on truncation techniques and
comparison principles for elliptic inclusions along with variational tools like the nonsmooth
Mountain-Pass Theorem, the Second Deformation Lemma for locally Lipschitz functionals
as well as comparison results of local C1(Ω)-minimizers and local W 1,p(Ω)-minimizers of
nonsmooth functionals.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let Ω ⊂ R
N be a bounded domain with a smooth boundary and let 1 < p < ∞. We consider the following elliptic

inclusion: Find u ∈ W 1,p(Ω) and constants a,b ∈ R such that

−�pu ∈ ∂ F (x, u) − |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
∈ a

(
u+)p−1 − b

(
u−)p−1 + ∂G(x, u) on ∂Ω, (1.1)

where −�pu = −div(|∇u|p−2∇u) is the negative p-Laplacian, ∂u
∂ν denotes the outer normal derivative and u+ = max(u,0)

as well as u− = max(−u,0) are the positive and negative part of u, respectively. The multivalued functions s �→ ∂ F (x, s)
and s �→ ∂G(x, s) stand for Clarke’s generalized gradient of the functions F : Ω × R → R and G : ∂Ω × R → R, respectively,
which have the form

F (x, η) =
η∫

0

f (x, s)ds, ∀η ∈ R, G(x, ξ) =
ξ∫

0

g(x, s)ds, ∀ξ ∈ R, (1.2)
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where we suppose the following conditions on the nonlinearities f : Ω × R → R and g : ∂Ω × R → R.

(F1) (x, s) �→ f (x, s) is measurable in each variable separately.
(F2) There exist c1 > 0 and q0 ∈ [p, p∗) such that∣∣ f (x, s)

∣∣ � c1
(
1 + |s|q0−1),

for a.a. x ∈ Ω and for all s ∈ R, where p∗ is given by

p∗ =
{

Np
N−p if p < N,

+∞ if p � N.

(G1) (x, s) �→ g(x, s) is measurable in each variable separately.
(G2) There exist c2 > 0 and q1 ∈ [p, p∗) such that∣∣g(x, s)

∣∣ � c2
(
1 + |s|q1−1),

for a.a. x ∈ ∂Ω and for all s ∈ R, where p∗ is given by

p∗ =
{

(N−1)p
N−p if p < N,

+∞ if p � N.

Note that for u ∈ W 1,p(Ω) defined on the boundary, we make use of the trace operator γ : W 1,p(Ω) → Lq1 (∂Ω) with p �
q1 < p∗ which is known to be bounded, linear and compact, where W 1,p(Ω) and Lq1 (∂Ω) indicate the usual Sobolev and
Lebesgue spaces, respectively. For the sake of simplicity we will drop the notation γ (u) and write u for short. Concerning
the assumptions above the functions F (x, ·) : R → R and G(x, ·) : R → R given in (1.2) are well defined and locally Lipschitz.
This guarantees that their generalized gradients given in problem (1.1) exist. In order to characterize Clarke’s generalized
gradients ∂ F (x, ·) and ∂G(x, ·), we set

f1(x, s) := lim
δ→0+ ess inf|τ−s|<δ

f (x, τ ), f2(x, s) := lim
δ→0+ ess sup

|τ−s|<δ

f (x, τ ),

g1(x, t) := lim
δ→0+ ess inf|τ−t|<δ

g(x, τ ), g2(x, t) := lim
δ→0+ ess sup

|τ−t|<δ

g(x, τ ), (1.3)

for all (x, s) ∈ Ω × R and all (x, t) ∈ ∂Ω × R, respectively. Using Proposition 1.7 in [21] yields the representation

∂ F (x, η) = [
f1(x, η), f2(x, η)

]
, ∂G(x, ξ) = [

g1(x, ξ), g2(x, ξ)
]
. (1.4)

Throughout the paper, we denote by q′
0 and q′

1 the Hölder conjugates to q0 and q1, respectively, meaning that 1/q0 +
1/q′

0 = 1 as well as 1/q1 + 1/q′
1 = 1.

Definition 1.1. A function u ∈ W 1,p(Ω) is said to be a solution of problem (1.1) if there exist η ∈ Lq′
0 (Ω) and ξ ∈ Lq′

1 (∂Ω)

such that

(i) η(x) ∈ ∂ F (x, u(x)) for a.a. x ∈ Ω ,
(ii) ξ(x) ∈ ∂G(x, u(x)) for a.a. x ∈ ∂Ω,

(iii)
∫
Ω

|∇u|p−2∇u · ∇ϕ dx = ∫
Ω

[η − |u|p−2u]ϕ dx + ∫
∂Ω

[a(u+)p−1 − b(u−)p−1 + ξ ]ϕ dσ , ∀ϕ ∈ W 1,p(Ω).

If f and g are Carathéodory functions, problem (1.1) reduces to the single-valued elliptic Neumann boundary value
problem

−�pu = f (x, u) − |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= a

(
u+)p−1 − b

(
u−)p−1 + g(x, u) on ∂Ω. (1.5)

With a view to the relation

|u|p−2u = |u|p−2(u+ − u−) = (
u+)p−1 − (

u−)p−1
, (1.6)

we see that in case a = b = λ problem (1.5) becomes

−�pu = f (x, u) − |u|p−2u in Ω,

|∇u|p−2 ∂u = λ|u|p−2u + g(x, u) on ∂Ω. (1.7)

∂ν
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Multiple solution results for problems of type (1.7) were obtained by a number of authors, such as e.g. [1,12–14,19,28,
31]. The main purpose of this paper is to provide a detailed multiplicity analysis of the nonsmooth elliptic problem (1.1) in
dependence of the two parameters a and b. A main tool in our considerations is the method of sub- and supersolution. The
idea is to construct two pairs of sub–supersolutions of problem (1.1), one with positive sign and one with negative sign, with
the aid of some auxiliary problems, for example the so-called Steklov eigenvalue problem of the p-Laplacian. The existence
of such pairs provides a positive and a negative solution, respectively, of the inclusion (1.1) within these pairs. Afterwards,
we show the existence of extremal solutions of (1.1), meaning a smallest positive solution u+ as well as a greatest negative
solution u− , by using the qualities of the eigenfunctions of the Steklov eigenvalue problem and the (S+)-property of the
p-Laplacian on W 1,p(Ω) (see Theorem 3.1). More details about the Steklov problem will be explained also in this section. In
order to find a third nontrivial solution with changing sign, we use some important tools like the nonsmooth Mountain-Pass
Theorem or the Second Deformation Lemma for locally Lipschitz functionals.

The main tool is the comparison of local C1(Ω)-minimizers and local W 1,p(Ω)-minimizers of nonsmooth functionals.
Let J : W 1,p(Ω) → R be a nonsmooth functional given in the form

J (u) = 1

p

∫
Ω

|∇u|p dx + 1

p

∫
Ω

|u|p dx +
∫
Ω

j1(x, u)dx +
∫

∂Ω

j2(x, γ u)dσ (1.8)

with nonsmooth potentials j1 : Ω × R → R and j2 : ∂Ω × R → R which are measurable in the first argument and locally
Lipschitz in the second one. Furthermore, growth conditions are also supposed on the elements of their Clarke’s gradients
similar to the assumptions (F2) and (G2). Then, every local C1(Ω)-minimizer of the functional J is also a local W 1,p(Ω)-
minimizer of J . This result was recently published by the author in [30] and is required to find a sign-changing solution
of (1.1). The proof of the comparison of local minimizers is mainly based on a boundedness-result for weak solutions of
nonlinear elliptic equations with nonhomogeneous Neumann boundary conditions obtained in [29] with the aid of the
Moser iteration along with continuous embeddings in Besov and Lizorkin–Triebel spaces, respectively. Summarizing, we find
a third nontrivial solution u0 of our inclusion (1.1) which lies between the smallest positive solution u+ and the greatest
negative solution u− . Hence, it must be a sign-changing solution if it is unequal to u+ and u− . Indeed, we prove that
u0 �= u+, u− which is stated in Theorem 5.1.

Problems of the form (1.1) under homogeneous Dirichlet boundary conditions and homogeneous Neumann boundary con-
ditions, respectively, were studied in some recent papers. We refer, for example, to [2,4–6,15,24], respectively. A very related
reference that contains multivalued problems with a variational treatment is the monograph of Motreanu and Rădulescu
in [22]. Therein, the authors study many different topics, for example critical point theory for nonsmooth functionals, mul-
tivalued elliptic problems in variational form as well as hemivariational and variational–hemivariational inequalities. Some
existence results of (variational-)hemivariational inequalities which are related to differential inclusions of the form (1.1) can
be found in [8,23,26] as well.

In order to show our results, we require some additional assumptions given below.

(F3) lims→0
f (x,s)

|s|p−2s
= 0, uniformly with respect to a.a. x ∈ Ω .

(F4) lim|s|→+∞ f (x,s)
|s|p−2s

= −∞, uniformly with respect to a.a. x ∈ Ω .

(F5) There exists δ f > 0 such that f (x,s)
|s|p−2s

� 0 for all 0 < |s| � δ f and for a.a. x ∈ Ω .

(G3) lims→0
g(x,s)
|s|p−2s

= 0, uniformly with respect to a.a. x ∈ ∂Ω .

(G4) lim|s|→+∞ g(x,s)
|s|p−2s

= −∞, uniformly with respect to a.a. x ∈ ∂Ω .

(G5) Let u ∈ W 1,p(Ω). Then every ξ ∈ ∂G(x, u) satisfies the condition∣∣ξ(x1) − ξ(x2)
∣∣ � L|x1 − x2|α,

for all x1, x2 in ∂Ω with α ∈ (0,1).

Remark 1.2. Due to the conditions (F3) and (G3) along with the representations (1.4), we conclude that f1(x,0) � 0 �
f2(x,0) as well as g1(x,0) � 0 � g2(x,0). This guarantees, in particular, that problem (1.1) possesses the trivial solution
u = 0 (cf. Definition 1.1).

Remark 1.3. Note that condition (G5) is required to apply the C1,α-regularity results of Lieberman. This means that every
bounded weak solution u of problem (1.1) belongs to C1,α(Ω) if the assumption (G5) is satisfied. We refer the reader to [17]
for more details.

Let us now introduce the definition of a sub- and supersolution of problem (1.1).

Definition 1.4. A function u ∈ W 1,p(Ω) is called a supersolution of problem (1.1) if there exist η ∈ Lq′
0(Ω) and ξ ∈ Lq′

1 (∂Ω)

such that
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(i) η(x) ∈ ∂ F (x, u(x)) for a.a. x ∈ Ω ,
(ii) ξ(x) ∈ ∂G(x, u(x)) for a.a. x ∈ ∂Ω,

(iii)
∫
Ω

|∇u|p−2∇u · ∇ϕ dx �
∫
Ω

[η − |u|p−2u]ϕ dx + ∫
∂Ω

[a(u+)p−1 − b(u−)p−1 + ξ ]ϕ dσ , ∀ϕ ∈ W 1,p(Ω) ∩ L p(Ω)+.

Definition 1.5. A function u ∈ W 1,p(Ω) is called a subsolution of problem (1.1) if there exist η ∈ Lq′
0(Ω) and ξ ∈ Lq′

1 (∂Ω)

such that

(i) η(x) ∈ ∂ F (x, u(x)) for a.a. x ∈ Ω ,
(ii) ξ(x) ∈ ∂G(x, u(x)) for a.a. x ∈ ∂Ω,

(iii)
∫
Ω

|∇u|p−2∇u · ∇ϕ dx �
∫
Ω

[η − |u|p−2u]ϕ dx + ∫
∂Ω

[a(u+)p−1 − b(u−)p−1 + ξ ]ϕ dσ , ∀ϕ ∈ W 1,p(Ω) ∩ L p(Ω)+.

Next, we give a brief overview of the Fuc̆ik spectrum Σ̃p for the p-Laplacian with a nonlinear boundary condition. The
set Σ̃p is defined by all pairs (a,b) ∈ R × R such that

−�pu = −|u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= a

(
u+)p−1 − b

(
u−)p−1

on ∂Ω, (1.9)

has a nontrivial solution. If a = b = λ problem (1.9) reduces to the Steklov eigenvalue problem

−�pu = −|u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= λ|u|p−2u on ∂Ω, (1.10)

because of relation (1.6). It is known that (1.10) has a first eigenvalue λ1 > 0 which is isolated and simple. Moreover, its
corresponding first eigenfunction ϕ1 is strictly positive in Ω (see [18]) and belongs to L∞(Ω) (cf. [16, Lemma 5.6 and
Theorem 4.3] or [29]). The regularity results of Lieberman in [17, Theorem 2] imply ϕ1 ∈ C1,α(Ω), α ∈ (0,1), and hence,
ϕ1 ∈ int(C1(Ω)+), where int(C1(Ω)+) denotes the interior of the positive cone C1(Ω)+ = {u ∈ C1(Ω): u(x) � 0, ∀x ∈ Ω}
in the Banach space C1(Ω), given by

int
(
C1(Ω)+

) = {
u ∈ C1(Ω): u(x) > 0, ∀x ∈ Ω

}
.

If λ is an eigenvalue for (1.10), then the point (λ,λ) belongs to Σ̃p . Since the first eigenfunction of (1.10) is positive,
Σ̃p clearly contains the two lines R × {λ1} and {λ1} × R. A first nontrivial curve C in Σ̃p through (λ2, λ2) was constructed
and variationally characterized by a mountain-pass procedure by Martínez and Rossi [20] which implies the existence of a
continuous path in {u ∈ W 1,p(Ω) : I(a,b)(u) < 0,‖u‖Lp(∂Ω) = 1} joining −ϕ1 and ϕ1 provided (a,b) is above the curve C .
The functional I(a,b) on W 1,p(Ω) is given by

I(a,b)(u) =
∫
Ω

(|∇u|p + |u|p)
dx −

∫
∂Ω

(
a
(
u+)p + b

(
u−)p)

dσ .

The existence of a sign-changing solution of problem (1.1) needs an additional assumption on the constants a and b in the
following way.

(H) The pair (a,b) ∈ R × R lies above the first nontrivial curve C of the Fuc̆ik spectrum constructed in [20].

As demonstrated in [28], the elliptic equation

−�pu = −ς |u|p−2u + 1 in Ω,

|∇u|p−2 ∂u

∂ν
= 1 on ∂Ω, (1.11)

has a unique weak solution e ∈ int(C1(Ω)+) where ς > 1 is a constant. We will use the function e to construct sub- and
supersolutions of problem (1.1).

Let us recall some basic facts from nonsmooth analysis. We denote by (X,‖ · ‖) a real Banach space and by X∗ its dual
space. By 〈·,·〉 we mean the duality pairing between X and X∗ . Let J : X → R be a locally Lipschitz functional. Clarke’s
generalized directional derivative of J at u in the direction v ∈ X is defined by

J o(u; v) = lim sup
J (x + tv) − J (x)

t
,

x→u,t↓0
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where v �→ J o(u; v) is finite, convex, positively homogeneous, subadditive on X and satisfies the estimate | J o(u; v)| � K‖u‖,
where K > 0 is the Lipschitz constant of J near the point u ∈ X (see [10, Chapter 2]). Then, Clarke’s generalized gradient
of J at u ∈ X is defined by

∂ J (u) = {
ξ ∈ X∗: J o(u; v) � 〈ξ, v〉, ∀v ∈ X

}
.

By means of [10], it is known that ∂ J (u) is a convex, weak∗-compact subset of X∗ with ‖ξ‖X∗ � K for all ξ ∈ ∂ J (u).
Furthermore, it holds

J o(u; v) = max
{〈ξ, v〉: ξ ∈ ∂ J (u)

}
, v ∈ X .

From [10, Proposition 2.1.2] we also know that ∂ J (u) is nonempty. Hence, it makes sense to set

m J (u) := min
{‖ξ‖X∗ : ξ ∈ ∂ J (u)

}
.

We say that u ∈ X is a critical point of J if 0 ∈ ∂ J (u) which is equivalent to J o(u; v) � 0 for all v ∈ X . It is clear that each
local minimizer or maximizer of J is a critical point. Let us recall the nonsmooth version of the Palais–Smale condition
(cf. [9]).

Definition 1.6 (Palais–Smale condition). Let X be real Banach space and let J : X → R be a locally Lipschitz functional. We
say that J fulfills the Palais–Smale condition if any sequence (un) with ( J (un)) is bounded and limn→∞ m J (un) = 0 has a
convergent subsequence.

The nonsmooth Mountain-Pass Theorem due to Chang is stated as follows (see [9, Theorem 3.4]).

Theorem 1.7 (Mountain-Pass Theorem). Let X be a reflexive real Banach space and let J : X → R be a locally Lipschitz functional
satisfying the Palais–Smale condition. If there exist x0, x1 ∈ X and a constant r > 0 such that ‖x1 − x0‖ > r and max{ J (x0), J (x1)} <

infx∈∂ Br (x0) J (x), then J has a critical point u0 ∈ X such that

inf
x∈∂ Br(x0)

J (x) � J (u0) = inf
π∈Π

max
t∈[0,1] J

(
π(t)

)
,

where Π = {π ∈ C([0,1], X): π(0) = x0, π(1) = x1} and ∂ Br(x0) = {u ∈ X: ‖u − x0‖ = r}.

Now, we want to recall some existence and comparison results involving the method of sub- and supersolutions apply
on problem (1.1). We have the following results.

Theorem 1.8. Let the hypotheses (F1)–(F2) and (G1)–(G2) be fulfilled and assume the existence of a subsolution u and a supersolu-
tion u of problem (1.1) satisfying u � u. Then there exists a solution u of (1.1) with u � u � u.

The proof of the theorem above was recently published in [7]. Let S denote the set of all solutions of (1.1) within the
ordered interval [u, u] which is nonempty due to Theorem 1.8. A solution u∗ ∈ S is said to be the smallest solution of S if
for any element u ∈ S the inequality u∗ � u holds. Likewise, u∗ ∈ S is called the greatest solution of S if u � u∗ holds for
all u ∈ S . We say S possesses extremal solutions if S has a smallest and greatest solution.

Theorem 1.9. Let hypotheses (F1)–(F2) and (G1)–(G2) be satisfied and assume the existence of a subsolution u and a supersolution u
of (1.1) such that u � u. Then there exist extremal solutions of (1.1) within [u, u].

The proof of Theorem 1.9 can be done as in [3]. Note that the one-sided growth condition on Clarke’s generalized
gradient, which is required in [3], is not needed in the proof of the existence of extremal solutions.

2. Existence of sub- and supersolutions

In this section we prove the existence of some sub- and supersolutions of problem (1.1) according to Definition 1.4
and 1.5. Let e ∈ int(C1(Ω)+) be the unique solution of the auxiliary problem (1.11). Then we have the following.

Lemma 2.1. Let the conditions (F1)–(F5) and (G1)–(G5) be satisfied. If a > λ1 , then there exists a constant ϑa > 0 such that for any
b ∈ R the function ϑae is a positive supersolution of problem (1.1).

Proof. We put a > λ1 and set u = ϑae with a positive constant ϑa to be specified. The weak formulation of the Neumann
problem (1.11) reads as
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∫
Ω

∣∣∇(ϑae)
∣∣p−2∇(ϑae) · ∇ϕ dx = −ς

∫
Ω

(ϑae)p−1ϕ dx +
∫
Ω

(ϑa)
p−1ϕ dx +

∫
∂Ω

(ϑa)
p−1ϕ dσ , ∀ϕ ∈ W 1,p(Ω).

Combining the equation above with Definition 1.4 yields a sufficient condition for u = ϑae to be a supersolution of prob-
lem (1.1). We have to show that∫

Ω

(
ϑ

p−1
a + (1 − ς)(ϑae)p−1 − η

)
ϕ dx +

∫
∂Ω

(
ϑ

p−1
a − a(ϑae)p−1 − ξ

)
ϕ dσ � 0, ∀ϕ ∈ W 1,p(Ω) ∩ Lp(Ω)+, (2.1)

holds true, where η ∈ Lq′
0 (Ω) and η(x) ∈ ∂ F (x, ϑae(x)) for a.a. x ∈ Ω as well as ξ ∈ Lq′

1 (∂Ω) and ξ(x) ∈ ∂G(x, ϑae(x)) for a.a.
x ∈ ∂Ω . Note that ς > 1. The hypothesis (F4) provides a constant sς > 0 such that

f (x, s)

sp−1
< 1 − ς, for a.a. x ∈ Ω and all s > sς ,

and by (F2) we get∣∣− f (x, s) + (1 − ς)sp−1
∣∣ �

∣∣ f (x, s)
∣∣ + (ς + 1)sp−1 � cς ,

for a.a. x ∈ Ω and all s ∈ [0, sς ]. This leads to

f (x, s) � (1 − ς)sp−1 + cς , for a.a. x ∈ Ω and all s � 0,

and due to the definition of f1 we finally obtain

f1(x, s) � (1 − ς)sp−1 + cς , for a.a. x ∈ Ω and all s � 0. (2.2)

Setting η(x) = f1(x, ϑae(x)) as well as ϑa � c
1

p−1
ς and applying (2.2) to the first integral in (2.1) yields∫

Ω

(
ϑ

p−1
a + (1 − ς)(ϑae)p−1 − f1

(
x,ϑae(x)

))
ϕ dx �

∫
Ω

(
ϑ

p−1
a + (1 − ς)(ϑae)p−1 + (ς − 1)(ϑae)p−1 − cς

)
ϕ dx

� 0. (2.3)

Let us now study the second term in (2.1). Since a > λ1 > 0 there exists a constant sa > 0 due to condition (G4) such that

g(x, s)

sp−1
< −a, for a.a. x ∈ ∂Ω and all s > sa. (2.4)

The assumption (G2) ensures the existence of a constant ca > 0 such that∣∣−g(x, s) − asp−1
∣∣ �

∣∣g(x, s)
∣∣ + asp−1 � ca,

for a.a. x ∈ ∂Ω and all s ∈ [0, sa] which results in

g(x, s) � −asp−1 + ca, for a.a. x ∈ ∂Ω and all s � 0, (2.5)

and hence,

g1(x, s) � −asp−1 + ca, for a.a. x ∈ ∂Ω and all s � 0. (2.6)

We put ξ(x) = g1(x, ϑae(x)) and ϑa � c
1

p−1
a . One gets∫

∂Ω

(
ϑ

p−1
a − a(ϑae)p−1 − g1(x,ϑae)

)
ϕ dσ �

∫
∂Ω

(
ϑ

p−1
a − a(ϑae)p−1 + a(ϑae)p−1 − ca

)
ϕ dσ � 0. (2.7)

If ϑa � max(c
1

p−1
ς , c

1
p−1

a ), then u = ϑae is, in fact, a positive supersolution of problem (1.1). �
The next lemma can be proven very similarly.

Lemma 2.2. Let the assumptions (F1)–(F5) and (G1)–(G5) be satisfied. If b > λ1 , then there exists a constant ϑb > 0 such that for any
a ∈ R the function −ϑbe is a negative subsolution of problem (1.1).

Let λ1 > 0 be the first eigenvalue of the Steklov eigenvalue problem and let ϕ1 ∈ int(C1(Ω)+) be its corresponding first
eigenfunction. The next result shows that constant multipliers of ϕ1 may be sub- and supersolution of problem (1.1).
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Lemma 2.3. Assume (F1)–(F5) and (G1)–(G5). If a > λ1 , then for ε > 0 sufficiently small and any b ∈ R the function εϕ1 is a positive
subsolution of problem (1.1). If b > λ1 , then for ε > 0 sufficiently small and any a ∈ R the function −εϕ1 is a negative supersolution
of problem (1.1).

Proof. Let a > λ1 and let u = εϕ1. From the Steklov eigenvalue problem (1.10) we conclude∫
Ω

∣∣∇(εϕ1)
∣∣p−2∇(εϕ1) · ∇ϕ dx = −

∫
Ω

(εϕ1)
p−1ϕ dx +

∫
∂Ω

λ1(εϕ1)
p−1ϕ dσ , ∀ϕ ∈ W 1,p(Ω). (2.8)

Taking into account (2.8), a sufficient condition for u = εϕ1 to be a positive subsolution is∫
Ω

−ηϕ dx +
∫

∂Ω

(
(λ1 − a)(εϕ1)

p−1 − ξ
)
ϕ dσ � 0, (2.9)

with η ∈ Lq′
0(Ω) and η(x) ∈ ∂ F (x, εϕ1(x)) for a.a. x ∈ Ω as well as ξ ∈ Lq′

1 (∂Ω) and ξ(x) ∈ ∂G(x, εϕ1(x)) for a.a. x ∈ ∂Ω .
Let us prove inequality (2.9). Concerning condition (F5) we see at once that the first integral in (2.9) is negative. Setting
η(x) = f2(x, εϕ1(x)) and ε ∈ (0, δ f /‖ϕ1‖∞] leads to∫

Ω

−ηϕ dx = −
∫
Ω

f2(x, εϕ1)

(εϕ1)p−1
(εϕ1)

p−1ϕ dx � −
∫
Ω

f (x, εϕ1)

(εϕ1)p−1
(εϕ1)

p−1ϕ dx � 0, (2.10)

where ‖ · ‖∞ denotes the usual supremum norm. In order to estimate the second integral in (2.9) we may apply the
assumption (G3) which ensures the existence of a number δa > 0 such that

|g(x, s)|
|s|p−1

< a − λ1, for a.a. x ∈ ∂Ω and all 0 < |s| � δa.

Let ε ∈ (0, δa‖ϕ1‖∞ ] and let ξ(x) = g2(x, εϕ1(x)) which implies that −ξ(x) � −g(x, εϕ1). Then it holds∫
∂Ω

(
(λ1 − a)(εϕ1)

p−1 − ξ
)
ϕ dσ �

∫
∂Ω

(
(λ1 − a)(εϕ1)

p−1 + ∣∣g(x, εϕ1)
∣∣)ϕ dσ

=
∫

∂Ω

(
λ1 − a + |g(x, εϕ)|

(εϕ1)p−1

)
(εϕ1)

p−1ϕ dσ

�
∫

∂Ω

(λ1 − a + a − λ1)(εϕ1)
p−1ϕ dσ

= 0.

Finally, we select ε > 0 such that 0 < ε � min{δ f /‖ϕ1‖∞, δa/‖ϕ1‖∞} which yields that both integrals in (2.9) are nonpositive
and hence, u = εϕ1 is a positive subsolution of problem (1.1). The proof of the existence of a negative supersolution u =
−εϕ1 acts in the same way and is dropped now. �

To sum up, we proved the existence of two sub- and two supersolutions of problem (1.1). If we choose ε > 0 sufficiently
small, we get u1 = εϕ1 � ϑae = u1 and u2 = −ϑbe � −εϕ1 = u2 which means that we have two ordered pairs of sub-
and supersolution namely [u1, u1] and [u2, u2], respectively. The next result gives an answer about the regularity of weak
solutions of problem (1.1).

Lemma 2.4. Let the conditions (F1)–(F5) and (G1)–(G5) be satisfied and let a,b > λ1 . If u ∈ [0, ϑae] (respectively, u ∈ [−ϑbe,0]) is a
solution of problem (1.1) which is not identically zero in Ω , then it holds u ∈ int(C1(Ω)+) (respectively, u ∈ − int(C1(Ω)+)).

Proof. Let u ∈ [0, ϑae] be a solution of problem (1.1) satisfying u �≡ 0. Then we directly obtain the boundedness of u meaning
u ∈ L∞(Ω). Applying the results of Lieberman in [17, Theorem 2] guarantees that u ∈ C1,α(Ω) with α ∈ (0,1). By the
assumptions (F2) and (F3) as well as (G2) and (G3), we find constants c f , cg > 0 such that∣∣ f (x, s)

∣∣ � c f sp−1, for a.a. x ∈ Ω and all 0 � s � ϑa‖e‖∞,∣∣g(x, s)
∣∣ � cg sp−1, for a.a. x ∈ ∂Ω and all 0 � s � ϑa‖e‖∞. (2.11)

Applying (2.11) to (1.1) implies

�pu � (1 + c f )up−1 a.e. in Ω.
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Then, we set β(s) = (1 + c f )sp−1 for all s > 0 and note that
∫

0+ 1/(sβ(s))
1
p ds = +∞. Hence, the assumptions of Vázquez’s

strong maximum principle (cf. [25]) are satisfied and we obtain u > 0 in Ω . In order to prove that u is strictly positive in the
closure of Ω , we suppose there exists x0 ∈ ∂Ω such that u(x0) = 0. Applying again the maximum principle yields ∂u

∂ν (x0) < 0.
However, we know that 0 ∈ ∂G(x0, u(x0)) = ∂G(x0,0) which leads to a contradiction in view of problem (1.1) because in
this case we have ∂u

∂ν (x0) = 0. Therefore, it holds u > 0 in Ω which implies u ∈ int(C1(Ω)+). The case u ∈ [−ϑbe,0] can be
shown by using similar arguments. �
3. Extremal constant-sign solutions

One of our main results about the existence of constant-sign solutions of (1.1) reads as follows.

Theorem 3.1. Let the conditions (F1)–(F5) and (G1)–(G5) be satisfied. For every a > λ1 and b ∈ R there exists a smallest positive
solution u+ = u+(a) ∈ int(C1(Ω)+) of (1.1) in the order interval [0, ϑae] with the constant ϑa as in Lemma 2.1. For every b > λ1
and a ∈ R there exists a greatest solution u− = u−(b) ∈ − int(C1(Ω)+) in the order interval [−ϑbe,0] with the constant ϑb as in
Lemma 2.2.

Proof. Let a > λ1. By means of Lemma 2.3 we know that u = εϕ1 ∈ int(C1(Ω)+) is a positive subsolution of problem
(1.1) provided ε > 0 is sufficiently small and Lemma 2.1 ensures that u = ϑae ∈ int(C1(Ω)+) is a positive supersolution of
problem (1.1). Additionally, we can take ε > 0 such that εϕ1 � ϑae. Due to Theorem 1.9 there exists a smallest positive
solution uε = uε(a) of problem (1.1) satisfying εϕ1 � uε � ϑae. The regularity results in Lemma 2.4 can be applied because
uε �≡ 0 which ensures that uε ∈ int(C1(Ω)+). Consequently, we find for every positive integer n choosing sufficiently large
a smallest positive solution un ∈ int(C1(Ω)+) of problem (1.1) which lies in [ 1

n ϕ1, ϑae]. This construction creates a sequence
(un) of smallest solutions which is monotone decreasing. One gets

un ↓ u+ for a.a. x ∈ Ω, (3.1)

with some function u+ : Ω → R satisfying 0 � u+ � ϑae. Note that un ∈ [ 1
n ϕ1, ϑae] and γ (un) ∈ [γ ( 1

n ϕ1), γ (ϑae)] imply,
in particular, that un belongs to L∞(Ω) and L∞(∂Ω), respectively. As un ∈ int(C1(Ω)+) solves problem (1.1), we obtain by
taking the test function ϕ = un in the weak formulation of problem (1.1) along with (F2) and (G2)

‖∇un‖p
L p(Ω) �

∫
Ω

|ηn|un dx + ‖un‖p
L p(Ω) + a‖un‖p

L p(∂Ω) +
∫

∂Ω

|ξn|un dσ

� c̃1‖un‖L p(Ω) + c1‖un‖q0
Lq0 (Ω)

+ ‖un‖p
L p(Ω) + a‖un‖p

L p(∂Ω) + c̃2‖un‖p
L p(∂Ω) + c̃3‖un‖q1

Lq1 (∂Ω)

� C̃, (3.2)

where ηn ∈ Lq′
0(Ω) with ηn(x) ∈ ∂ F (x, un(x)) for a.a. x ∈ Ω as well as ξn ∈ Lq′

1 (∂Ω) with ξn(x) ∈ ∂G(x, un(x)) for a.a. x ∈ ∂Ω .
Relation (3.2) yields the boundedness of ∇un in L p(Ω) and thus, ‖un‖W 1,p(Ω) � C , for all n ∈ N with some positive con-
stant C independent of n. The reflexivity of the Sobolev space W 1,p(Ω) in case 1 < p < ∞ yields the existence of a weakly
convergent subsequence of un . The compact embedding W 1,p(Ω) ↪→ L p(Ω), the monotony of the sequence un and the
compactness of W 1,p(Ω) ↪→ L p(∂Ω) provide for the entire sequence un

un ⇀ u+ in W 1,p(Ω),

un → u+ in Lp(Ω) and for a.a. x ∈ Ω,

un → u+ in Lp(∂Ω) and for a.a. x ∈ ∂Ω. (3.3)

The solution un of problem (1.1) fulfills∫
Ω

|∇un|p−2∇un · ∇ϕ dx =
∫
Ω

(
ηn − up−1

n
)
ϕ dx +

∫
∂Ω

(
aup−1

n + ξn
)
ϕ dσ , ∀ϕ ∈ W 1,p(Ω), (3.4)

where ηn ∈ Lq′
0(Ω) with ηn(x) ∈ ∂ F (x, un(x)) for a.a. x ∈ Ω as well as ξn ∈ Lq′

1 (∂Ω) with ξn(x) ∈ ∂G(x, un(x)) for a.a. x ∈ ∂Ω .
Setting ϕ = un − u+ ∈ W 1,p(Ω) in (3.4) it results in∫

Ω

|∇un|p−2∇un · ∇(un − u+)dx =
∫
Ω

(
ηn − up−1

n
)
(un − u+)dx +

∫
∂Ω

(
aup−1

n + ξn
)
(un − u+)dσ . (3.5)

The convergence properties of (un) along with the assumptions (F2) and (G2) as well as the uniform boundedness of the
sequence (un) allow us to apply Lebesgue’s dominated convergence theorem. We obtain
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lim sup
n→∞

∫
Ω

|∇un|p−2∇un · ∇(un − u+)dx � 0,

which provides by the (S+)-property of −�p on W 1,p(Ω) along with (3.3) the strong convergence in W 1,p(Ω), meaning

un → u+ in W 1,p(Ω). (3.6)

Due to (F2) and (G2) in conjunction with the uniform boundedness of (un), there exist constants b1,b2 > 0 such that∣∣ηn(x)
∣∣ � b1 for a.a. x ∈ Ω, ∀n ∈ N,∣∣ξn(x)
∣∣ � b2 for a.a. x ∈ ∂Ω, ∀n ∈ N. (3.7)

Hence, we get

ηn ⇀ η+ in Lq′
0(Ω),

ξn ⇀ ξ+ in Lq′
1(∂Ω), (3.8)

for some subsequences, not relabeled. From calculus of Clarke’s generalized gradient one gets that η+(x) ∈ ∂ F (x, u+(x))
for a.a. x ∈ Ω and ξ+(x) ∈ ∂G(x, u+(x)) for a.a. x ∈ ∂Ω , respectively. Passing to the limit in (3.4) for some subsequences if
necessary proves that u+ is a solution of problem (1.1).

Applying Lemma 2.4 yields u+ ∈ int(C1(Ω)+) provided u+ �≡ 0 in Ω . Assume u+ ≡ 0 in Ω . Then, by (3.1), we obtain

un ↓ 0 for a.a. x ∈ Ω. (3.9)

We set

ũn = un

‖un‖W 1,p(Ω)

for all n.

The boundedness of the sequence (̃un) in W 1,p(Ω) can be proved similarly as for (un). Hence, we find a subsequence, not
relabelled, such that

ũn ⇀ ũ in W 1,p(Ω),

ũn → ũ in Lp(Ω) and for a.a. x ∈ Ω,

ũn → ũ in Lp(∂Ω) and for a.a. x ∈ ∂Ω, (3.10)

with some function ũ : Ω → R belonging to W 1,p(Ω). Furthermore, there exist functions z1 ∈ L p(Ω)+ and z2 ∈ L p(∂Ω)+
such that∣∣̃un(x)

∣∣ � z1(x) for a.a. x ∈ Ω,∣∣̃un(x)
∣∣ � z2(x) for a.a. x ∈ ∂Ω. (3.11)

Due to the representation un = ũn · ‖un‖W 1,p(Ω) and because un solves (1.1), we get the following variational equation∫
Ω

|∇ũn|p−2∇ũn · ∇ϕ dx

=
∫
Ω

(
ηn

up−1
n

ũp−1
n − ũp−1

n

)
ϕ dx +

∫
∂Ω

ãup−1
n ϕ dσ +

∫
∂Ω

ξn

up−1
n

ũp−1
n ϕ dσ , ∀ϕ ∈ W 1,p(Ω). (3.12)

Selecting ϕ = ũn − ũ ∈ W 1,p(Ω) in (3.12) provides∫
Ω

|∇ũn|p−2∇ũn · ∇ (̃un − ũ)dx

=
∫
Ω

(
ηn

up−1
n

ũp−1
n − ũp−1

n

)
(̃un − ũ)dx +

∫
∂Ω

ãup−1
n (̃un − ũ)dσ +

∫
∂Ω

ξn

up−1
n

ũp−1
n (̃un − ũ)dσ . (3.13)

Applying (2.11) and (3.11), one obtains

|ηn(x)|
p−1

ũp−1
n (x)

∣∣̃un(x) − ũ(x)
∣∣ � c f z1(x)p−1(z1(x) + ∣∣̃u(x)

∣∣), (3.14)

un (x)
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respectively,

|ξn(x)|
up−1

n (x)
ũp−1

n (x)
∣∣̃un(x) − ũ(x)

∣∣ � cg z2(x)p−1(z2(x) + ∣∣̃u(x)
∣∣). (3.15)

Obviously, the right-hand sides of (3.14) and (3.15) belong to L1(Ω) and L1(∂Ω), respectively, which allows us to apply
Lebesgue’s dominated convergence theorem which in conjunction with (3.10) yields

lim
n→∞

∫
Ω

ηn

up−1
n

ũp−1
n (̃un − ũ)dx = 0,

lim
n→∞

∫
∂Ω

ξn

up−1
n

ũp−1
n (̃un − ũ)dσ = 0. (3.16)

Taking into account (3.10) and (3.16) we get from (3.13)

lim sup
n→∞

∫
Ω

|∇ũn|p−2∇ũn · ∇ (̃un − un)dx = 0.

As before, the (S+)-property of −�p corresponding to W 1,p(Ω) implies

ũn → ũ in W 1,p(Ω). (3.17)

From the definition of ũn we see at once that ‖̃u‖W 1,p(Ω) = 1, meaning ũ �≡ 0. Passing to the limit in (3.12) in conjunction
with (3.9), (3.17) as well as the assumptions (F3) and (G3) it results in∫

Ω

|∇ũ|p−2∇ũ · ∇ϕ dx = −
∫
Ω

ũp−1ϕ dx +
∫

∂Ω

ãup−1ϕ dσ , ∀ϕ ∈ W 1,p(Ω).

The equation above is nothing less than the weak formulation of the Steklov eigenvalue problem corresponding to the
eigenvalue a > λ1 and the eigenfunction ũ � 0. However, this is a contradiction because ũ must change sign on ∂Ω (see [18,
Lemma 2.4]). Hence, u+ �≡ 0 which guarantees that u+ ∈ int(C1(Ω)+).

Finally, we have to prove that u+ is the smallest solution in [0, ϑae]. Fix a positive solution u ∈ W 1,p(Ω) of (1.1) such that
0 � u � ϑae. Lemma 2.4 provides u ∈ int(C1(Ω)+). Then, there exists an integer n sufficiently large such that u ∈ [ 1

n ϕ1, ϑae].
However, un is the smallest solution in [ 1

n ϕ1, ϑae] which yields un � u if n is large enough. Due to the monotonicity of un ,
we obtain u+ � u which proves that u+ is, indeed, the smallest positive solution of (1.1) in [0, ϑae]. The existence of a
greatest negative solution can be done similarly and is omitted. �
4. Variational characterization of extremal solutions

In this section we give a variational characterization of the extremal solutions of (1.1) which we obtained in the last
section. To this end, we introduce truncation operators T+, T− : Ω × R → R as well as T ∂Ω+ , T ∂Ω− : ∂Ω × R → R in the
following way:

T+(x, s) =
⎧⎨⎩

0 if s < 0,

s if 0 � s � u+(x),

u+(x) if s > u+(x),

T ∂Ω+ (x, s) =
⎧⎨⎩

0 if s < 0,

s if 0 � s � u+(x),

u+(x) if s > u+(x),

T−(x, s) =
⎧⎨⎩

u−(x) if s < u−(x),

s if u−(x) � s � 0,

0 if s > 0,

T ∂Ω− (x, s) =
⎧⎨⎩

u−(x) if s < u−(x),

s if u−(x) � s � 0,

0 if s > 0.

Note that the truncation operators on ∂Ω apply to the corresponding traces γ (u), where u ∈ W 1,p(Ω). For the sake of
simplicity we just write T ∂Ω+ (x, u) and T ∂Ω− (x, u) without the notation γ . It is clear that the truncation operators are
continuous, uniformly bounded, and Lipschitz continuous with respect to the second argument. Additionally, we introduce
truncations related to the nonlinearities f : Ω × R → R and g : ∂Ω × R → R as follows:

f+(x, s) =
⎧⎨⎩

0 if s < 0,

f (x, s) if 0 � s � u+(x), g+(x, s) =
⎧⎨⎩

0 if s < 0,

g(x, s) if 0 � s � u+(x),
η+(x) if s > u+(x), ξ+(x) if s > u+(x),
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f−(x, s) =
⎧⎨⎩

η−(x) if s < u−(x),

f (x, s) if u−(x) � s � 0,

0 if s > 0,

g−(x, s) =
⎧⎨⎩

ξ−(x) if s < u−(x),

g(x, s) if u−(x) � s � 0,

0 if s > 0,

f0(x, s) =
⎧⎨⎩

η−(x) if s < u−(x),

f (x, s) if u−(x) � s � u+(x),

η+(x) if s > u+(x),

g0(x, s) =
⎧⎨⎩

ξ−(x) if s < u−(x),

g(x, s) if u−(x) � s � u+(x),

ξ+(x) if s > u+(x).

Here, η+, ξ+ and η−, ξ− correspond to the extremal solutions u+ ∈ int(C1(Ω)+) and u− ∈ − int(C1(Ω)+), respectively. By
means of these truncations, we define the following associated functionals given by

E+(u) = 1

p

[‖∇u‖p
L p(Ω) + ‖u‖p

L p(Ω)

] −
∫
Ω

u(x)∫
0

f+(x, s)ds dx −
∫

∂Ω

u(x)∫
0

[
aT ∂Ω+ (x, s)p−1 + g+(x, s)

]
ds dσ ,

E−(u) = 1

p

[‖∇u‖p
L p(Ω) + ‖u‖p

L p(Ω)

] −
∫
Ω

u(x)∫
0

f−(x, s)ds dx +
∫

∂Ω

u(x)∫
0

[
b
∣∣T ∂Ω− (x, s)

∣∣p−1 − g−(x, s)
]

ds dσ ,

E0(u) = 1

p

[‖∇u‖p
L p(Ω) + ‖u‖p

L p(Ω)

] −
∫
Ω

u(x)∫
0

f0(x, s)ds dx

−
∫

∂Ω

u(x)∫
0

[
aT ∂Ω+ (x, s)p−1 − b

∣∣T ∂Ω− (x, s)
∣∣p−1 + g0(x, s)

]
ds dσ .

With a view to (F2) and (G2), we see that the functionals E+, E−, E0 : W 1,p(Ω) → R are locally Lipschitz continuous. The
truncations involved guarantee that these functionals are bounded below, coercive and weakly sequentially lower semicon-
tinuous which implies that their global minimizers exist. A characterization of the critical points of these functionals is
stated in the next lemma.

Lemma 4.1. The extremal constant-sign solutions of (1.1) are denoted by u+ and u− . Then one has:

(i) A critical point v ∈ W 1,p(Ω) of E+ is a nonnegative solution of (1.1) satisfying 0 � v � u+ .
(ii) A critical point v ∈ W 1,p(Ω) of E− is a nonpositive solution of (1.1) satisfying u− � v � 0.

(iii) A critical point v ∈ W 1,p(Ω) of E0 is a solution of (1.1) satisfying u− � v � u+ .

Proof. Let us only prove the third assertion, because the other cases can be done likewise. Let v be a critical point of E0
which means 0 ∈ ∂ E0(v). By the definition of E0 we obtain∫

Ω

|∇v|p−2∇v · ∇ϕ dx =
∫
Ω

[
η − |v|p−2 v

]
ϕ dx

+
∫

∂Ω

[
aT ∂Ω+ (x, v)p−1 − b

∣∣T ∂Ω− (x, v)
∣∣p−1 + ξ

]
ϕ dσ , ∀ϕ ∈ W 1,p(Ω), (4.1)

with some η ∈ Lq′
0 (Ω) and ξ ∈ Lq′

1 (∂Ω) such that η(x) ∈ ∂ F0(x, v(x)) for a.a. x ∈ Ω and ξ(x) ∈ ∂G0(x, v(x)) for a.a. x ∈ ∂Ω ,
where

F0(x, η) =
η∫

0

f0(x, s)ds, G0(x, ξ) =
ξ∫

0

g0(x, s)ds.

The function u+ is the smallest positive solution of (1.1) meaning that it satisfies the weak formulation given in Definition 1.1
by ∫

Ω

|∇u+|p−2∇u+ · ∇ϕ dx =
∫
Ω

[
η+ − |u+|p−2u+

]
ϕ dx +

∫
∂Ω

[
a(u+)p−1 + ξ+

]
ϕ dσ , ∀ϕ ∈ W 1,p(Ω), (4.2)

where η+ ∈ Lq′
0(Ω) with η+(x) ∈ ∂ F (x, u+(x)) for a.a. x ∈ Ω and ξ+ ∈ Lq′

1 (∂Ω) with ξ+(x) ∈ ∂G(x, u+(x)) for a.a. x ∈ ∂Ω .
Subtracting (4.2) from (4.1) and setting ϕ = (v − u+)+ ∈ W 1,p(Ω) provides
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∫
Ω

[|∇v|p−2∇v − |∇u+|p−2∇u+
] · ∇(v − u+)+ dx +

∫
Ω

[|v|p−2 v − up−1
+

]
(v − u+)+ dx

=
∫
Ω

[η − η+](v − u+)+ dx +
∫

∂Ω

[
aT ∂Ω+ (x, v)p−1 − b

∣∣T ∂Ω− (x, v)
∣∣p−1 − aup−1

+
]
(v − u+)+ dσ

+
∫

∂Ω

[ξ − ξ+](v − u+)+ dσ .

Clearly, it holds η(x) = η+(x) for a.a. x ∈ {x ∈ Ω: v(x) > u+(x)}. Furthermore, we get T ∂Ω+ (x, v) = u+ , T ∂Ω− (x, v) = 0 and
ξ(x) = ξ+(x) for a.a. x ∈ ∂Ω satisfying v(x) > u+(x). Thus, the right-hand side of the equality above vanishes. However,
the left-hand side is strictly positive in case v > u+ which is a contradiction and hence v � u+ . The proof for v � u−
acts in the same way. Summarizing, v belongs to the ordered interval [u−, u+] which provides that T ∂Ω+ (x, v) = v+ and
T ∂Ω− (x, v) = v− . Since ∂ F0(x, v(x)) ⊂ ∂ F (x, v(x)) as well as ∂G0(x, v(x)) ⊂ ∂G(x, v(x)), from (4.1) it follows that v solves our
original problem (1.1) satisfying u− � v � u+ . This completes the proof. �

Let us now consider some results about local and global minimizers with respect to the functionals E+, E−,

E0 : W 1,p(Ω) → R.

Lemma 4.2. Let a > λ1 and b > λ1 . Then the extremal positive solution u+ of (1.1) is the unique global minimizer of the functional E+
and the extremal negative solution u− of (1.1) is the unique global minimizer of the functional E− . Both u+ and u− are local minimizers
of the functional E0 . Moreover, the functional E0 : W 1,p(Ω) → R has a global minimizer v0 which is a nontrivial solution of (1.1)
satisfying u− � v0 � u+ .

Proof. The functional E+ : W 1,p(Ω) → R is bounded below, coercive and weakly sequentially lower semicontinuous. This
ensures that its global minimizer, namely v+ ∈ W 1,p(Ω), exists. Since v+ is a critical point of E+ , Lemma 4.1 can be applied
which yields that v+ is a nonnegative solution of (1.1) fulfilling 0 � v+ � u+ . Applying the condition (G3) guarantees the
existence of a number δa > 0 such that∣∣g(x, s)

∣∣ � (a − λ1)sp−1, ∀s: 0 < s � δa. (4.3)

We take ε < min{ δ f
‖ϕ1‖∞ , δa‖ϕ1‖∞ }. Then, due to (F5) and (4.3) in combination with the Steklov eigenvalue problem in (1.10),

we obtain

E+(εϕ1) = −
∫
Ω

εϕ1(x)∫
0

f (x, s)ds dx + λ1 − a

p
εp‖ϕ1‖p

L p(∂Ω) −
∫

∂Ω

εϕ1(x)∫
0

g(x, s)ds dσ

<
λ1 − a

p
εp‖ϕ1‖L p(∂Ω) +

∫
∂Ω

εϕ1(x)∫
0

(a − λ1)sp−1 ds dσ

= 0.

We see that E+(v+) �= 0 which means v+ �= 0. Applying Lemma 2.4 yields v+ ∈ int(C1(Ω)+). As u+ is the smallest positive
solution of (1.1) in the ordered interval [0, ϑae] satisfying 0 � v+ � u+ , it must hold v+ = u+ . This proves that u+ is the
unique global minimizer of the functional E+ : W 1,p(Ω) → R. Likewise, u− is the unique global minimizer of E− . In order to
show that u+ and u− are local minimizers of E0, we argue as follows. As u+ ∈ int(C1(Ω)+) there exists a neighborhood V u+
of u+ in the space C1(Ω) satisfying V u+ ⊂ C1(Ω)+ . Hence, E+ = E0 on V u+ meaning that u+ is a local minimizer of E0

on C1(Ω). Applying the recent results of the author in [30, Theorem 3.1] ensures that u+ is also a local minimizer of E0 on
the space W 1,p(Ω). The same arguments can be applied on u− which point out that u− is a local minimizer of E0 as well.

In the last step we have to show the existence of a global minimizer of E0. As already mentioned the functional
E0 : W 1,p(Ω) → R is coercive and weakly sequentially lower semicontinuous. Thus, a global minimizer v0 of E0 exists
which is, in particular, a critical point of E0. Taking into account Lemma 4.1 proves that v0 is a solution of (1.1) satisfying
u− � v0 � u+ . Since E0(u+) = E+(u+) < 0, it guarantees v0 �= 0 which completes the proof. �
5. Existence of sign-changing solutions

This section is devoted to the proof of the existence of a sign-changing solution of problem (1.1). The idea is to find
a nontrivial solution u0 of problem (1.1) which belongs to [u−, u+]. If u0 �= u− and u0 �= u+ , then it must be a sign-
changing solution of (1.1), because Theorem 3.1 ensures that u+ ∈ int(C1(Ω)+) is the smallest positive solution in [0, ϑae]
and u− ∈ − int(C1(Ω)+) is the greatest negative solution in [−ϑbe,0].
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Theorem 5.1. Let the assumptions (F1)–(F5), (G1)–(G5) and (H) be satisfied. Then problem (1.1) has a nontrivial sign-changing solution
u0 ∈ C1(Ω).

Proof. As regards Lemma 4.2, the function v0 ∈ W 1,p(Ω) \ {0} is a global minimizer of E0 lying in [u−, u+]. Obviously, in
the cases v0 �= u− and v0 �= u+ , the function u0 := v0 must be a sign-changing solutions of (1.1) because of the extremality
properties of u− and u+ , respectively. Let us now consider the case v0 = u+ , the other case v0 = u− can be done similarly.
With a view to Lemma 4.2, we know that u− is a local minimizer of E0 which can be assumed to be a strict local minimizer.
Otherwise we would find infinitely many critical points v �= 0 of E0 having changing sign due to u− � v � u+ and the
extremality of the solutions u− and u+ , respectively. Clearly, in this case the proof of the theorem would be done. The
assumptions above ensure the existence of ρ ∈ (0,‖u+ − u−‖W 1,p(Ω)) such that

E0(u+) � E0(u−) < inf
{

E0(u): u ∈ ∂ Bρ(u−)
}
, (5.1)

with ∂ Bρ(u−) = {u ∈ W 1,p(Ω): ‖u − u−‖W 1,p(Ω) = ρ}. The functional E0 satisfies the Palais–Smale condition (see Defini-
tion 1.6) because it is bounded below, locally Lipschitz and coercive. Hence, we can apply the Mountain-Pass Theorem as
stated in Theorem 1.7 to E0. This yields the existence of a critical point u0 ∈ W 1,p(Ω) satisfying 0 ∈ ∂ E0(u0) with

inf
{

E0(u): u ∈ ∂ Bρ(u−)
}

� E0(u0) = inf
π∈Π

max
t∈[−1,1] E0

(
π(t)

)
, (5.2)

where

Π = {
π ∈ C

([−1,1], W 1,p(Ω)
)
: π(−1) = u−, π(1) = u+

}
.

Clearly, (5.1) and (5.2) ensure that u0 �= u− and u0 �= u+ which means that u0 is a sign-changing solution provided u0 �= 0.
In order to prove that u0 �= 0, we must show that E0(u0) �= 0 which is satisfied if there exists a path π̃ ∈ Π such that

E0
(
π̃ (t)

) �= 0, ∀t ∈ [−1,1].
Such a path can be constructed as it was done in [27] with slight modifications. Additionally, the use of the Second Defor-
mation Lemma in [27] has to be replaced by the Second Deformation Lemma for locally Lipschitz functionals as it can be
found in [11, Theorem 2.10]. This completes the proof. �
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[20] S.R. Martínez, J.D. Rossi, On the Fučik spectrum and a resonance problem for the p-Laplacian with a nonlinear boundary condition, Nonlinear

Anal. 59 (6) (2004) 813–848.
[21] D. Motreanu, P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Nonconvex Optim.

Appl., vol. 29, Kluwer Academic Publishers, Dordrecht, 1999.



134 P. Winkert / J. Math. Anal. Appl. 377 (2011) 121–134
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