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Abstract
In this paper, we consider a Dirichlet problem driven by an anisotropic (p, q)-
differential operator and a parametric reaction having the competing effects of a
singular term and of a superlinear perturbation. We prove a bifurcation-type theo-
rem describing the changes in the set of positive solutions as the parameter moves.
Moreover, we prove the existence of a minimal positive solution and determine the
monotonicity and continuity properties of the minimal solution map.

Keywords Anisotropic (p, q)-operator · Comparison principles · Maximum
principle · Minimal positive solution · Singular term · Regularity theory

Mathematics Subject Classification 35J60 · 35J92

1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper, we deal

with the following parametric anisotropic singular (p, q)-equation

− �p(·)u − �q(·)u = λ
[
u−η(x) + f (x, u)

]
in �,

u
∣∣
∂�

= 0, u > 0, λ > 0.
(Pλ)
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Given r ∈ C(�) we define

r− = min
x∈�

r(x) and r+ = max
x∈�

r(x)

and introduce the set

E1 = {r ∈ C(�) : 1 < r−
}
.

For r ∈ E1 the anisotropic r -Laplace differential operator is defined by

�r(·)u = div
(
|∇u|r(x)−2∇u

)
for all u ∈ W 1,r(·)

0 (�).

This operator is nonhomogeneous on account of the variable exponent r(·). If r(·) is
a constant function, then we have the usual r -Laplace differential operator. In problem
(Pλ) we have the sum of two such anisotropic differential operators with distinct expo-
nents. So, even in the case of constant exponents, the differential operator in (Pλ) is not
homogeneous. This makes the study of problem (Pλ) more difficult. Boundary value
problems driven by a combination of differential operators of different nature, such
as (p, q)-equations, arise in many mathematical models of physical processes. We
mention the works of Benci–D’Avenia–Fortunato–Pisani [3], where (p, 2)-equations
were used as a model for elementary particles in order to produce soliton-type solu-
tions. We also mention the works of Cherfils-Il′ yasov [5], where the authors studied
the steady state solutions of reaction–diffusion systems and of Zhikov [31,32] who
studied the problems related to nonlinear elasticity theory.

In the reaction of (Pλ) we have the competing effects of a singular term s → s−η(x)

and of a Carathéodory function f : � × R → R, that is, x → f (x, s) is measurable
for all s ∈ R and s → f (x, s) is continuous for a. a. x ∈ �. We assume that f (x, ·)
exhibits (p+ − 1)-superlinear growth uniformly for a. a. x ∈ � as s → +∞ but need
not satisfy the Ambrosetti–Rabinowitz condition (the AR-condition for short) which
is common in the literature when dealing with superlinear problems. The sum of the
two terms is multiplied with a parameter λ > 0.

Applying a combination of variational tools from the critical point theory alongwith
truncation and comparison techniques,we prove a bifurcation-type theoremdescribing
the changes in the set of positive solutions as the parameterλmoveson theopenpositive

semiaxis
◦
R+ = (0,+∞). We also show that for every admissible parameter λ > 0,

problem (Pλ) has a smallest positive solution ũλ and we determine the monotonicity
and continuity properties of the minimal solution map λ 	→ ũλ.

Boundary value problems driven by the anisotropic p-Laplacian have been studied
extensively in the last decade. We refer to the books of Diening–Harjulehto–Hästö–
Růžička [6] and Rădulescu–Repovš [24] and the references therein. In contrast, the
study of singular anisotropic equations is lagging behind. There are very few works
on this subject. We mention two such papers which are close to our problem (Pλ).
These are the works of Byun–Ko [4] and Saoudi–Ghanmi [26] who examine equations
driven by the anisotropic p-Laplacian and the parameter multiplies only the singular

123



Positive Solutions for Singular Anisotropic (p, q)-Equations 11851

term. Moreover, the overall conditions on the data of the problem are more restrictive,
see hypothesis (pM ) in [4] and hypotheses (H1)–(H4) in [26]. We also mention the
isotropic works of the authors [21,22] on singular equations driven by the (p, q)-
Laplacian and the p-Laplacian, respectively. Finally, related works to the topic can
be found in the papers of Ambrosio [1], Ambrosio–Rădulescu [2], Liu–Motreanu–
Zeng [15], Papageorgiou–Zhang [23], Ragusa–Tachikawa [25], Zeng–Bai–Gasiński–
Winkert [28,29] and the references therein.

2 Preliminaries and Hypotheses

In this section, we recall some basic facts about Lebesgue and Sobolev spaces with
variable exponents. We refer to the book of Diening–Harjulehto–Hästö–Růžička [6]
for details.

LetM(�) be the space of allmeasurable functions u : � → R.We identify two such
functions when they differ only on a Lebesgue-null set. Given r ∈ E1, the anisotropic
Lebesgue space Lr(·)(�) is defined by

Lr(·)(�) =
{
u ∈ M(�) :

∫

�

|u|r(x) dx < ∞
}

.

This space is equipped with the Luxemburg norm defined by

‖u‖r(·) = inf

{
μ > 0 :

∫

�

( |u|
μ

)r(x)
dx ≤ 1

}
.

The modular function related to these spaces is defined by

�r(·)(u) =
∫

�

|u|r(x) dx for all u ∈ Lr(·)(�).

It is clear that ‖·‖r(·) is theMinkowski functional of the set {u ∈ Lr(·)(�) : �r(·)(u) ≤
1}. The following proposition states the relation between ‖ · ‖r(·) and the modular
�r(·) : Lr(·)(�) → R.

Proposition 2.1 Let r ∈ E1, let u ∈ Lr(·)(�) and let {un}n∈N ⊆ Lr(·)(�). The follow-
ing assertions hold:

(a) ‖u‖r(·) = μ ⇐⇒ �r(·)
(
u
μ

)
= 1;

(b) ‖u‖r(·) < 1 (resp. = 1, > 1) ⇐⇒ �r(·)(u) < 1 (resp. = 1, > 1);
(c) ‖u‖r(·) ≤ 1 �⇒ ‖u‖r+r(·) ≤ �r(·)(u) ≤ ‖u‖r−r(·);
(d) ‖u‖r(·) ≥ 1 �⇒ ‖u‖r−r(·) ≤ �r(·)(u) ≤ ‖u‖r+r(·);
(e) ‖un‖r(·) → 0 (resp. → ∞) ⇐⇒ �r(·)(un) → 0 (resp. → ∞);
(f) ‖un − u‖r(·) → 0 ⇐⇒ �r(·)(un − u) → 0.
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We know that (Lr(·)(�), ‖ ·‖r(·)) is a separable and reflexive Banach space. Further
we denote by r ′(x) = r(x)

r(x)−1 the conjugate variable exponent to r ∈ E1, that is,

1

r(x)
+ 1

r ′(x)
= 1 for all x ∈ �.

It is clear that r ′ ∈ E1. We know that Lr(·)(�)∗ = Lr ′(·)(�) and the following version
of Hölder’s inequality holds

∫

�

|uv| dx ≤
[
1

r−
+ 1

r ′−

]
‖u‖r(·)‖v‖r ′(·)

for all u ∈ Lr(·)(�) and for all v ∈ Lr ′(·)(�).
Moreover, if r1, r2 ∈ E1 and r1(x) ≤ r2(x) for all x ∈ �, then we have the

continuous embedding

Lr2(·)(�) ↪→ Lr1(·)(�).

The corresponding variable exponent Sobolev spaces can be defined in a natural
way using the variable exponent Lebesgue spaces. So, given r ∈ E1, we define

W 1,r(·)(�) =
{
u ∈ Lr(·)(�) : |∇u| ∈ Lr(·)(�)

}

with ∇u being the gradient of u : � → R. This space is equipped with the norm

‖u‖1,r(·) = ‖u‖r(·) + ‖∇u‖r(·) for all u ∈ W 1,r(·)(�)

with ‖∇u‖r(·) = ‖ |∇u| ‖r(·).
Let r ∈ E1 be Lipschitz continuous, that is, r1 ∈ E1 ∩ C0,1(�). We define

W 1,r(·)
0 (�) = C∞

c (�)
‖·‖1,r(·)

.

The spacesW 1,r(·)(�) andW 1,r(·)
0 (�) are both separable and reflexive Banach spaces.

On the space W 1,r(·)
0 (�) we have the Poincaré inequality, namely there exists ĉ > 0

such that

‖u‖r(·) ≤ ĉ‖∇u‖r(·) for all u ∈ W 1,r(·)
0 (�).

Let r ∈ E1 ∩ C0,1(�) and set

r∗(x) =
{

Nr(x)
N−r(x) if r(x) < N ,

+∞ if N ≤ r(x),
for all x ∈ �,
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which is the critical variable Sobolev exponent corresponding to r . Let q ∈ C(�) be
such that 1 ≤ q− ≤ q(x) ≤ r∗(x) (resp. 1 ≤ q− ≤ q(x) < r∗(x)) for all x ∈ �. If
X = W 1,r(·)(�) or X = W 1,r(·)

0 (�), then we have

X ↪→ Lq(·)(�) continuously (resp. compactly).

This is the anisotropic Sobolev embedding theorem.
For r ∈ E1 ∩ C0,1(�), we have

W 1,r(·)
0 (�)∗ = W−1,r ′(·)(�).

Let Ar(·) : W 1,r(·)
0 (�) → W−1,r ′(·)(�) be the nonlinear operator defined by

〈
Ar(·)(u), h

〉 =
∫

�

|∇u|r(x)−2∇u · ∇h dx for all u, h ∈ W 1,r(·)
0 (�).

This map has the following properties, see, for example, Gasiński–Papageorgiou [9,
Proposition 2.5] and Rădulescu–Repovš [24, p. 40].

Proposition 2.2 The operator Ar(·) : W 1,r(·)
0 (�) → W−1,r ′(·)(�) is bounded (so it

maps bounded sets to bounded sets), continuous, strictly monotone (which implies it
is also maximal monotone) and of type (S)+, that is,

un
w→ u in W 1,r(·)

0 (�) and lim sup
n→∞

〈
Ar(·)(un), un − u

〉 ≤ 0

imply un → u in W 1,r(·)
0 (�).

The anisotropic singular regularity theory, see Saoudi–Ghanmi [26, Appendix 2],
leads to another Banach space, namely the space

C1
0(�) =

{
u ∈ C1(�) : u

∣∣
∂�

= 0
}

.

This is an ordered Banach space with positive (order) cone

C1
0(�)+ =

{
u ∈ C1

0(�) : u(x) ≥ 0 for all x ∈ �
}

.

This cone has a nonempty interior given by

int
(
C1
0(�)+

)
=
{
u ∈ C1

0(�)+ : u(x) > 0 for all x ∈ �,
∂u

∂n

∣∣∣∣
∂�

< 0

}
,

where ∂u
∂n = ∇u · n with n being the outward unit normal on ∂�.

Our hypotheses on the exponents p(·), q(·) and η(·) are the following ones:
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H0: p, q ∈ E1 ∩ C0,1(�), η ∈ C(�), 1 < q− ≤ q+ < p− ≤ p+ and 0 < η(x) < 1
for all x ∈ �.

Using these conditions on the exponents and following the arguments in the papers
of Papageorgiou–Rădulescu–Repovš [16, Proposition 2.4], [18, Proposition 6] we can
have two strong comparison principles.

For the first, we will need the following ordering notion on M(�).
So, given y1, y2 : � → R two measurable functions, we write y1 � y2 if for every

compact set K ⊆ �, we have 0 < cK ≤ y2(x) − y1(x) for a. a. x ∈ K . Note that
if y1, y2 ∈ C(�) and y1(x) < y2(x) for all x ∈ �, then y1 � y2. The first strong
comparison principle is the following one, see Papageorgiou–Rădulescu–Repovš [16,
Proposition 2.4].

Proposition 2.3 If hypothesis H0 holds, ξ̂ ∈ L∞(�), ξ̂ (x) ≥ 0 for a.a. x ∈ �,
y1, y2 ∈ L∞(�), y1 � y2, u ∈ W 1,p(·)(�), u(x) ≥ 0 for a.a. x ∈ �, u �= 0,
v ∈ int

(
C1
0(�)+

)
and

−�p(·)u − �q(·)u + ξ̂ (x)u p(x)−1 − u−η(x) = y1(x) in �,

−�p(·)v − �q(·)v + ξ̂ (x)v p(x)−1 − v−η(x) = y2(x) in �,

then v − u ∈ int
(
C1
0(�)+

)
.

In the second strong comparison principle, we strengthen the order condition on y1
and y2 but drop the boundary requirements on u and v, see Papageorgiou–Rădulescu–
Repovš [18, Proposition 6].

Proposition 2.4 If hypothesis H0 holds, ξ̂ ∈ L∞(�), ξ̂ ≥ 0 for a.a. x ∈ �, y1, y2 ∈
L∞(�), 0 < c0 ≤ y2(x) − y1(x) for a.a. x ∈ �, u, v ∈ C1,α(�), 0 < u(x) ≤ v(x)
for all x ∈ � and

−�p(·)u − �q(·)u + ξ̂ (x)u p(x)−1 − u−η(x) = y1(x) in �,

−�p(·)v − �q(·)v + ξ̂ (x)v p(x)−1 − v−η(x) = y2(x) in �,

then u(x) < v(x) for all x ∈ �.

Given u ∈ M(�), we define u± = max{±u, 0} being the positive and negative parts
of u, respectively. We know that u = u+ − u−, |u| = u+ + u− and if u ∈ W 1,p(·)

0 (�),

then u± ∈ W 1,p(·)
0 (�).

If u, v ∈ M(�) and u(x) ≤ v(x) for a. a. x ∈ �, then we define

[u, v] =
{
h ∈ W 1,p(·)

0 (�) : u(x) ≤ h(x) ≤ v(x) for a. a. x ∈ �
}

,

[u) =
{
h ∈ W 1,p(·)

0 (�) : u(x) ≤ h(x) for a. a. x ∈ �
}

.

Moreover, we denote by intC1
0 (�)[u, v] the interior of [u, v] ∩ C1

0(�) in C1
0(�).
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In what follows, for notational simplicity, we denote by ‖ · ‖ the norm of the
anisotropic Sobolev space W 1,p(·)

0 (�). On account of Poincaré’s inequality we have

‖u‖ = ‖∇u‖p(·) for all u ∈ W 1,p(·)
0 (�).

Given a Banach space X and a functional ϕ ∈ C1(X), we define

Kϕ = {u ∈ X : ϕ′(u) = 0
}

being the critical set of ϕ. We say that ϕ satisfies the “Cerami condition”, C-condition
for short, if every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded and

(1 + ‖un‖X ) ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence. This is a compactness-type condition on
the functional ϕ which compensates for the fact that the ambient space X is not locally
compact in general, since it could be infinite dimensional. Using this condition, we
can prove a deformation theorem which leads to the minimax theorems of the critical
point theory, see, for example, Papageorgiou–Rădulescu–Repovš [17, Section 5.4].

Now we are ready to state our hypotheses on the nonlinearity f : � × R → R.

H1: f : � ×R → R is a Carathéodory function such that f (x, 0) = 0 for a. a. x ∈ �

and

(i) there exists a ∈ L∞(�) such that

0 ≤ f (x, s) ≤ a(x)
[
1 + sr(x)−1

]

for a. a. x ∈ �, for all s ≥ 0 with r ∈ C(�) such that p+ < r− ≤ r(x) < p∗(x)
for all x ∈ �;

(ii) if F(x, s) =
∫ s

0
f (x, t) dt , then

lim
s→+∞

F(x, s)

s p+ = +∞ uniformly for a. a. x ∈ �;

(iii) there exists a function μ ∈ C(�) such that

μ(x) ∈
(

(r+ − p−)max

{
N

p−
, 1

}
, p∗(x)

)
for all x ∈ �

and

0 < η̂0 ≤ lim inf
s→+∞

f (x, s)s − p+F(x, s)

sμ(x)

uniformly for a. a. x ∈ �;
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(iv)

0 < η̂1 ≤ lim inf
s→0+

f (x, s)

sq+−1 uniformly for a. a. x ∈ �

and for every � > 0 there exists m� > 0 such that m� ≤ f (x, s) for a. a. x ∈ �

and for all s ≥ �;
(v) for every ρ > 0 there exists ξ̂ρ > 0 such that the function

s → f (x, s) + ξ̂ρs
p(x)−1

is nondecreasing on [0, ρ] for a. a. x ∈ �.

Remark 2.5 Without any loss of generality we can assume that f (x, s) = 0 for a. a. x ∈
� and for all s ≤ 0 since we are interested in positive solutions of (Pλ). Hypotheses
H1(ii), (iii) imply that f (x, ·) is (p+ − 1)-superlinear for a. a. x ∈ �. In most papers
in the literature, superlinear problems are treated by using the AR-condition which in
the present context has the following form:

(AR)+: There exist θ > p+ and M > 0 such that

0 < θF(x, s) ≤ f (x, s)s for a. a. x ∈ � and for all s ≥ M, (2.1)

0 < ess infx∈� F(x, M). (2.2)

This is a unilateral version of the AR-condition since we assume that f (x, s) = 0 for
a. a. x ∈ � and for all s ≤ 0. Integrating (2.1) and using (2.2) gives

c1s
θ ≤ F(x, s)

for a. a. x ∈ �, for all s ≥ M and for some c1 > 0. Hence,

c1s
θ−1 ≤ f (x, s)

for a. a. x ∈ � and for all s ≥ M , see (2.1). Therefore, the (AR)+-conditiondictates that
f (x, ·) has at least (θ − 1)-polynomial growth as s → +∞. By this way we exclude
superlinear nonlinearities with “slower” growth near +∞ from our considerations.
The following example fulfils H1, but fails to satisfy the (AR)+-condition:

f (x, s) =
{(

s+)τ(x)−1 if s ≤ 1,

s p+−1 ln(x) + sθ(x)−1 if 1 < s

with τ ∈ C(�), τ+ ≤ q+ and θ ∈ C(�) such that θ+ ≤ p+.
Hypothesis H1(iv) implies that f (x, ·) is strictly (q+ − 1)-sublinear.

When studying singular problems of isotropic and anisotropic type, the presence
of the singular term leads to an energy function which is not C1 and so we cannot
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apply directly the minimax theorems of the critical point theory on it. We need to find
a way to bypass the singularity and deal with C1-functionals. To this end, we examine
a purely singular problem in the next section. The unique solution of this problem will
be helpful in our effort to bypass the singularity of our original problem (Pλ).

3 An Auxiliary Purely Singular Problem

In this section, we study the following purely singular anisotropic Dirichlet problem

−�p(·)u − �q(·)u = λu−η(x) in �, u
∣∣
∂�

= 0, u > 0, λ > 0. (Auλ)

We have the main result in this section.

Proposition 3.1 If hypothesis H0 holds, then problem (Auλ) has a unique positive
solution uλ ∈ int

(
C1
0(�)+

)
. Moreover, the mapping λ 	→ uλ is nondecreasing, that

is, if 0 < λ′ < λ, then we have uλ′ ≤ uλ.

Proof For the existence and uniqueness part of the proof we assume for simplicity that
λ = 1.

To this end, let g ∈ L p(·)(�) and let ε ∈ (0, 1]. We consider the following Dirichlet
problem

−�p(·)u − �q(·)u = [|g(x)| + ε
]−η(x) in �, u

∣∣
∂�

= 0, u > 0. (3.1)

Let V : W 1,p(·)
0 (�) → W 1,p(·)

0 (�)∗ = W−1,p′(·)(�) be the nonlinear operator
defined by

V (u) = Ap(·)(u) + Aq(·)(u) for all u ∈ W 1,p(·)
0 (�).

This operator is bounded, continuous, strictly monotone and so maximal mono-
tone, see Proposition 2.2. It is clear that it is also coercive, see Proposition 2.1.
From Corollary 2.8.7 of Papageorgiou–Rădulescu–Repovš [17, p. 135] we know that
V : W 1,p(·)

0 (�) → W−1,p′(·)(�) is surjective. Since [|g(·)| + ε]−η(·) ∈ L∞(�) we

can find v̂ε ∈ W 1,p(·)
0 (�) such that

V (v̂ε) = [|g| + ε
]−η(·) in W−1,p′(·)(�).

From the strict monotonicity of V we know that v̂ε is the unique solution of (3.1).
Moreover, by acting with −v̂−

ε ∈ W 1,p(·)
0 (�) we obtain v̂ε ≥ 0 and v̂ε �≡ 0. Thus, we

have

−�p(·)v̂ε − �q(·)v̂ε = [|g| + ε
]−η(x) in �, v̂ε

∣∣
∂�

= 0.
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Theorem 4.1 of Fan–Zhao [7] implies that v̂ε ∈ L∞(�). Invoking Corollary 1.1
of Tan–Fang [27] (see also Lemma 3.3 of Fukagai–Narukawa [8]) we have that v̂ε ∈
C1
0(�)+\{0}. Finally, the anisotropic maximum principle of Zhang [30, Theorem 1.2]

says that v̂ε ∈ int
(
C1
0(�)+

)
.

Now we can define the solution map Kε : L p(·)(�) → L p(·)(�) given by

Kε(g) = v̂ε.

We have

〈
Ap(·)

(
v̂ε

)
, h
〉+ 〈Aq(·)

(
v̂ε

)
, h
〉 =

∫

�

h

[|g| + ε]η(x)
dx (3.2)

for all h ∈ W 1,p(·)
0 (�). Choosing h = v̂ε = Kε(g) ∈ W 1,p(·)

0 (�) in (3.2) gives

�p(·)
(∇v̂ε

)+ �q(·)
(∇v̂ε

) ≤ cε

∥∥v̂ε

∥∥ for some cε > 0.

Assume that
∥∥v̂ε

∥∥ ≥ 1, then, by Proposition 2.1, one gets

∥∥v̂ε

∥∥p− ≤ cε

∥∥v̂ε

∥∥

and so,

∥∥v̂ε

∥∥p−−1 = ‖Kε (g)‖p−−1 ≤ cε for all g ∈ L p(·)(�). (3.3)

It follows that Kε : L p(·)(�) → L p(·)(�) maps L p(·)(�) onto a bounded subset of
W 1,p(·)

0 (�).
Claim 1: Kε : L p(·)(�) → L p(·)(�) is continuous.
Let gn → g in L p(·)(�) and let v̂n = Kε(gn) with n ∈ N. From (3.3) we know that

{
v̂n
}
n∈N = {Kε(gn)}n∈N ⊆ W 1,p(·)

0 (�) is bounded.

We may assume that

v̂n
w→ v̂ in W 1,p(·)

0 (�) and v̂n → v̂ in L p(·)(�). (3.4)

We have

〈
Ap(·)

(
v̂n
)
, h
〉+ 〈Aq(·)

(
v̂n
)
, h
〉 =

∫

�

h

[|gn| + ε]η(x)
dx (3.5)
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for all h ∈ W 1,p(·)
0 (�) and for all n ∈ N. We choose h = v̂n − v̂ ∈ W 1,p(·)

0 (�) in
(3.5), pass to the limit as n → ∞ and use (3.4) and the fact that

{
1

(|gn| + ε)η(·)

}

n∈N
⊆ L∞(�) is bounded.

This yields

lim
n→∞

[〈
Ap(·)

(
v̂n
)
, v̂n − v̂

〉+ 〈Aq(·)
(
v̂n
)
, v̂n − v̂

〉] = 0.

Due to the monotonicity of Aq(·)(·) we obtain

lim sup
n→∞

[〈
Ap(·)

(
v̂n
)
, v̂n − v̂

〉+ 〈Aq(·)
(
v̂
)
, v̂n − v̂

〉] ≤ 0.

From this and (3.4) we then conclude that

lim sup
n→∞

〈
Ap(·)

(
v̂n
)
, v̂n − v̂

〉 ≤ 0.

By the (S)+-property of Ap(·), see Proposition 2.2, we have that

v̂n → v̂ in W 1,p(·)
0 (�). (3.6)

Passing to the limit in (3.5) as n → ∞ and using (3.6) gives

〈
Ap(·)

(
v̂
)
, h
〉+ 〈Aq(·)

(
v̂
)
, h
〉 =

∫

�

h

[|g| + ε]η(x)
dx

for all h ∈ W 1,p(·)
0 (�). Thus, v̂ = Kε(g). Therefore, by the Urysohn criterion for the

convergence of sequences, we conclude that for the original sequence we have

v̂n = Kε(gn) → Kε(g) = v̂.

Hence, Kε is continuous and this proves Claim 1.
Recall that Kε(L p(·)(�)) ⊆ W 1,p(·)

0 (�) is bounded, see (3.3). On the other hand,

we have the compact embedding W 1,p(·)
0 (�) ↪→ L p(·)(�). This implies

Kε(L p(·)(�))
‖·‖p(·) ⊆ L p(·)(�) is compact. (3.7)

Claim 1 and (3.7) permit the use of the Schauder–Tychonoff fixed point theorem,
see Papageorgiou–Rădulescu–Repovš [17, Theorem 4.3.21]. So, we can find uε ∈
W 1,p(·)

0 (�) such that

Kε (uε) = uε ⊆ int
(
C1
0(�)+

)
.
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Hence

−�p(·)uε − �q(·)uε = [uε + ε
]−η(x) in �, uε

∣∣
∂�

= 0, uε > 0. (3.8)

In fact, this solution is unique. Indeed, suppose that yε ∈ int
(
C1
0(�)+

)
is another

positive solution of (3.8). Then we have that

0 ≤
〈
Ap(·) (uε) − Ap(·)

(
yε

)
,
(
uε − yε

)+〉+
〈
Aq(·) (uε) − Aq(·)

(
yε

)
,
(
uε − yε

)+〉

=
∫

�

[
1

[uε + ε]η(x)
− 1[

yε + ε
]η(x)

]
(
uε − yε

)+ dx ≤ 0.

We obtain uε ≤ yε.
Interchanging the roles of uε and yε in the argument above also gives yε ≤ vε.

Hence, uε = yε. This proves the uniqueness of the solution uε ∈ int
(
C1
0(�)+

)
of

problem (3.8).
Claim 2: If 0 < ε′ ≤ ε, then uε ≤ uε′ .
First note that uε, uε′ ∈ int

(
C1
0(�)+

)
. Since ε′ ≤ ε we have

−�p(·)uε′ − �q(·)uε′ = [uε′ + ε′]−η(x) ≥ [uε′ + ε]−η(x) in �. (3.9)

Next we introduce the Carathéodory function lε : � × R → R defined by

lε(x, s) =
{[

s+ + ε
]−η(x) if s ≤ uε′(x),

[uε′(x) + ε]−η(x) if uε′(x) < s.
(3.10)

Let Lε(x, s) = ∫ s0 lε(x, t) dt and consider the C1-functional ψε : W 1,p(·)
0 (�) → R

defined by

ψε(u) =
∫

�

1

p(x)
|∇u|p(x) dx +

∫

�

1

q(x)
|∇u|q(x) dx −

∫

�

Lε(x, u) dx

for all u ∈ W 1,p(·)
0 (�). From the definition of the truncation in (3.10) we see that

ψε(u) ≥ 1

p+
[
�p(·)(∇u) + �q(·)(∇u)

]− c1

for some c1 > 0. Hence, ψε : W 1,p(·)
0 (�) → R is coercive. Moreover, by the

anisotropic Sobolev embedding theorem we know that ψε : W 1,p(·)
0 (�) → R is

sequentially weakly lower semicontinuous. Then, by the Weierstraß–Tonelli theorem,
we can find ũε ∈ W 1,p(·)

0 (�) such that

ψε (ũε) = min
[
ψε(u) : u ∈ W 1,p(·)

0 (�)
]
. (3.11)

123



Positive Solutions for Singular Anisotropic (p, q)-Equations 11861

Let u ∈ int
(
C1
0(�)+

)
be fixed. Since uε′ ∈ int

(
C1
0(�)+

)
, we can take t ∈ (0, 1)

small enough such that tu ≤ uε′ , see also Proposition 4.1.22 of Papageorgiou–
Rădulescu–Repovš [17]. From (3.10) we see that we have ψε(tu) < 0 and so
ψε (ũε) < 0 = ψε(0). Hence, ũε �= 0.

Taking (3.11) into account we have ψ ′
ε (ũε) = 0, that is,

〈
Ap(·) (ũε) , h

〉+ 〈Aq(·) (ũε) , h
〉 =

∫

�

lε (x, ũε) h dx (3.12)

for all h ∈ W 1,p(·)
0 (�). First we test (3.12) with h = − (ũε)

− ∈ W 1,p(·)
0 (�) in order

to get

�p(·)
(∇ (ũε)

−)+ �q(·)
(∇ (ũε)

−) ≤ 0.

Proposition 2.1 then implies that

ũε ≥ 0 and ũε �= 0.

Next, we test (3.12) with h = (ũε − uε′)+ ∈ W 1,p(·)
0 (�). This yields, by applying

(3.10) and (3.9),

〈
Ap(·) (ũε) , (ũε − uε′)+

〉+ 〈Aq(·) (ũε) , (ũε − uε′)+
〉

=
∫

�

(ũε − uε′)+

[uε′ + ε]η(x)
dx

≤ 〈Ap(·) (uε′) , (ũε − uε′)+
〉+ 〈Aq(·) (uε′) , (ũε − uε′)+

〉
.

This implies ũε ≤ uε′ and so it holds

ũε ∈ [0, uε′ ] , ũε �= 0. (3.13)

From (3.13), (3.10), (3.12) it follows that ũε is a positive solution of problem (3.8).
Hence, ũε = uε ∈ int

(
C1
0(�)+

)
. Then, with view to (3.13), we have

uε ≤ uε′ for all 0 < ε′ ≤ ε.

This proves Claim 2.
Now we will let ε → 0+ to get a solution of the purely singular problem (Auλ).
So, let εn → 0+ and let un = uεn ∈ int

(
C1
0(�)+

)
be the unique solution of

problem (3.8) with ε = εn for n ∈ N. From Claim 2 we have

0 ≤ u1 ≤ un for all n ∈ N.
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It follows that

0 ≤ 1

[un + εn]η(x)
≤ 1

uη(x)
n

≤ 1

uη(x)
1

for all n ∈ N. (3.14)

Since un ∈ int
(
C1
0(�)+

)
is a solution of (3.8), we have

〈
Ap(·) (un) , h

〉+ 〈Aq(·) (un) , h
〉 =

∫

�

h

[un + εn]η(x)
dx (3.15)

for all h ∈ W 1,p(·)
0 (�) and for all n ∈ N. We choose h = un ∈ W 1,p(·)

0 (�) in (3.15)
which by using (3.14) gives

�p(·) (∇un) + �q(·) (∇un) ≤
∫

�

un

uη(x)
1

dx for all n ∈ N. (3.16)

FromLemma14.16 ofGilbarg–Trudinger [11, p. 355]we know that there exists δ0 > 0
such that d̂(·) = d̂(·, ∂�) ∈ C2(�δ0) with �δ0 = {x ∈ � : d̂(x) < δ0}. Hence, d̂ ∈
C1
0(�))+ \{0} and so there exists c2 > 0 such that c2d̂ ≤ u1 since u1 ∈ int

(
C1
0(�)+

)
.

Then, from (3.14) and (3.16) we obtain

�p(·) (∇un) ≤ c3 ‖un‖ (3.17)

for some c3 > 0 and for all n ∈ N. This inequality follows from the anisotropicHardy’s
inequality due to Harjulehto–Hästö–Koskenoja [12] and the Poincaré inequality. Then
(3.17) and Proposition 2.1 imply that {un}n∈N ⊆ W 1,p(·)

0 (�) is bounded.
From Lemma A.5 of Saoudi–Ghanmi [26] it follows that {un}n∈N ⊆ L∞(�) is

bounded and so using Lemma 3.3 of Fukagai–Narukawa [8], we can find α ∈ (0, 1)
and c4 > 0 such that

un ∈ C1,α
0 (�) = C1,α(�) ∩ C1

0(�) and ‖un‖C1,α
0 (�)

≤ c4 (3.18)

for all n ∈ N.
We know that C1,α

0 (�) ↪→ C1
0(�) is compactly embedded. So, from (3.18) and by

passing to a subsequence if necessary, we may assume that

un → uλ in C1
0(�). (3.19)

Hence, uλ ≥ u1 and so uλ ∈ int
(
C1
0(�)+

)
.

From the anisotropic Hardy’s inequality, see Harjulehto–Hästö–Koskenoja [12],
we know that

|h|
uη(·)
1

∈ L1(�) for all h ∈ W 1,p(·)
0 (�).
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From (3.14) we then see that

{
h

[un + εn]η(·)

}

n∈N
⊆ L1(�) is uniformly integrable

for all h ∈ W 1,p(·)
0 (�). Moreover, we have

h

[un + εn]η(x)
−→ h

[uλ + εn]η(x)
for a. a. x ∈ �.

So, fromVitali’s theorem, see Papageorgiou–Winkert [20, Theorem 2.3.44], we obtain

∫

�

h

[un + εn]η(x)
dx −→

∫

�

h

uη(x)
λ

dx (3.20)

for all h ∈ W 1,p(·)
0 (�). Therefore, if we pass to the limit as n → ∞ in (3.15) and use

(3.19) as well as (3.20), one gets

〈
Ap(·) (uλ) , h

〉+ 〈Aq(·) (uλ) , h
〉 =

∫

�

h

uη(x)
λ

dx for all h ∈ W 1,p(·)
0 (�).

This shows that uλ ∈ int
(
C1
0(�)+

)
is a positive solution of (Auλ) for λ > 0.

As before, exploiting the strict monotonicity of s → s−η(x) on
◦
R+ = (0,+∞), we

show that this solution uλ ∈ int
(
C1
0(�)+

)
is unique.

An argument similar to that of Claim 2 shows that 0 < λ′ < λ implies uλ′ ≤ uλ.
This finishes the proof of the proposition. ��

4 Positive Solutions

We introduce the following two sets

L = {λ > 0 : problem (Pλ) has a positive solution} ,

Sλ = {u : u is a positive solution of problem (Pλ)} .

First we show that the setL of admissible parameters is nonempty andwe determine
the regularity properties of the elements of Sλ for λ ∈ L.

Let u1 ∈ int
(
C1
0(�)+

)
be the unique positive solution of (Auλ) with λ = 1, see

Proposition 3.1. From the proof of theLemmaofLazer–McKenna [14, p. 274]weknow
that u1(·)−η(·) ∈ L1(�). We consider the following anisotropic Dirichlet problem

−�p(·)u − �q(·)u = 1 + u−η(x)
1 in �, u

∣∣
∂�

= 0, u > 0. (Au)’
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Proposition 4.1 If hypothesis H0 holds, then problem (Au)’ has a unique positive
solution ũ ∈ int

(
C1
0(�)+

)
such that u1 ≤ ũ.

Proof In order to establish the existence of a positive solution, we argue as in the first
part of the proof of Proposition 3.1. So, we consider the approximation

−�p(·)u − �q(·)u = 1 +
[
u1 + 1

n

]−η(x)

in �, u
∣∣
∂�

= 0, n ∈ N.

This problem has a unique solution ũn ∈ int
(
C1
0(�)+

)
. Testing the equation with ũn

we obtain

�p(·) (∇ũn) ≤
∫

�

ũn dx +
∫

�

ũn

uη(x)
1

dx .

As before, by using the anisotropic Hardy’s inequality, we conclude that

�p(·) (∇ũn) ≤ c5 ‖ũn‖ for all n ∈ N and for some c5 > 0.

Therefore, {ũn}n∈N ⊆ W 1,p(·)
0 (�) is bounded.

As in the proof of Proposition 3.1 we have that {ũn}n∈N ⊆ C1
0(�) is relatively

compact and so we may assume that

ũn → ũ in C1
0(�). (4.1)

Moreover, if u ∈ int
(
C1
0(�)+

)
is the unique positive solution of

−�p(·)u − �q(·)u = 1 in �, u
∣∣
∂�

= 0,

then by the weak comparison principle, we have u ≤ ũn for all n ∈ N. Hence, u ≤ ũ
and so ũ ∈ int

(
C1
0(�)+

)
. Furthermore, using (4.1) as n → ∞ in the corresponding

equation for ũn , we obtain

〈
Ap(·) (ũ) , h

〉+ 〈Aq(·) (ũ) , h
〉 =

∫

�

[
1 + u−η(x)

1

]
h dx

for all h ∈ W 1,p(·)
0 (�). Thus, ũ ∈ int

(
C1
0(�)+

)
is a positive solution of (Au)’.

On account of Proposition 2.2 this positive solution is unique. Moreover we have

0 ≤ 〈Ap(·) (u1) − Ap(·) (ũ) , (u1 − ũ)+
〉+ 〈Aq(·) (u1) − Aq(·) (ũ) , (u1 − ũ)+

〉

=
∫

�

[
u−η(x)
1 −

(
1 + u−η(x)

1

)]
(u1 − ũ)+ dx ≤ 0.

This shows that u1 ≤ ũ. ��
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We are going to apply uλ, ũ ∈ int
(
C1
0(�)+

)
in order to show the nonemptiness of

L.
Proposition 4.2 If hypotheses H0 and H1 hold, then L �= ∅ and Sλ ⊆ int

(
C1
0(�)+

)
for every λ ∈ L.
Proof Let λ ∈ (0, 1]. Taking Propositions 3.1 and 4.1 into account, we define the
Carathéodory function ĝλ : � × R → R by

ĝλ(x, s) =

⎧⎪⎪⎨
⎪⎪⎩

λ
[
u−η(x)

λ + f (x, uλ(x))
]

if s < uλ(x),

λ
[
s−η(x) + f (x, s)

]
if uλ(x) ≤ s ≤ ũ(x),

λ
[
ũ−η(x) + f (x, ũ(x))

]
if ũ(x) < s.

(4.2)

We consider the following Dirichlet problem

−�p(·)u − �q(·)u = ĝλ(x, u) in �, u
∣∣
∂�

= 0. (4.3)

By using the direct method of the calculus of variations, we will produce a solution
for problem (4.3) when λ ∈ (0, 1] is small enough. So, let Ĝλ(x, s) = ∫ s

0 ĝλ(x, t) dt

and consider the C1-functional ϕ̂λ : W 1,p(·)
0 (�) → R defined by

ϕ̂λ(u) =
∫

�

1

p(x)
|∇u|p(x) dx +

∫

�

1

q(x)
|∇u|q(x) dx −

∫

�

Ĝλ(x, u) dx

for all u ∈ W 1,p(·)
0 (�). From the definition of the truncation in (4.2) it is easy to see

that

ϕ̂λ(u) ≥ 1

p+
[
�p(·)(∇u) + �q(·)(∇u)

]− c5

for some c5 > 0. Hence, ϕ̂λ : W 1,p(·)
0 (�) → R is coercive. Further ϕ̂λ : W 1,p(·)

0 (�) →
R is sequentially weakly lower semicontinuous. Hence, there exists uλ ∈ W 1,p(·)

0 (�)

such that

ϕ̂λ(uλ) = min
[
ϕ̂λ(u) : u ∈ W 1,p(·)

0 (�)
]
. (4.4)

Since ũ ∈ int
(
C1
0(�)+

)
, on account of hypothesis H1(i) we can find λ ∈ (0, 1]

small enough such that

λ f (x, ũ) ≤ 1 for a. a. x ∈ �. (4.5)

From (4.4) we have ϕ̂′
λ(uλ) = 0, that is,

〈
Ap(·) (uλ) , h

〉+ 〈Aq(·) (uλ) , h
〉 =

∫

�

ĝλ(x, uλ)h dx (4.6)
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for all h ∈ W 1,p(·)
0 (�). First, we take h = (uλ − uλ)

+ ∈ W 1,p(·)
0 (�) in (4.6). Then,

applying (4.2), H1(i) and Proposition 3.4, we obtain

〈
Ap(·) (uλ) , (uλ − uλ)

+〉+ 〈Aq(·) (uλ) , (uλ − uλ)
+〉

=
∫

�

λ
[
u−η(x)

λ + f (x, uλ)
]
(uλ − uλ)

+ dx

≥
∫

�

λu−η(x)
λ (uλ − uλ)

+ dx

= 〈Ap(·) (uλ) , (uλ − uλ)
+〉+ 〈Aq(·) (uλ) , (uλ − uλ)

+〉 .

On account of Proposition 2.2 we conclude that uλ ≤ uλ. Next, we choose h =
(uλ − ũ)+ ∈ W 1,p(·)

0 (�) in (4.6). Then, using (4.2), (4.5) and Proposition 4.1, one has

〈
Ap(·) (uλ) , (uλ − ũ)+

〉+ 〈Aq(·) (uλ) , (uλ − ũ)+
〉

=
∫

�

λ
[
ũ−η(x) + f (x, ũ)

]
(uλ − ũ)+ dx

≤
∫

�

[
ũ−η(x) + 1

]
(uλ − ũ)+ dx

= 〈Ap(·) (ũ) , (uλ − ũ)+
〉+ 〈Aq(·) (ũ) , (uλ − ũ)+

〉
.

As before, from Proposition 2.2 we see that uλ ≤ ũ.
In summary we have shown that uλ ∈ [uλ, ũ] for all λ ∈ (0, 1] small enough.

From (4.2) and (4.6) we see that uλ is a solution of our original problem (Pλ), that is,
uλ ∈ Sλ. This proves the nonemptiness of L.

Let us now prove the second assertion of the proposition. To this end, let u ∈ Sλ.
Since f ≥ 0 by hypothesis H1(i), we have that uλ ≤ u and because u ∈ int

(
C1
0(�)+

)
,

there exists c6 > 0 such that c6d̂ ≤ u, see Papageorgiou–Rădulescu–Repovš [17,
p. 274]. This fact, hypothesis H1(i) and Theorem B1 of Saoudi–Ghanmi [26] (see
also Giacomoni–Schindler–Takáč [10]), we have that u ∈ int

(
C1
0(�)+

)
. Therefore,

Sλ ⊆ int
(
C1
0(�)+

)
for all λ ∈ L. ��

The next proposition shows that L is connected, that is, L is an interval.

Proposition 4.3 If hypotheses H0 and H1 hold, λ ∈ L and μ ∈ (0, λ), then μ ∈ L.

Proof Since λ ∈ L, there exists u ∈ Sλ ⊆ int
(
C1
0(�)+

)
, see Proposition 4.2. More-

over, from Proposition 3.1 we know that

uμ ≤ uλ ≤ u. (4.7)
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Based on (4.7) we introduce the Carathéodory function gμ : � × R → R defined
by

gμ(x, s) =

⎧
⎪⎨
⎪⎩

μ
[
uμ(x)−η(x) + f

(
x, uμ(x)

)]
if s < uμ(x),

μ
[
s−η(x) + f (x, s)

]
if uμ(x) ≤ s ≤ u(x),

μ
[
u(x)−η(x) + f (x, u(x))

]
if u(x) < s.

(4.8)

We set Gμ(x, s) = ∫ s0 gμ(x, t) dt and consider the C1-functional ϕμ : W 1,p(·)
0 (�) →

R defined by

ϕμ(u) =
∫

�

1

p(x)
|∇u|p(x) dx +

∫

�

1

q(x)
|∇u|q(x) dx −

∫

�

Gμ(x, u) dx

for all u ∈ W 1,p(·)
0 (�). It is clear that ϕμ is coercive because of (4.8) and it is

sequentially weakly lower semicontinuous. So, there exists uμ ∈ W 1,p(·)
0 (�) such

that

ϕμ(uμ) = min
[
ϕμ(u) : u ∈ W 1,p(·)

0 (�)
]
.

This implies, in particular, that ϕ′
μ(uμ) = 0. Hence

〈
Ap(·)

(
uμ

)
, h
〉+ 〈Aq(·)

(
uμ

)
, h
〉 =

∫

�

gμ

(
x, uμ

)
h dx (4.9)

for all h ∈ W 1,p(·)
0 (�). We first choose h = (

uμ − uμ

)+ ∈ W 1,p(·)
0 (�) in (4.9).

Applying (4.8), hypothesis H1(i) and Proposition 3.1 yields

〈
Ap(·)

(
uμ

)
,
(
uμ − uμ

)+〉+
〈
Aq(·)

(
uμ

)
,
(
uμ − uμ

)+〉

=
∫

�

μ
[
u−η(x)

μ + f
(
x, uμ

)] (
uμ − uμ

)+ dx

≥
∫

�

μu−η(x)
μ

(
uμ − uμ

)+ dx

=
〈
Ap(·)

(
uμ

)
,
(
uμ − uμ

)+〉+
〈
Aq(·)

(
uμ

)
,
(
uμ − uμ

)+〉
.
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Proposition 2.2 then implies that uλ ≤ uμ. Now we choose h = (
uμ − u

)+ ∈
W 1,p(·)

0 (�) in (4.9). Then, from (4.8), μ < λ and u ∈ Sλ, we derive

〈
Ap(·)

(
uμ

)
,
(
uμ − u

)+〉+
〈
Aq(·)

(
uμ

)
,
(
uμ − u

)+〉

=
∫

�

μ
[
u−η(x) + f (x, uλ)

] (
uμ − u

)+ dx

≤
∫

�

λ
[
u−η(x) + f (x, u)

] (
uμ − u

)+ dx

=
〈
Ap(·) (u) ,

(
uμ − u

)+〉+
〈
Aq(·) (u) ,

(
uμ − u

)+〉
.

Thus, uμ ≤ u. Therefore we have proved that

uμ ∈ [uμ, u
]
. (4.10)

From (4.10), (4.8) and (4.9) it follows that

uμ ∈ Sμ ⊆ int
(
C1
0(�)+

)

and so μ ∈ L. ��

An immediate consequence of the proof above is the following corollary.

Corollary 4.4 If hypotheses H0 and H1 hold and if λ ∈ L, u ∈ Sλ ⊆ int
(
C1
0(�)+

)
and 0 < μ < λ, then μ ∈ L and there exists uμ ∈ Sμ ⊆ int

(
C1
0(�)+

)
such that

uμ ≤ u.

We can improve the conclusion of this corollary.

Proposition 4.5 If hypotheses H0 and H1 hold and λ ∈ L, u ∈ Sλ ⊆ int
(
C1
0(�)+

)
and 0 < μ < λ, then μ ∈ L and there exists uμ ∈ Sμ ⊆ int

(
C1
0(�)+

)
such that

u − uμ ∈ int
(
C1
0(�)+

)
.

Proof From Corollary 4.4 we already know that μ ∈ L and that we can find uμ ∈
Sμ ⊆ int

(
C1
0(�)+

)
such that

uμ ≤ uμ ≤ u. (4.11)
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Now, let ρ = ‖u‖∞ and let ξ̂ρ > 0 be as given in hypothesis H1(v). Since μ < λ,
uμ ∈ Sμ and due to (4.11), hypothesis H1(v) and f ≥ 0, we have

− �p(·)uμ − �q(·)uμ + λξ̂ρu
p(x)−1
μ − λu−η(x)

μ

< −�p(·)uμ − �q(·)uμ + λξ̂ρu
p(x)−1
μ − μu−η(x)

μ

= μ f
(
x, uμ

)+ λξ̂ρu
p(x)−1
μ

≤ λ
[
f
(
x, uμ

)+ ξ̂ρu
p(x)−1
μ

]
− (λ − μ) f (x, uμ)

≤ λ
[
f (x, u) + ξ̂ρu

p(x)−1
]

= −�p(·)u − �q(·)u + λξ̂ρu
p(x)−1 − λu−η(x).

(4.12)

Since uμ ∈ int
(
C1
0(�)+

)
, using hypothesis H1(iv), we see that

0 � [λ − μ] f (·, uμ(·)).

Then, from (4.12) and Proposition 2.3, we conclude that

u − uμ ∈ int
(
C1
0(�)+

)
.

��
Remark 4.6 In the same way as in the proof of Proposition 4.5, we can also show that

uμ − uμ ∈ int
(
C1
0(�)+

)
. (4.13)

Let λ∗ = supL. The next proposition shows that λ∗ is finite.

Proposition 4.7 If hypotheses H0 and H1 hold, then λ∗ < +∞.

Proof From Hypotheses H1(i)–(iv) we see that there exists λ̂ > 0 large enough such
that

λ̂ f (x, s) ≥ s p(x)−1 for a. a. x ∈ � and for all s ≥ 0. (4.14)

Let λ > λ̂ and suppose that λ ∈ L. Then we can find u ∈ Sλ ⊆ int
(
C1
0(�)+

)
. Let

�0 ⊆ � be an open subset with C2-boundary such that �0 ⊆ � and u is not constant
on�0.We definem0 = minx∈�0

u(x). Since u ∈ int
(
C1
0(�)+

)
it is clear thatm0 > 0.

For δ ∈ (0, ‖u‖∞ − m0) we set mδ
0 = m0 + δ. Further, for ρ = ‖u‖∞ let ξ̂ρ > 0 be

as given by hypothesis H1(v). First, for δ small enough, we observe that

1

mη(x)
0

− 1

(m0 + δ)η(x)
= (m0 + δ)η(x) − mη(x)

0

[m0(m0 + δ)]η(x)
≤
(

δ

m2
0

)η(x)

≤
(

δ

m2
0

)η−
(4.15)
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for all x ∈ �. Then, applying (4.15), (4.14), hypotheses H1(iv), (v), u ∈ Sλ and δ > 0
small enough, we have

− �p(·)mδ
0 − �q(·)mδ

0 +
[
λξ̂ρ + 1

] (
mδ

0

)p(x) − λ
(
mδ

0

)−η(x)

≤
[
λξ̂ρ + 1

]
mp(x)−1

0 + χ(δ) with χ(δ) → 0+ as δ → 0+,

≤ λ̂ f (x,m0) + λξ̂ρm
p(x)−1
0 + χ(δ)

= λ
[
f (x,m0) + ξ̂ρm

p(x)−1
0

]
−
(
λ − λ̂

)
f (x,m0) + χ(δ)

≤ λ
[
f (x,m0) + ξ̂ρm

p(x)−1
0

]

≤ λ
[
f (x, u) + ξ̂ρu

p(x)−1
]

= −�p(·)u − �q(·)u + λξ̂ρu
p(x)−1 − λu−η(x) in �0.

(4.16)

For δ > 0 small enough, because of hypothesis H1(iv), we know that

0 < η̃0 ≤
[
λ − λ̂

]
f (x,m0) − χ(δ).

Then, from (4.16) and Proposition 2.4, we infer that

0 < u(x) − mδ
0 for all x ∈ � and for all small δ > 0.

This is a contradiction to the definition of m0 > 0. Therefore, λ /∈ L and so λ∗ ≤ λ̂ <

∞. ��
We have just proved that (0, λ∗) ⊆ L ⊆ (0, λ∗]. Next we show that our original

problem (Pλ) has at least two positive smooth solution for λ ∈ (0, λ∗).

Proposition 4.8 If hypotheses H0 and H1 hold and if λ ∈ (0, λ∗), then problem (Pλ)
has at least two positive solutions

u0, û ∈ int
(
C1
0(�)+

)
with u0 �= û.

Proof Let ϑ ∈ (λ, λ∗) ⊆ L and let uϑ ∈ Sϑ ⊆ int
(
C1
0(�)+

)
. From Proposition 4.5

and (4.13) we know there exists u0 ∈ Sλ ⊆ int
(
C1
0(�)+

)
such that

u0 ∈ intC1
0 (�)[uλ, uϑ ]. (4.17)

We introduce the Carathéodory function kλ : � × R → R defined by

kλ(x, s) =
{

λ
[
uλ(x)−η(x) + f (x, uλ(x))

]
if s ≤ uλ(x),

λ
[
s−η(x) + f (x, s)

]
if uλ(x) < s.

(4.18)
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Weset Kλ(x, s) = ∫ s0 kλ(x, t) dt and consider theC1-functionalσλ : W 1,p(·)
0 (�) →

R defined by

σλ(u) =
∫

�

1

p(x)
|∇u|p(x) dx +

∫

�

1

q(x)
|∇u|q(x) dx −

∫

�

Kλ(x, u) dx

for all u ∈ W 1,p(·)
0 (�).

Using (4.18) we can easily show that

Kσλ ⊆ [uλ) ∩ int
(
C1
0(�)+

)
. (4.19)

Hence we may assume that

Kσλ ∩ [uλ, uϑ ] = {u0}, (4.20)

otherwise we already have a second positive smooth solution of (Pλ) and so we are
done, see (4.19) and (4.18).

We truncate kλ(x, ·) at uϑ(x). This is done by the Carathéodory function k̂λ : � ×
R → R defined by

k̂λ(x, s) =
{
kλ(x, s) if s ≤ uϑ(x),

kλ (x, uϑ(x)) if uϑ(x) < s.
(4.21)

We set K̂λ(x, s) = ∫ s0 k̂λ(x, t) dt and consider theC1-functional σ̂λ : W 1,p(·)
0 (�) → R

defined by

σ̂λ(u) =
∫

�

1

p(x)
|∇u|p(x) dx +

∫

�

1

q(x)
|∇u|q(x) dx −

∫

�

K̂λ(x, u) dx

for all u ∈ W 1,p(·)
0 (�).

Looking at (4.18) and (4.21) we see that

σ̂λ

∣∣[0,uϑ ] = σλ

∣∣[0,uϑ ] and σ̂ ′
λ

∣∣[0,uϑ ] = σ ′
λ

∣∣[0,uϑ ]. (4.22)

Further, from (4.21) it is clear that

Kσ̂λ
⊆ [uλ, uϑ ] ∩ int

(
C1
0(�)+

)
. (4.23)

From the definition of the truncations in (4.18) and (4.21) we know that σ̂λ is
coercive and it is also sequentially weakly lower semicontinuous. Thus, we can find
ũ0 ∈ W 1,p(·)

0 (�) such that

σ̂λ (ũ0) = min
[
σ̂λ(u) : u ∈ W 1,p(·)

0 (�)
]
.
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Taking (4.23), (4.22), (4.20) into account we conclude that ũ0 = u0. Then, on account
of (4.17) and (4.22), u0 ∈ int

(
C1
0(�)+

)
is a localC1

0(�)-minimizer of σλ. The results
of Tan–Fang [27] imply that

u0 ∈ int
(
C1
0(�)+

)
is a W 1,p(·)

0 (�)-minimizer of σλ. (4.24)

From (4.19) it is clear that we may assume that Kσλ is finite otherwise we would
have a sequence of distinct positive solutions of (Pλ) and so we would have done. The
finiteness of Kσλ along with (4.24) and Theorem 5.7.6 of Papageorgiou–Rădulescu–
Repovš [17, p. 449] imply that we can find ρ̂ ∈ (0, 1) small enough such that

σλ(u0) < inf
[
σλ(u) : ‖u − u0‖ = ρ̂

] = mλ. (4.25)

Reasoning as in the proof of Proposition 4.1 of Gasiński–Papageorgiou [9] we can
show that

σλ satisfies the C-condition. (4.26)

Moreover, if u ∈ int
(
C1
0(�)+

)
, then on account of hypothesis H1(ii) and (4.18),

we have

σλ(tu) → −∞ as t → +∞. (4.27)

Then, (4.25), (4.26) and (4.27) permit us the use of the mountain pass theorem.
Hence, there exists û ∈ W 1,p(·)

0 (�) such that

û ∈ Kσλ ⊆ [uλ) ∩ int
(
C1
0(�)+

)
,

see (4.19), and

mλ ≤ σλ

(
û
)
,

see (4.25). Taking (4.18) and (4.25) into account we conclude that û ∈ int
(
C1
0(�)+

)
is a solution of (Pλ) for λ ∈ (0, λ∗) with û �= u0. ��

Next we will check the admissibility of the critical parameter λ∗ > 0.

Proposition 4.9 If hypotheses H0 and H1 hold, then λ∗ ∈ L, that is, L = (0, λ∗].
Proof Let {λn}n∈N ⊆ (0, λ∗) ⊆ L be such that λn ↗ λ∗ as n → ∞. Let u1 = uλ1 ∈
int
(
C1
0(�)+

)
be the unique solution of (Auλ) for λ = λ1 obtained in Proposition 3.1.

By hypothesis H1(i) we know that f ≥ 0. Then from (4.18) we get that σλ1(u1) ≤ 0.
Hence,

σλn (u1) ≤ 0 for all n ∈ N, (4.28)
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since λ1 ≤ λn for all n ∈ N.
From the proof of Proposition 4.8 we know there exists un ∈ Sλn ⊆ int

(
C1
0(�)+

)
such that u1 ≤ un and

σλn (un) ≤ σλn (u1) ≤ 0 for all n ∈ N, (4.29)

see (4.28). Since un ∈ Sλn it holds

σ ′
λn

(un) = 0 for all n ∈ N. (4.30)

From (4.29), (4.30) and Proposition 4.1 of Gasiński–Papageorgiou [9] we can con-
clude that {un}n∈N ⊆ W 1,p(·)

0 (�) is bounded. So, we may assume that

un
w→ u∗ in W 1,p(·)

0 (�) and un → u∗ in Lr(·)(�). (4.31)

From (4.30) we have

〈
Ap(·) (un) , h

〉+ 〈Aq(·) (un) , h
〉 =

∫

�

kλ (x, un) h dx (4.32)

for all h ∈ W 1,p(·)
0 (�) and for all n ∈ N.

We take h = un − u∗ ∈ W 1,p(·)
0 (�) as test function (4.32). Applying (4.31) and

hypothesis H1(i) gives

lim
n→∞

[〈
Ap(·)(un), un − u∗

〉+ 〈Aq(·)(un), un − u∗
〉] = 0.

Since Aq(·) is monotone, see Proposition 2.2, we obtain

lim sup
n→∞

[〈
Ap(·)(un), un − u∗

〉+ 〈Aq(·)(u∗), un − u∗
〉] ≤ 0.

Then, by using (4.31), it follows

lim sup
n→∞

〈
Ap(·)(un), un − u∗

〉 ≤ 0.

From this and Proposition 2.2 we conclude that

un → u∗ in W 1,p(·)
0 (�) and u1 ≤ u∗. (4.33)

If we now pass to the limit in (4.32) as n → ∞, then, by applying (4.33), we see that
u∗ ∈ Sλ∗ and so λ∗ ∈ L, that is, L = (0, λ∗]. ��

In summary, we can state the following bifurcation-type result concerning problem
(Pλ).

Theorem 4.10 If hypotheses H0 and H1 hold, then there exists λ∗ > 0 such that
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(a) for every λ ∈ (0, λ∗), problem (Pλ) has at least two positive solutions

u0, û ∈ int
(
C1
0(�)+

)
, u0 �= û;

(b) for λ = λ∗, problem (Pλ) has at least one positive solution

u∗ ∈ int
(
C1
0(�)+

)
;

(c) for every λ > λ∗, problem (Pλ) has no positive solutions.

5 Minimal Positive Solutions

In this section, we are going to show that for every admissible parameter λ ∈ L =
(0, λ∗], problem (Pλ) has a smallest positive solution (so-called minimal positive
solution) ũλ ∈ Sλ ⊆ int

(
C1
0(�)+

)
, that is, ũλ ≤ u for all u ∈ Sλ. Moreover, we

determine the monotonicity and continuity properties of the minimal solution map
L � λ 	→ ũλ ∈ int

(
C1
0(�)+

)
.

Proposition 5.1 If hypotheses H0 and H1 hold and if λ ∈ L ∈ (0, λ∗], then problem
(Pλ) has a smallest positive solution ũλ ∈ int

(
C1
0(�)+

)
.

Proof As in the proof of Proposition 18 in Papageorgiou–Rădulescu–Repovš [19],
we show that the set Sλ is downward directed, that is, if u, v ∈ Sλ, then there exists
y ∈ Sλ such that y ≤ u and y ≤ v. Invoking Lemma 3.10 of Hu–Papageorgiou [13,
p. 178], we can find a decreasing sequence {un}n∈N ⊆ Sλ such that

inf Sλ = inf
n∈N un and uλ ≤ un ≤ u1 for all n ∈ N. (5.1)

From (5.1) it follows that the sequence {un}n∈N ⊆ W 1,p(·)
0 (�) is bounded. So we

may assume that

un
w→ ũλ in W 1,p(·)

0 (�) and un → ũλ in L p(·)(�). (5.2)

Since un ∈ Sλ, we have

〈
Ap(·) (un) , h

〉+ 〈Aq(·) (un) , h
〉 =

∫

�

λ
[
u−η(x)
n + f (x, un)

]
h dx (5.3)

for all h ∈ W 1,p(·)
0 (�) and for all n ∈ N. Note that

0 ≤ u−η(·)
n ≤ u−η(·)

λ ∈ L1(�),

see Lazer–McKenna [14].
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We choose h = un − ũλ ∈ W 1,p(·)
0 (�) ∩ L∞(�) in (5.3), pass to the limit as

n → ∞ and apply (5.2). This yields

lim sup
n→∞

〈
Ap(·)(un), un − ũλ

〉 ≤ 0.

Then, from Proposition 2.2, it follows

un → ũλ in W 1,p(·)
0 (�) and uλ ≤ ũλ. (5.4)

Passing to the limit in (5.3) as n → ∞ and using (5.4), we obtain

ũλ ∈ Sλ ⊆ int
(
C1
0(�)+

)
and ũλ = inf Sλ.

��
Proposition 5.2 If hypotheses H0 andH1 hold, then the map λ 	→ ũλ fromL = (0, λ∗]
into C1

0(�) is

(a) strictly increasing, that is, 0 < λ′ < λ implies ũλ − ũλ ∈ int
(
C1
0(�)+

)
;

(b) left continuous.

Proof

(a) This is an immediate consequence of Proposition 4.5.
(b) Let {λn}n∈N ⊆ L be a sequence such that λn → λ−. We have

uλ1 ≤ ũλn ≤ ũλ for all n ∈ N.

Hence, {ũλn }n∈N ⊆ W 1,p(·)
0 (�) is bounded.

Then, as before, see the proof of Proposition 3.1, via the anisotropic regularity
theory, there exist α ∈ (0, 1) and c7 > 0 such that

ũλn ∈ C1,α
0 (�) and

∥∥ũλn

∥∥
C1,α
0 (�)

≤ c7 for all n ∈ N. (5.5)

Since C1,α
0 (�) is compactly embedded into C1

0(�), from (5.5) it follows that we have
at least for a subsequence

ũλn → ûλ in C1
0(�) and ûλ ∈ Sλ ⊆ int

(
C1
0(�)+

)
. (5.6)

Suppose that ûλ �= ũλ. Then there exists x ∈ � such that ũλ(x) < ûλ(x). Then

ũλ(x) < ũλn (x) for all n ∈ N,

see (5.6). But this contradicts (a). Hence, ûλ = ũλ and by Urysohn’s criterion for
convergent sequences, we have ũλn → ûλ inC1

0(�) for the initial sequence. Therefore,
λ 	→ ũλ is left continuous from L = (0, λ∗] into C1

0(�). ��
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18. Papageorgiou, N.S., Rădulescu, V.D., Repovš, D.D.: Nonlinear nonhomogeneous singular problems.
Calc. Var. Partial Differ. Equ. 59 (2020), no. 1, Paper No. 9
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