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In this paper we consider degenerate Kirchhoff-type equations
of the form

—3(E(W) (A®w) — uP %) = f@w) O,
d(E(u))B(u) - v = g(z,u) on 9,

where Q@ C RN, N > 2, is a bounded domain with Lipschitz
boundary 92, A denotes the double phase operator given by

A(w) = div (|VulP2Vu + pu(2) | Vu|T?Vau)
for u € WHH(Q), v(z) is the outer unit normal of Q at x € 99,

B(u) = |VulP™2Vu 4 p(z)|Vu|T*Vu,
P P q
() = / (|Vu| + |ul +M(I)|Vu| ) dz,
4 p q

1<p<N,p<qg<p =55, 0< ul) € L), ¢(s) =

a+bs¢~ ! fors€ R witha>0,b>0and ¢ >1,and f: Q x
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R — R, g: 92 x R — R are Carathéodory functions that
grow superlinearly and subcritically. We prove the existence
of a nodal ground state solution to the problem above, based
on variational methods and minimization of the associated
energy functional £: WH*(Q) — R over the constraint set

¢={uew @:ut £0,
(&' (), ut) = (&'(w), ~u~) =0},

whereby C differs from the well-known nodal Nehari manifold
due to the nonlocal character of the problem.
© 2025 The Author(s). Published by Elsevier Inc. This is an
open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

1. Introduction and main results

Let © € RY, N > 2, be a bounded domain with a Lipschitz boundary 0. In this
work we study the following degenerate Kirchhoff problem with a nonlinear Neumann
boundary condition of the shape

~6(E(w) (Au) = [ul'~?u) = f(= in €,

(1.1)
o(E(uw)B(u) - v = g(z, u) on 909,

where
A(u) = div (|VuP7*Vu + p(z)|Vu|?*Vu)  foru € whH(Q) (1.2)

is the double phase operator, W1*(€) denotes the Musielak-Orlicz Sobolev space (for
a precise definition see Section 2), v(z) is the outer unit normal of Q at @ € 99,

B(u) = |VulP~2Vu + p(z)|Vul|? > Vu,
(u) = / (M +M(m)w) da, (1.3)
Q

[1]

p q

1<p<N,p<q<p* =2 p,0<u()ELOO(Q),¢(3):a+bsC’1 for s € R with a > 0,
b>0and (> 1,and f: Q2 xR — R, g: 92 x R — R are Carathéodory functions that
grow superlinearly and subcritically. We refer to hypotheses (As) for the exact conditions
on f and g.

We emphasize that problem (1.1) combines several interesting phenomena. First, the
occurring operator is the double phase operator given in (1.2) which is closely related to
the energy functional
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/|Vu|p+u z)|Vul?) dz. (1.4)

Q

Functionals of the form (1.4) were first mentioned by Zhikov [57] in 1986 in order to
characterize models for strongly anisotropic materials in the context of homogenization
and elasticity. It also occurs in the study of duality theory and of the Lavrentiev gap
phenomenon, see the works of Zhikov [58,59]. From the mathematical point of view,
first regularity properties of local minimizers of functionals like (1.4) have been proved
in the papers by Baroni-Colombo-Mingione [6,7] and Colombo-Mingione [13,14]. We
also mention the pioneering works of Marcellini [39,40] for integral functionals with
nonstandard growth condition.

A second interesting phenomenon is the appearance of the nonlocal Kirchhoff term
which is generated by the function ¢(s) = a + bs¢~! for s € R with @ > 0, b > 0 and
¢ > 1. Problems of this type go back to a model which was first presented by Kirchhoff
[33] in 1883. He proposed the model problem

L
62 E /
o
0
which is a generalization of the D’Alembert equation. It should be pointed out that
problem (1.1) generalizes several models which describe interesting phenomena studied

u

83@2 =0,

on mathematical physics. Since the constant a in the Kirchhoff function could be zero,
problem (1.1) is called degenerate which creates the most interesting models in the
applications. Indeed, if p = 2 and u(x) = 0, the transverse oscillations of a stretched
string with nonlocal flexural rigidity depend continuously on the Sobolev deflection norm
of u via ¢( [, |Vul? dz) meaning that ¢(0) = 0 is nothing less than the base tension of
the string is zero. Moreover, there is a large list of references dealing with different
type of Kirchhoff problems. We just refer to some of the most famous ones, that is,
Alves-Corréa-Ma [1], Autuori-Pucci-Salvatori [5], D’Ancona-Spagnolo [19], Figueiredo
[22], Fiscella-Valdinoci [26], He-Zou [30], Lions [36], Mao-Zhang [38], Mingqi-Radulescu-
Zhang [41], Perera-Zhang [44], Pucci-Xiang-Zhang [45], Xiang-Zhang-Radulescu [52], see
also the references therein.

Even though the literature for Kirchhoff problems is very large, it is still very man-
ageable for Kirchhoff double phase settings. The first work in this field was written by
Fiscella-Pinamonti [25] who considered Kirchhoff-type problems of the style

p q
o /(@ +u($)|VTu) dz| A(w) = f(z,u) mQ, uwu=0 ondQ,
Q

whereby they suppose the Ambrosetti-Rabinowitz condition along with a subcritical
growth on the perturbation f: Q x R — R. Their existence result is mainly based on a
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mountain pass geometry of the problem. Singular Kirchhoff-type problems involving the
double phase operator have been studied by Arora-Fiscella-Mukherjee-Winkert [4] (see
also [3] by the same authors in the critical case) in order to get positive solutions of the
problem

p q
/ (|v;_| +a) )dx Afw) =™ 4™ in @, wfe=0

by using the Nehari manifold and minimization arguments. Other results can be found
in the papers of Cen-Vetro-Zeng [10], Cheng-Bai [11], Ho-Winkert [31], see also Isernia-
Repovs [32] for (p, g)-problems in the whole space.

Finally, a third interesting phenomenon in problem (1.1) is the appearance of a non-
linear Neumann boundary condition. Such a boundary condition makes the treatment
of problem (1.1) much more complicated. As far as we know there is just one paper in
the direction of Kirchhoff double phase problems with a nonlinear boundary condition
published by Fiscella-Marino-Pinamonti-Verzellesi [24] studying the problem

M /('V;L'p +N(x)|vq“|q) da | A(u) = hi(z,u) in Q,

-M / <|VZ|p +u(x)|vqu|q> dz | B(u) = ha(z,u) in 02
Q

with B as in (1.3). The authors prove several existence results for different structures of 7y
and ho based on variational tools and a version of the fountain theorem. Further works
for double phase problems with nonlinear Neumann boundary condition but without
Kirchhoff term have been published by Guarnotta-Livrea-Winkert [28], Papageorgiou-
Rédulescu-Repovs [42], Papageorgiou-Vetro-Vetro [43] and Zeng-Radulescu-Winkert [53,
54], see also the papers of Corréa-Nascimento [15] and Dai-Ma [20] for Kirchhoff problems
with Neumann boundary condition, but without a double phase operator.

Now we are going to formulate our assumptions on the data of problem (1.1) and
present our main result in this paper. We assume the subsequent conditions:

(Ay) 1<p<N,p<q<p*:NN—_pp and 0 < p(-) € L*™(9Q).
(A2) ¢:[0,00) = [0,00) is a continuous function given by

B(s) =a+ bst1 (1.5)

with @ >0, b > 0 and ¢ > 1 is such that ¢¢ < p, = (N—Lp,
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(A3) f: 2 xR — R and g: 90 x R — R are Carathéodory functions such that the
following hold:

(i) there exist constants ¢y, ca > 0 such that

|f(z,s)| <er (1+]s|"7") foraa.xeq,
lg(z,8)| < co (L+]s]7")  for a.a.x € 09,
for all s € R, where 71 < p* and ro < py;
(i)
fz,s)

lim ———~ =400 uniformly for a.a.z € (,
s—Foo |3|‘1§_25

g(z,s)
s—+oo |s|‘14*25

= 400 uniformly for a.a.x € 9%;

(iii)
T ACT)

~—— - =0 uniformly for a.a.z € §,
s—0 ‘3‘194—23 Y

g(z,s)
s—0 ‘s‘PC*QS

=0 uniformly for a.a.z € 0

(iv) the functions
s f(z,s)s —qCF(x,s) and s+ g(z,s)s —qCG(z,s)

are nondecreasing on [0,00) and nonincreasing on (—oo,0] for a.a. x € Q
and for a.a. x € 01, respectively, where

S

F(x,s):/f(x,t)dt and G(:z:,s):/g(x,t)dt;
0

0

(v) the functions

g(z,s)
S 7|s|‘14—1 and s+ qu(_l

are strictly increasing on (—oo,0) and on (0, +00) for a.a. z € Q and for a.a.
x € 01, respectively, where ( is from (As).

Remark 1.1. It should be mentioned that from (As)(i) and (ii) we can conclude that
g¢ < min{ry, ro}. Moreover, due to (A3)(i) and (ii), it holds that
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F
lim M = +o0o uniformly for a.a.z € €,
s—+oo |S|qc
a (1.6)
lim (2, 5) = +oo uniformly for a.a.z € 9.

s—Foo ‘S‘qg
Remark 1.2. If ¢ > 0, one can suppose weaker assumptions as in (Ag)(iii) of the form

f(z,s)

s—0 |5|p—25

=0 uniformly for a.a.x € Q,

g(z,s)
i
s—0 |s|P*2s

=0 uniformly for a.a.z € 0.

At some places the proofs become easier under these assumptions. We will not consider
this case further.

A weak solution of problem (1.1) is to be understood as a function u € W7 (Q) such
that

?(E(u)) /(\Vu|p72Vu+,u(;l:)|Vu|q72Vu) -V(pdx+/|u|p72u<pdz
) O

!f(x,u)cpd:c+/g($au)¢d0

o0

is satisfied for all test functions ¢ € WH(Q), where ¢ and Z are given in (1.5) and
(1.3), respectively.
The main result in this paper is the following one.

Theorem 1.3. Let hypotheses (A1)—(Ag3) be satisfied. Then problem (1.1) has a least en-
ergy sign-changing solution yo € W1 (Q).

The proof of Theorem 1.3 uses variational methods along with minimization argu-

ments. Precisely, the energy functional £: W17 (Q)) — R associated to problem (1.1) is
defined by

E(u) = P[E(u)] — /F(x,u) dz — /G(aﬁ,u) do,
o9

Q

whereby ®: [0,00) — [0, 00) is given as

_ _ s+ 2
@(s)—b/¢(7')d7'—as+§s.
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The idea in finding a least energy sign-changing solution (also called nodal ground state
solution) is to minimize € over the constraint set

C= {u e WEH(Q): uE £ 0, (€/(u),ut) = (€' (u), —u~) = o}, (1.7)

where ut = max{u,0} and v~ = max{—u,0}. It should be pointed out that the set £
differs from the nodal Nehari manifold which is defined as

No={ueWh*(Q): £u* e N} (1.8)
with
N ={ueW"H(Q): (£'(u),u) =0, u 0}

being the Nehari manifold to (1.1). Indeed, due to the nonlocal character of the problem
in terms of a Kirchhoff function, we cannot split our energy functional in a positive and
a negative part. Instead, we have for u € WH*(Q) with ut #0# u™ (sou=ut —u™)
and ¢ > 1 the relations

(&' (u),u™) > (€' (Wh),ub), ('), —u7) > (£'(-u7),—u7),

(1.9)
E(u) > E(u™) + E(—u7).
This makes the treatment of (1.1) much more complicated as in the case ¢ = 1 since in
that case we would have equations instead of strict inequalities in (1.9).

Coming back to the constraint set C we know that all sign-changing solutions of (1.1)
are located in the set C. That means that the global minimizer of £ over the set C has
least energy and is a nodal ground state solution if one can show that it is a critical
point of £. As already mentioned by Bartsch-Weth [9], this is not a priori clear since the
constraint set C is, in general, not a manifold anymore. However, if we set ® =1, p = 2
and p(z) =0, then CN H with H = H}(Q) N H?(Q) equipped with the scalar product
from H?(Q2), is a Cl-manifold of codimension two in H, see Bartsch-Weth [8], but it is
not complete in H in general.

Our paper can be seen as an extension of the works of Gasinski-Winkert [27] and
Crespo-Blanco-Gasinski-Winkert [17]. Indeed, in [27] the existence of a sign-changing
solution to the problem

—div (|VuP?Vu + p(z)|[Vu|T?Vu) = f(z,u) — [uP~2u — p()|u|? e in Q,
(IVulP~2Vu + p(2)|Vul|?* V) - v = g(z,u) on 052,
has been shown by minimizing the corresponding energy functional over the nodal Nehari

manifold given in (1.8). As mentioned above, this treatment is not possible in our setting
due to the lack of the splitting of the energy functional related to problem (1.1), see again
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(1.9). In [17] the authors deal with multiplicity of solutions for Kirchhoff problems with
Dirichlet boundary conditions and a double phase setting. We are going to combine the
ideas from both papers, using a similar method as in [17] and taking ideas from [27] how
to deal with the nonlinear boundary term.

The method of minimizing related energy functionals over the constraint set C was
first used in the paper of Bartsch-Weth [8] (see also [9] of the same authors) in order
to get a sign-changing solution for semilinear equations while additional properties like
the Morse index have been proved as well. A nonlocal version of the problem in [8]
and [9] has been studied by Shuai [47] while Tang-Cheng [49] were able to weaken the
assumptions in [47] and proved the existence of a nodal ground state solution to the
Kirchhoff problem

—(a+0||Vul3) Au= f(u) inQ, u=0 on o

In Tang-Chen [48] and Wang-Zhang-Cheng [50], Schrodinger-Kirchhoff problems of the
shape

— (a+b||Vull3) Au+ V(z)u = f(u) inR*> weH (R

have been studied under different hypotheses on the data. In both papers the existence
of a nodal ground state solution could be shown by using a similar constraint set as in
(1.7). Closely related in this direction are the works of Figueiredo-Santos Junior [23] for
Schrodinger-Kirchhoff equations with potential vanishing at infinity, Li-Wang-Zhang [34]
for p-Laplacian Kirchhoff-type problems with logarithmic nonlinearity, Liang-Radulescu
[35] for fractional Kirchhoff problems with logarithmic and critical nonlinearity, Zhang
[55] for Schrodinger-Kirchhoff-type problems and Zhang [56] for N-Laplacian equations
of Kirchhoff type.

It is worth mentioning that in all the papers stated above dealing with a nonlocal
term (except the one in [17]), the Kirchhoff function has the form

s+ a—+ bs,
while we allow a much more general function
s+ a+bsS"t with ¢ > 1.

Furthermore, most of the papers we mentioned are dealing with the case a > 0 while we
are able to include the degenerate case which is more complicated to deal with it and
has much more applications in mathematical physics, see above.

The paper is organized as follows. In Section 2 we present the main properties of
Musielak-Orlicz Sobolev spaces including a very useful equivalent norm in W1*(Q) and
we present some important tools needed in the sequel like the Poincaré-Miranda existence
theorem and the quantitative deformation lemma. Finally, Section 3 is devoted to the
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proof of Theorem 1.3 which is based on several auxiliary results in order to show that
the minimizer of £ over C is the required nodal ground state solution.

2. Preliminaries

In this section we mention the main properties of our function space as well as the
double phase operator and we recall some tools that we are going to use in Section 3 in
order to prove Theorem 1.3. For more information about Musielak-Orlicz Sobolev spaces
and the double phase operator we also refer to Colasuonno-Squassina [12], Harjulehto-
Hésto [29], Liu-Dai [37] and Perera-Squassina [46].

Let Q C RN be a bounded domain with a Lipschitz boundary 9Q and N > 2. Given
1 <r <oo, L"(Q) and L"(Q;RYN) stand for the usual Lebesgue spaces equipped with
the norm || - ||,. For 1 < r < oo, we denote by W17 () the corresponding Sobolev space
endowed with the equivalent norm

1
|1 = (IVallz 4 [l -

[[u

Moreover, we denote by L"(9€) the boundary Lebesgue space with norm || - ||, a0 for
any r € [1,00) given by

1

.

lullron = / frdo |
Q

where o denotes the (N — 1)-dimensional Hausdorff surface measure.
Denoting by M () the set of all measurable function u: @ — R and supposing hy-
potheses (A1), we introduce the function H: £ x [0,00) — [0, 00) defined by

H(z,t) =P + p(z)t?.
Then we can define the Musielak-Orlicz space L (f2) by
LH(Q) = {u € M(Q): pu(u) < +00}
which is equipped with the norm
, u
lullse = inf {2 > 0: pae () <1},

whereby p is the modular function defined by

() = [ Heaful)do = [ (fup + u(@)lul?) o
Q

Q
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In the sequel, we also have to deal with the seminormed space L}, (Q) given by

LL(Q) = ueM(Q):/u(sc)|u\qu<+oo ,
Q

while the related seminorm is defined as

= | [ n)lul” da

Q

q

lu

Similarly, we can introduce L (€2; RY). The associated Musielak-Orlicz Sobolev space
WEH(Q) = {u e L*(Q): |[Vu| € L*(Q)}
is equipped with the norm

[l = Vel + flull-

It is well known that both spaces L7 (2) and W (Q) are reflexive Banach spaces,
see Crespo-Blanco-Gasinski-Harjulehto-Winkert [16, Proposition 2.12]. Moreover, from
Amoroso-Crespo-Blanco-Pucci-Winkert [2, Proposition 3.1] (see also Crespo-Blanco-
Papageorgiou-Winkert [18, Proposition 2.2]) we can equip W1 (Q) with the equivalent
norm

Jull = inf A > 0: Q/((@)pw(x)('W) >dx+9/<|u|> dr<1

The corresponding modular p to || - || is given by

) = [ (I9ul + p(a)|Ful7) do+ [ Jup da

Q Q

for u € WHH(Q).
The following proposition can be found in the work of Amoroso-Crespo-Blanco-Pucci-
Winkert [2, Proposition 3.2].

Proposition 2.1. Let (A;) be satisfied, 7 > 0 and y € WH7(Q). Then the following hold:

(i) Ify #0, then |y|| = 7 if and only if p(£) =1
(ii) |lyll <1 (resp. > 1, =1) if and only if p(y) <1 (resp. > 1, =1);
(ii)) If [lyll <1, then [ly[|? < p(y) < [lyl?;
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(iv) If [yl > 1, then |lyl|P < p(y) < [lyll%;
(v) [lyll = 0 if and only if p(y) — 0;
(vi) |lyll = +oo if and only if p(y) — +oo.

From Crespo-Blanco-Gasiriski-Harjulehto-Winkert [16, Proposition 2.16] we have the
following embeddings which will be used later.

Proposition 2.2. Let (A1) be satisfied. Then the following embeddings hold:

(i) WhH(Q) < L"(Q) is continuous for all v € [1,p*] and compact for all v € [1,p*).
(ii) WEH(Q) — L"(0R) is continuous for all v € [1,p.] and compact for all v € [1,p.).

Furthermore, for s € R, we set st = max{4s,0} and for a function u € W (Q)
we define u*(-) = u(:)*. Clearly, |u| = u* + v~ and v = u* — u~. We also know from
Crespo-Blanco-Gasitiski-Harjulehto-Winkert [16, Proposition 2.17] that u* € W1 (Q)
whenever u € W (Q). The Lebesgue measure of a set V C RY will be denoted by
Vin.

Next, we recall the main properties of our operator. For this purpose, let
B: WEH(Q) — WEH(Q)* be defined by

(B(u),v) = / (IVulP~2Vu + p(z)|Vul|?2Vu) -Vvd:c+/|u\p72uvdx
Q Q

for all u,v € WH(Q). Here, (-, -) stands for the duality pairing between the space
WLH(Q) and its dual space W1*(Q)*. The following proposition has been proved in
Amoroso-Crespo-Blanco-Pucci-Winkert [2, Proposition 3.3].

Proposition 2.3. Under hypotheses (A1), the operator B is bounded, continuous, strictly
monotone and satisfies the (S )-property, i.e., if

Uy —u i WHH(Q)  and  limsup (B, u, — u) <0

n—oo

hold, then we have u, — u in WHH(Q).

Finally, we recall some important tools that will be needed in the next section. The
first one is the quantitative deformation lemma, see Willem [51, Lemma 2.3].

Lemma 2.4. Let X be a Banach space, € € CYH(X;R), ) #S C X, c € R, 5§ >0
such that for all u € E71([c — 2e,¢ + 2¢]) N Sas there holds ||E'(u)||« > 8¢/, where
Sy = {u € X:d(u,S) = infy,esl|u — uol| < r} for any r > 0. Then there exists
n € C([0,1] x X; X) such that

(i) n(t,u) =u, ift =0 or if u ¢ E1([c — 2e, ¢+ 2¢]) N Sas;
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(t,-) is an homeomorphism of X for allt € [0,1];
[n(t,u) —u|| <8 for allu e X and t € [0,1];

8(77( ,u)) is decreasing for all u € X;

E((t,u)) < c for allu € E7Y((—o00,c]) N S5 and t € (0,1].

8( (1,u)) <c—e forallu € EY((—oo,c+¢])NS;
n
|

The second one is the so-called Poincaré-Miranda existence theorem, see Dinca-
Mawhin [21, Corollary 2.2.15].

Lemma 2.5. Let Q = [—t1,t1] X -+ X [—tn,tn] with t; >0 fori=1,...,N and ¢: Q —
RN be continuous with the component functions p;: Q — R fori=1,...,N. If, for each
i=1,...,N, one has

vi(u) <0 when u € Q and u; = —t;,

wi(u) >0 whenu € Q and u; = t;,

then o has at least one zero point in Q.
3. Least energy sign-changing solution

In this section we are going to prove Theorem 1.3 about the existence of a least
energy sign-changing solution to problem (1.1). First, we recall the energy functional
E: WH™(Q) — R related to problem (1.1) which is given by

E(u) = P[E(u)] —/F(m,u) dx—/G(x,u)do
o0

Q

where ®: [0,00) — [0, 00) is defined by

s) = /¢(T) dr =as+ gsc.
0

As already mentioned in the Introduction, we will consider the following constraint set

C= {u e WEH(Q): uF £ 0, (&/(u),ut) = (€' (u), —u~) = 0}.
Next, we prove several auxiliary results.

Proposition 3.1. Let hypotheses (A1)—(A3) be satisfied and let u € WHH(Q) be such
that u* # 0. Then we can find a unique pair of positive numbers (cu,, By) such that
ayut — Byu~ € C. Furthermore, if u € C, we have
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Etut —tou™) < EWt —u”) = E(u)

for all ty,ts > 0 with strict inequality whenever (t1,t2) # (1,1). Moreover, for u € C we
have the following sign information:

(i) ifa>1and 0 < B < a, then (' (aut — ), aut) < 0;
(i) ifa <1 and 0 < a < B, then (£'(au™ — ), aut) > 0;
(iii) if B>1 and 0 < a < B, then (' (au™ — Bu™), —Bu~) < 0;
(iv) if <1 and 0 < B < «, then (£'(aut — ),—pu") >0

Proof. Let u € W1H(Q) with 4™ # 0. The proof is divided into several parts.

Part 1: We are going to prove the existence of a pair (a,, ) € (0,00) x (0,00) such
that a,ut — Buu™ €C.

First, for ¢t € (0,1) and for |s| > 0, by taking (A3)(v) into account, we have

[, ts)(ts)
tQC|S|‘ZC

f(z,s)s
€

< for a.a.x € Q. (3.1)

Analogously, for ¢ € (0,1) and for |s| > 0, again by (A3z)(v), it follows that

9(z, ts)(ts) < 9z, 5)s for a.a.x € 9. (3.2)
th|s|qC |s\qc
From (3.1) and (3.2) we get the inequalities
f(x,ts)s <t 1 f(z,s)s foraa.xcQ, (3.3)
g(z,ts)s <t 1g(z,s)s for a.a.z € ON. (3.4)
Then, taking (3.3) and (3.4) into account, we obtain

(& (au® = Bu) ,ou™)
T e
b5 ot = L, + 29 (out - )], )
% (et 17, + ¥ (aw®)]2,)
/f T, QU )au+dx—/ (m,au"”)azﬁda

oQ
> LlapC ||u+||fgp — oﬂc/f (x,u+) utdz — a®¢ /g (:c,u+) utdo >0,

P
oQ

whenever a > 0 is small enough and for all 8 > 0 since p < ¢ by (A1). In the same way,
for 8 > 0 small enough and for all & > 0, we have
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(& (au® = Bu™),—Bu”)
T e o
= (aro(L o s, + 19 (et - )2,
o (C P N C
— /f (x,—ﬁu*) (—5u*) de — /g (x, —Bu*) (—ﬁu*) do
Q

o0

b _ _ _
> % |7, = 8% [ f (=) (—u) da
Q

— B /g (z,—u") (~u~) do > 0.

o0

Therefore, we can find a number 7; > 0 such that

<€' (muJr — Bu*) ,n1u+> >0 and <E’ (onﬁ — mu*) , —n1u7> >0 (3.5)

for all a, f > 0. Choosing 7 > max{1,7;} large enough, by applying (A3)(ii), it holds
for 8 € [0, 2]

(€ (2w — Bu”) ,mou)

g
a7, + IV Il
nge
1 P 1 g \¢!
b (L lmeut = Bu I}, + LIV (et = Bu)7,)

ns
< (et I}, + 117 (r2ut)2,)

) maut + +
/f x nzu ) 2w x/g(x’”“”;()"z“ o

50 Ub

1
S o (||u+}|f,p+ [vuts,)

2

¢
b ([l =l + Y (e = u)]7 )

1p
x, nout xz,nout
TR ) [ S () o <0
2

(09) +
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where

Qp :={x e Q:u(z) >0 for aa.z e Q},
Q_ ={x € Q:u(x) <0 for a.a.z € N},
(090) 1 = {x € 9Q: u(x) > 0 for a.a.z € 90},
(0)_ = {x € 9Q: u(x) < 0 for a.a.z € 0N} .
Similarly, for « € [0,72] and 72 > max{1,n;} large enough, we are able to prove that

(& (au™ —nou™), —mou™)
ng¢

< 0.

Then it follows that
<5’ (7]2u+ - ﬂu*) ,n2u+> <0 and <5/ (om+ - ?7211,7) ,fn2u7> <0 (3.6)

for ny > max{1,n; } large enough and for a, B € [0,72]. Next, let g,,: [0,00)x [0, 00) — R?2
be defined by

ou(e, B) = ((&' (au™ = Bu™) ;au™) , (& (aut — Bu™),—fu™)).

From Lemma 2.5 and (3.5) as well as (3.6) we find a pair (au, Su) € [n1,m2] X [m1,m2] C
(0,00) x (0, 00) satisfying o, (v, Bu) = (0,0). Hence a,u™ — By,u~ € C. This proves Part
1.

Part 2: In this part we will prove the sign information given in (i)—(iv).

To this end, let u € C. By the definition of C, we have

0=(&"(u),u")

= (a0 (Gl + 5 1wl )U (It 17, + [ vut)e,)

p g e L ap (3.7)
—/f(x,”tﬁ)tﬁdx—/g(x,u*)u*do
Q o0
and

= (&'(u),—u")
1 1 R N AT ye

= <a+b(5 ||u|§’,p+5|Vu||3,u> )(Hu 17, +ve|l?,) (58)

- [ @) (u) o= [ (o) (-u) do

[5}9)
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We start with case (i). Let & > 1, 0 < 8 < « and suppose by contradiction that

0< <5’ (ozu+ - ﬂu*) ,au+>

1 » 1 q ot
—(a+b (]-) loew™ = Bu [}, + ||V (o™ W)Hq,u)

o i (3.9
< (o[, + 19 (@u?);,,)
— /f (a:, au+) aut de — /g (x,au+) aut do.
Q oQ
From (3.9), by using the fact that o > 1, it follows
¢ 1 P 1 a o +1|P +|9
0< (anr+ b0 (L putr, + 2iwalz, ) ) (eI, + 19u)
(3.10)

- /f (x, au*) aut dz — /g (z, au+) au™ do.
Q

o0

Then we divide (3.10) by a?¢ and combine it with (3.7). This yields

f(xaau+) f(x,u*) a¢
/ <<au+)q<1 ) (u+)"“> SR

o
+ / (9($7au+) . g(w,u+)> (u+)qC do (3.11)

(ot )

00)4

1
<oz = 1) (e, + 19, ).

But this is a contradiction since the right-hand side of (3.11) is nonpositive and the
left-hand side is strictly positive due to (A3)(v). The case (ii) works similarly. Indeed, if
a<1,0<a<pand (3.9) has the opposite sign, we can do it as above and get (3.10)
as well as (3.11) in the opposite direction, respectively. But this is again a contradiction
since in that case the right-hand side is nonnegative but the left-hand side is strictly
negative, again because of (As)(v). Let us consider the case (iii). So, let § > 1 and
0 < a < B and suppose that
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0< <5’ (au+ — Bu*) ,—Bu*>

_ o (Ll — gu-1P + 1 N
(e (ot =80+ L9 ot - ),

) ) (3.12)
< (B lI7, + 1V (3u7)l7,,)
— /f (:1:, —ﬂuf) (—Buf) dr — /g (:c, —Buf) (—,Buf) do.
Q o0
Taking 8 > 1 into account, it follows from (3.12) that
a q¢ ! P 1 q < —||P —14
0< (a7 000 (= full, + < 1vul, ) ) (oI, + 19077,)
(3.13)

- /f (z,—Bu”) (-Bu”) dz — /g (z,—Bu”) (—=Bu”) do.

oN

Now we divide (3.13) by 89¢ and combine it with (3.8) in order to get

f(zviui) f(xyfﬂui) —\9q
/ ( @) (u) ) ) e

Q_

@) ()

N / (g(x,—zf) _ 9l —BM)) (™)™ do (3.14)
(09)_

1 _ —
<a (g —1) (el + 1913,

Due to (A3)(v), the left-hand side of (3.14) is strictly positive and the right-hand side of
(3.14) is nonpositive, so a contradiction. Finally, for the case (iv),let < land 0 < f < «
and suppose via contradiction that (3.12) is satisfied in the opposite direction. Arguing
analogously as above, this gives (3.13) in the opposite direction, which implies (3.14) in
the opposite direction. So we have again a contradiction due to the fact that the right-
hand side is nonnegative and, because of (A3z)(v), the left-hand side is strictly negative.
Part 2 is proved.
Part 3: In this part we claim that the pair («,, 8,) from Part 1 is indeed unique.
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First, we suppose that u € C. We have to show that (ay, 8,) = (1, 1) is the unique pair
of numbers such that a,u™ — B,u~ € C is satisfied. Indeed, let (v, Bo) € (0, 00) x (0, 00)
be such that apu™ — Bou~™ € C holds. If 0 < ap < Sy, the cases (ii) and (iii) from Part 2
give us 1 < ap < fy < 1 meaning that ag = Sy = 1. Also if 0 < Sy < «p, then the cases
(i) and (iv) from Part 2 imply that 1 < Sy < ap < 1 and so ag = Fp = 1.

Now we suppose that u & C with u® # 0. Arguing by contradiction, assume that there
exist two pairs (aq, 51), (az, f2) of positive numbers aq, g, 1, B2 such that

W = a1u+ —pu” €C and Yo := OtQ”LLJr — pou” €C.

Then we obtain

'192 = (Z—?) a1u+ — <%> ﬂl’u_ = (Z—j) ﬁf — (%) 19; eC. (315)

As ¥ € C, the first case of Part 3 guarantees that the pair (1, 1) satisfying 1-97 —1-9] € C
is unique. Using this fact along with (3.15) leads to

o _ P

= =1.
ay P

But this implies oy = a5 and 51 = . Therefore, the uniqueness is shown.
Part 4: We are going to prove that the unique pair (o, 8,) from Part 1 and 3 is the
unique maximum point of the function A, : [0,00) x [0,00) — R defined by

Au(e, B) = € (au™ — Bu™).

The idea is as follows: We show first that A, has a maximum and then we will prove
that it cannot be achieved at a boundary point of [0,00) X [0,00). This gives us the
assertion of Part 4.

To this end, let a, 8 > 1 and suppose, without any loss of generality, that a > > 1.
We obtain
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Ay, B)
an
~ ElauT — pu)
o an
_a (}—1) laut — ,BU_HIf,p + % IV (qu™ — Bu‘)”qﬂ)
- a‘Z<
b (1 + —1|P 1 + N\ ¢
g( lawt = Bu= |17, + LIV (aut = Bur)]l2 )
aqg
/ (z,0u™ — Bu~ )dx_/G(:c,om*Bu) do (3.16)
alIC
Q Fele)
¢
1 1 » 1 »
<;ﬁ@‘ﬁ“<;HUM +21valy, ) + 2 (3t + 219l

F(x,ou™ « o [ F (z,—Bu™) B (U_)
/ (aut)? ut)" de Q/ |—,6’u—\qC att d

_ [ Gwew) vac [ Gla—pun) B )"
m/) (e 00 (34 B[ e

In consideration of (1.6), we have the following statements

Bsoo Bu |qC adS
a>f Q
(3.17)
+
lim | — / M(u+)q4 do | = —oo,
a—»00 (au+)QC
(69)
—Bu—) B (=)
limsup | — / G 5“4)5 (u?) do | <0.
B—oo |—Bu—| vt
a>p (69)

Combining (3.16) and (3.17) yields

lim  Ayu(a,8) = —c.

[(a,8)| =00

This shows that A, has a maximum.
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Next, we are going to prove that a maximum point of A, cannot be achieved on the
boundary of [0, 00) x [0, 00). For this purpose, assume via contradiction that (0, 5p) is a
maximum point of A, with Sy > 0. Then we have for o > 0

Ay(a, Bo) = — Bou")

o = o[, + 29 (o - ),

1 ¢
ot = o |+ 2 9 (o = o), )

L0

C

/anu fﬁou d:rf/G:Eau fﬂou) o
Q

and

8Au(aa ﬂO)

o = ao? [T a7Vt

1 b1 ¢\
b (o = o 7, + £ 9 o = o) 7, )

(| + Va2, )

/f x, ou’ +dacf/ (:c,oer)u*dU.

o

Therefore we obtain

M) o b o

£ 2 — /f (x,ocu+) ut dx
Q

(3.18)
- /g (x, au+) uT do.

o0

Then we divide (3.18) by a?*~1 > 0 which leads to

1 Ay (a 50) +11P$ f(m,au*) +1P¢
-1 B pg 1 H H1,p*/ (auﬂpcq (“ ) dz
Q4
. g(x,au*) (u+)PC do
(aut)P¢ ™t ’
(09)+

where the second and the third terms on the right-hand side converge to zero as a — 0
because of assumption (As)(iii). Thus,
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aAu (0[, BO)

>0 for a > 0 sufficiently small.
Oa

Hence, A, is increasing with respect to « which is a contradiction. Analogously, we can
prove that A, cannot achieve its global maximum at a point (ag,0) with ag > 0. In
summary, we have seen that the global maximum must be achieved in (0, L)? for some
L > 0. But this means it is a critical point of A, and taking Parts 1 and 3 into account,
we know that the only critical point of A, is (o, 8y). This finishes the proof. O

Proposition 3.2. Let hypotheses (A1)—(A3) be satisfied and let u € WLH(Q) with u® # 0
such that

(E'(w),u™y <0 and (&' (u),—u") <O0. (3.19)

Then the unique pair (cu, Bu) obtained in Proposition 3.1 satisfies 0 < au, By < 1.
Alternatively, if

(' (u),u™y >0 and (&' (u),—u") >0, (3.20)
then ay, B, > 1.

Proof. We first assume that 0 < 8, < . Since a,u* — B,u~ belongs to C, it holds by
definition that (&’ (a,u™ — Byu™), a,u™) = 0 which is equivalent to

b2 + -IP +Lyv * e Y
atb( ot = B[+ IV (ot = ),

% ([low™ [, + ¥ ()12 ) (3.21)
— /f (m,auu+) ayutde — /g (J:, auu+) azutde =0.
Q o0

From (3.19) we have (&'(u),u™) <0, that is,

1 1 ot
(o (Gt rutz) ™) (eI, + 1w, )

—/f(x,u+)u+dx—/g(x,u+)u+daSO.
Q

o0

(3.22)

Supposing by contradiction that ., > 1 and dividing (3.21) by % gives
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_ 1 1. 1 7!
0< GW +b » [ully , + p [Vully.,.

x ([ lf, + Ivut2,) (3.23)
f(z, cqu’) ¢ g (z, ayut) ¢
(a uJF)QC_1 (u*)q - / (a uﬂqc_l (u+)q o
“ o "

Now, combining (3.22) and (3.23), it follows that

[ (et - L) oy
Q4

()™ )

g (wvaour) g (xaqu) e
+ / ((auuﬂqcl - (u+)q(1> (u)™ do

(09) +
1
<a (= =) (I, + 19 1,

But this is a contradiction due to assumption (Asz)(v) (see also (3.11) and the ar-

guments there). Hence, we have 0 < 3, < a, < 1. If 0 < a, < B, we use
(& (u™ = Byu™),—Byu~) = 0 and (€'(u),—u~) < 0 and work as above assuming

ﬂu >1to get
f(x,—Buu™) f(z,—u") N
) / < (;uu_)qc_l - (u_)q<—1 ) (U ) ¢ dx

Q_

_ / (g(z,—ﬂuu) B g(ﬂs,);ul)> () do
(09) _

(ﬁuui)qgil (u

1 _ _
<a (ﬁ@—> - 1) ([, + o 2).

u

This is again a contradiction and it holds 0 < a,, < 8, < 1. The case (3.20) can be done
in a similar way, just using the inequalities in the opposite direction. O

The following proposition will be useful for later considerations.

Proposition 3.3. Let hypotheses (A1)-(A3) be satisfied and let u € WET(Q) with ||ul| < 1.
Then there exist constants CA'7 C1,Co > 0 such that

E(u) = COlfu|®® = Clull™ — Ceull"™.
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Proof. With regard to assumptions (A3)(i) and (As)(iii), for a given ¢ > 0, there exist
constants é = é;1(g), éa = é(¢) > 0 such that

F(z,s) < %\SV’C + &8 for aaz € Q, (3.24)
p

G(z,s) < %\SP’C + éols|™  for a.a.xz € 90 (3.25)
b

and for all s € R. Let u € WOI’H(Q) with ||u]| < 1. Then, by applying (3.24), (3.25) and
Proposition 2.2(i), (ii), we obtain

E(u) =D [E(u /Facudx—/Gxu

b 1 €
> (Cnunf?p + q<|w||g,a) — ellulE =l

€ R
- p—CHUHgg,aQ - C2||U||:;8Q

(b (CR+Ch
—\ ¢ 28

=& (CH) ul™ =22 (CF6)" [lull"

_ b CPe + O b | 1
> mln{ (]DTC —¢ (%)) aﬁ} 21 [P(U)]C

=& (CH) ul™ = 22 (CF6)" [lull"

ullf5, + —HVUII

with Cq, C¥, Coq, CZ, being the embedding constants of the continuous embeddings

WhP(Q) — LPS(Q), WEH(Q) — L™ (Q), WHP(Q) — LPC(0Q) and WEH(Q) — L™2(09Q),

respectively, where we have used the inequality 217¢(s 4+ ¢)¢ < s¢ + ¢ for all s,t > 0

in the last step. Choosing ¢ € (0, ﬁ) and making use of Proposition 2.1(iii)
P HCH +CE0)

yields the required statement. O

Let w =inf€&.
C

Proposition 3.4. Let hypotheses (A1)—(As) be satisfied. Then w > 0. In particular, the
infimum is finite.

Proof. Recall that ¢¢ < min{ry,r3}. Then from Proposition 3.3 we know that
E(u)>C >0 forallue WH?(Q) with ||jul| =7 (3.26)

for some 7 € (0, 1) sufficiently small. Let v € C and choose g, 8y > 0 such that ||agu™ —
Bou~|| = 7. Then, using (3.26) and Proposition 3.1, it follows that
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0<C<E(put — Bou) < E(u).
As u € C was arbitrary, we conclude that w > 0. O

In the next proposition we show that £ restricted to the constraint set C is sequentially
coercive, that is, £(u,) — oo for any sequence {uy, }nen C C with |luy,| — +oo.

Proposition 3.5. Let hypotheses (A1)—(As) be satisfied. Then &|c is sequentially coercive.
Proof. Let {u,},en C C be a sequence satisfying
llun]l = +o00  asn — oo (3.27)

Un Then we have
Tunl

and let y, =

Y, —y in WHH(Q),

Yo —y in L™(Q) and a.e.in

Yn —y in L™(0N2) and a.e.in 012,

+ + . 1,H (3.28)
vt =yt W),

yrjf =y in L™(Q) and a.e.in Q,
yE =y in L™(0Q) and a.e.in 09,

for some y = y* —y~ € WH(Q). Let us suppose first that y # 0. Applying Proposi-
tion 2.1(iv) and supposing ||u,| > 1 yields

1 P 1 q
Eun) = a (5 a4 2 Vunlq,u)

1 ¢
( funl + 7 ||Vun||3,,L)
F

3.29
(, un)dx—/G(ar,un) do (3:29)

{O\ J\I@

a b
§—unq+—unq<—/Fx,un dx—/Gw,un do.
p|| | gpcn | J (@, un) J (2, un)

Let

Al ={reQ:y(x)>0} and QY ={zecQ:y(x) <0}
' ={x€0Q: y(z) >0} and TI'Y ={zecd:y(z) <0}.
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At least one of Qf and QY has a positive measure. Suppose [ |y > 0. Then we have,
because of (3.28), that

uf (z) — +oo for a.a.x € QY.

Using Fatou’s Lemma, (3.27) and (1.6) we obtain

F(x,ut)

— +00. 3.30
k[ (530

Taking the assumptions (A3)(i) and (As)(ii) into account, we can find a positive constant
C such that

N

F(z,s) > —C for a.a.z € Q and for all s € R. (3.31)

Using (3.31) it follows that

+
[y, [r, [ fas,
(el o I || oy ]
F (z,u)) C
2/ s de — 519 v
S st *

Combining this with (3.27) and (3.30) leads to

Luqﬁ) dz — +oo. (3.32)
e

If the measures of QY and of I, ,T'Y are positive, we get the same as in (3.30) for these
measures while for T',,T"Y. we take the Hausdorff surface measure. If one of these sets
does not have a positive measure, then the corresponding limit is nonnegative as one can
see from the treatment above. Altogether, we have

F —u_ F —u_
/Mdﬁm or /demo

5 9
) (it H"
+
Un
G (z, —uy) G (2, —uy)
/deﬁﬂo or /Wdaﬁcgzo.

[5}9)
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Then, dividing (3.29) by ||u,||%¢, passing to the limit as n — co and applying (3.32) as
well as (3.33) it follows that Hu(“qu)c — —o00, a contradiction to £(u,) > w > 0 for all
n € N, see Proposition 3.4. Therefore, ¥y = 0 and so y* = y~ = 0. Recall again that
u, € C. Using this fact along with Proposition 3.1 and (3.28), we have for every pair

(tl, tg) S (O, OO) X (O, OO) with 0 < t; <ty that

E(un) > E(tiyh — tayy)

=a

VS
—_

1
SR R N CURR | )

1
# 2 (5 It =t 2, + 219 (oot =), )

F (z,tiy} — tayy,) do — /G(x,hyi —tay,, ) do
(o9}

> —C {tpC th} [p (yn)]¢ / (z,t1y;)) dx—/F —toy,, ) dz
Q

< {3\ ~| o

b

/ z,tiyy) dU*/G (2, —tay, ) do — £C in {ffc,t’fq},
q

o0

where we have used Proposition 2.1(ii) in the last step since ||y, || = 1 which is equivalent
to p(yn) = 1. Hence, for any given K > 0 we take t; > 0 large enough and then for
n > ng = ng(t1) we have that E(u,) > K. O

Proposition 3.6. Let hypotheses (A1)—(Aj3) be satisfied. Then there exists U > 0 such that
lu®|| > ¥ >0 for all u € C.

Proof. Let u € C such that ||u®|| < 1. From the definition of C we know that

(oo (G it iw e -0ls,) )

< ([l 17, + vy, (3:34)
:/f(x,u+)u+dx+/g(x,u+)u+do.
Q o0

With regard to (As)(i) and (Ag)(iii), for a given ¢ > 0, there exist Ci ., Cs2,. > 0 such
that
|f(x,5)] <elsPS™t+ Crels| ™t for aa.x € Q,

(3.35)
lg(x, 5)| <elsPS™! 4+ Cyols|?™ for a.a.x € ON
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and for all s € R. Applying (3.35) in (3.34) together with the continuous embeddings
WP (Q) — LPS(Q), WEH(Q) — L™ (Q), WHP(Q) — LPC(09Q) and WEH(Q) — L™2(9Q)
and related embedding constants Co, C¥, Caq, CZf,, respectively, we get

b
¢

¢
=8 (O e A Y

< elut e+ Cue 17 + e flut e

¢ <
1 (||u+H117,p + }|VU+||Z,M>

+ Coe [l

pC,00 r1,00

<e (OB +CBL) lut 15, + Cre (CE)™ [[ut|™ + Cae (CB)"™ [t

Now we choose ¢ € (0, m) and apply the inequality 2'=¢(s + )¢ < s¢ + #¢

for all s,t > 0 as well as Proposition 2.1(iii) which results in
W Jut|[* < W [p(ut)]* < O fut " + CofJut|™

for some ¥, Cy,Cy > 0. Since ¢( < min{ry, 72}, see Remark 1.1, the result follows for
uT. A similar treatment can be done for the assertion for = which finishes the proof of
the proposition. 0O

Next we are able to prove that the infimum of £ restricted to the constraint set C is
achieved.

Proposition 3.7. Let hypotheses (A1)—(As) be satisfied. Then there exists yo € C such
that E(yo) = w.

Proof. Let {y,}nen C C be a minimizing sequence of £ over C, that is,

g(yn) N w.

From Proposition 3.5 it is clear that the sequence {y, }nen is bounded in W17 (). This
implies that {y;" }en, {¥5 }nen are bounded in WH7(Q) as well (see Proposition 2.1
(vi)). Then we can assume, for not relabeled subsequences, that

vi — vy i WHHQ), g >0,
yo w0 i WHHQ), oy 20, (3.36)
yb =yl in L™(Q), L™2(09), a.e.in Q and a.e.in 99,

), L

Y, =Yg in L™(Q),L™(0N), a.e.in Q and a.e.in 9.

From (3.36) and assumption (Asz)(i) we know that, for all o, 8 > 0,
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/f(m ayNay dr — /f x, oy )ayo dz,
Q

/g(x ay,y)ay,y do %/ T, Y )OﬂJ(—)|r do,
o0

(3.37)
JECE IR dm/f:c By ) (—Byg ) da
Q
/g —BY, ) (=BYy, ) d0—>/ z, =By )(—Byy ) do
a0
as n — oo and also
/F(x,ayyf)dx% /F(x,aya')das,
Q Q
/G(x,ay:{)doﬁ /G(m,ayg)da
o5 o0 (3.38)

/ F(z, —Byy) dz / F(x,—Byy ) da
Q

Q

/ Gla,—By;) do — / G, By ) do
o0 onN

as n — o0.

Claim: yj # 0 # y,
‘We prove the Claim via contradiction and assume that yar = 0. By assumption, y,, € C,
hence

0={(& (yn) un)

1 1 ¢-1
_ p q
= (a +b (]—3 lynllf , + p IIVanIq,#) )

o (o A /fxyn o - /g<x,y:>y:da

b
> 25 (It I, + 199 1, / £ (o) i do - / 9 (@.0t) v do
Using the convergence properties in (3.37) we conclude from the inequality above that

- oyt /f z, " yidx+/ (z,y4) yf do— 0

qc~
o0
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as n — oo. Thus, p(y;7) — 0 as n — oo which is equivalent to y;F — 0 in W1H(Q), see
Proposition 2.1(v). On the other hand, we know from Proposition 3.6 that ||y;f|| > ¥ > 0
which is a contradiction. Similarly, we can prove that y, # 0. The Claim is proved.

From the Claim and Proposition 3.1 there exist unique oy, , 3y, > 0 such that o, ya' —
Byoo € C. Moreover, using the convergence properties in (3.37) along with the weak
lower semicontinuity of the norm || - ||1, and the seminorm || - ||4,,,, we obtain

(€'(yo)s £u5 )
1 » 1 q ot +|P + (|4
= (e (Sl + 21wolz, ) ) (i, + 19 )l,)

= [ ) () = [0 () (525 a0

o2

s L P 1 a <
< llnrr_l>10rclf a+b (5 lynlly, + p ||Vyn|q’#)
< (12w llE, + 19 (u);,)

n—oo

— lim f (x, :I:yf) (:I:yff) dx — li_>m /g (:U, :I:yf) (:I:yff) do
Q a0

= lim inf (&’ (yn), :I:yf> =0,

n—oo

since y, € C. This allows us the usage of Proposition 3.2 which shows that ay,, By, €
(0,1]. From this fact and assumption (Asz)(iv) we conclude that

1 1
7f(‘r7ayoyar)ayoy(—)i_ - F(’I7ayoy3—) S 7f(‘r7yar)y(—)‘r - F(Ivy(—)i_)a

1 qa< qf (3.39)
— f(x, =Byoto )(=Byo¥o ) — Fz, —Byoyo ) < —fx, =y )(—vo ) — Fx, =y, )
q¢ q¢
for a.a. z € Q and
ig(ﬂc,Oéyoyo*)%oyo+ — G(z,ayy5) < ig(m/o*)yo+ - G(z,y5),
X a6 qf (3.40)
Eg(x» —ByoYo ) =Byt ) — G(z, —Byoyy ) < &g(fm Yo )(=yo ) — G(z,—yy )

for a.a. x € 9Q. Now, from ayyg — Byo¥o € C oy Bye € (0,1], (3.37), (3.38), (3.39),
(3.40) and y,, € C we derive that

_ 1 _ _
w<E (O[yoy(;L - Byoyo ) - E <5I (O‘yoyar - 5yoy0 ) 1O‘y0y(;r - ﬁyoyo >
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go + 119 ﬁgo — 114
Hyo H ||y0 ||1p Hvyo ||q,p + 7 Hvyo Hq,u

b
Yo + 50 Zo +1|9 ﬂgo — 119 ¢
( I 1, + 22 s I, + Wmm+7wmm)

L

C

/F T, Qlyy U dx—/F — By~
Q

/G(m,ayozﬁ) do — /G (z,fﬂyou*) do
o0 oQ

oP ﬁp B al Bq _

b yo go + |4 yo !
- = || Yo H H Yo H ||Vyo Hq,u ||V Yo Hq;t

X(%Mymm+5H%ﬁp+MHVyMN+WHW6MJ

/ £ () cpuif do+ / (2= B045) (~By3) da

/ z O‘yoyo ay Yy do + _/ Byoyo (=ByoYo ) do
1 1 —|P
—a (G- ) (b I s, + 52 i I,
1 1 _
ra (2= 22) (ot 1915, + 83, 19 11,)
Yo Yo —+ ﬁ’go — |19 -
16 1 R Y Ty R L R L
1 _
[CEICATTREATS

¢

(& 2) ot lwl)
1

qC

( 7@ ot )tso v — F(x,ayoyo*)) da

(

1
(ch(x’ ayoy(—)i_)ayoya_ - G(‘T7 ayoya_)) do

+

£ —Boovs ) (~Baotiy) — F (. —ﬁyoyw) da

A=

+

_|_
B O O
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n (1g(x,ﬂyoyo_)(ﬂyoyo_) e ﬂyoyo_)> do

o0

<a ( - ;) (hi 12, + s 17,
)(H il + 191,

1 1 —
; [ L _C) (T
1 1 —

)

" (%f(%yér)yér - F@,yg)) dr
+Q/ (o0 5) ~ Fla ) ) da
N Q/ (catensiduir — Glousi) ) do
+: (scste—6)-15) - Gl ) do

< lim inf (5 (vt =) ff<€’( yn),yiyﬁ) =w,

n—oo

whereby we have used in the last step the weak lower semicontinuity of the norm || - ||1
and the seminorm ||- |4, along with (3.37) as well as (3.38) and then rearrange the terms
inside the limit. Note that if we assume oy, < 1 or 3, < 1, the inequality above is strict
and this is a contradiction. Hence, we conclude that oy, = B,, = 1 which implies that
the infimum w is achieved by the function yj —y,. O

Now we are in the position to give the proof of Theorem 1.3.

Proof of Theorem 1.3. Let yo € C with E(yg) = w be the function obtained in Propo-
sition 3.7. We are going to prove that yg is a critical point of the functional £ which
implies that it is a least energy sign-changing solution of problem (1.1).

Arguing by contradiction, we assume that £'(yg) # 0. Then we can find two numbers
A, 6o > 0 such that
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IE" (W)« > N, for all u € WHH(Q) with |ju — yo| < 3.

Denoting by C, an embedding constant for W17 (Q2) — LP(€2), we have for any function
veWLH(Q)

_1H96Hp7 if v~ =0,

lyo —vll = € lyo — vll, = { :
Cptllyg llp, it vt =0,

as yg # 0 # y; . Next we can choose a number §; such that

0 € (0 Inln{C 1||Z/o llp, C 1||y Hp})

This implies that for any v € WH(Q) with ||yo — v|| < 61 we have v # 0 # v~. Now
we take § = min{dp,1/2}. Because the mapping (a, ) — ays — By, is continuous
from [0, 00) x [0, 00) into W17 (), we can find 7 € (0,1) such that for all o, 3 > 0 with
max{|a —1|,|8 — 1|} < 7, it holds

lows™ = Bug — wol| <&

Let D= (1—7,147)x (1—7,147) and note that, for any a, § > 0 with («, 8) # (1,1),
we get that

E(ayy — Byy) < E(yy —yo) = Inf E(u), (3.41)
due to Proposition 3.1. This implies that

= £ 0 E Ty ) =1 t&e .
o= max Elayd —fyg) < E(ys —vo) = inf E(u)

Next we apply Lemma 2.4 with the choices
—0 A
§=Blw.d), c=inf£w), ==min {TQ g}

and 0 is a above. It should be mentioned that S5 = B(yo,39) and by the choice of &,
the hypotheses of Lemma 2.4 are fulfilled, which guarantees that a mapping 1 with the
properties given in the lemma exists. From the choice of ¢ it follows that

(ayo ﬂy0)§g+cc<c<cgg>§025 (3.42)

for all (o, B) € 9OD.
Now we introduce the mappings II: [0, c0) x [0, 00) — W1(Q), T: [0, 00) x [0, 00) —
R?2 defined by
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(e, B) = 77(1 ayg — 590)
T(o, B) = ((¢ ), (o, ), (€' (T(a, B)), =TT (a, B))) -

The continuity of n implies the continuity of II and the differentiability of £ guarantees
that Y is continuous. Taking Lemma 2.4 (i) and (3.42) into account, we know that
(o, B) = ayg — By, for all («,B) € ID and

T(o, B) = (€' (ayg — By ), oy ) (€ (g — Bug ), —Bug ) -

From the sign information in (i)—(iv) of Proposition 3.1, we derive the componentwise
inequalities, for T = (T, T2),

T1<1—T,t) >0>T1(1+T,t>,
To(t,1—7)>0>7Ty(t,14+7) forallte[l—7,147].

Now we are able to apply Lemma 2.5 with ¢(a, 8) = —=YT(1 4+ a,1 4 ). This yields a
pair (g, fo) € D satisfying Y(ap, Bp) = 0, that is,

(€' (T, Bo)), IT* (a0, Bo)) = 0 = (€' (TT(exo, o)), =TT~ (cvo, Bo))-
Lemma 2.4 (iv) and the choice of 7 leads to
[TI(cv0, Bo) — yoll <20 < 61
and the choice of §; gives us
1" (a0, Bo) # 0 # ~II" (a0, Bo)-

This means that II(ag, By) € C. However, by Lemma 2.4 (ii), the choice of 7 and (3.41),
we have that £(II(«g, Bo)) < ¢ — &, which is a contradiction. Therefore, yp turns out to
be a critical point of £. The proof is finished. O
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