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Abstract

In this paper we introduce a new logarithmic double phase type operator of the form

Gu := −div

(
|∇u|p(x)−2 ∇u + μ(x)

[
log(e + |∇u|) + |∇u|

q(x)(e + |∇u|)
]

|∇u|q(x)−2 ∇u

)
,

whose energy functional is given by

u �→
∫
Ω 

(
|∇u|p(x)

p(x) 
+ μ(x)

|∇u|q(x)

q(x) 
log(e + |∇u|)

)
dx,

where Ω ⊆ RN , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, p,q ∈ C(Ω) with 1 < p(x) ≤
q(x) for all x ∈ Ω and 0 ≤ μ(·) ∈ L1(Ω). First, we prove that the logarithmic Musielak-Orlicz Sobolev 
spaces W1,Hlog (Ω) and W

1,Hlog
0 (Ω) with Hlog(x, t) = tp(x) +μ(x)tq(x) log(e+ t) for (x, t) ∈ Ω×[0,∞)

are separable, reflexive Banach spaces and W
1,Hlog
0 (Ω) can be equipped with the equivalent norm

inf

⎧⎨⎩λ > 0 :
∫
Ω 

[∣∣∣∣∇u

λ 

∣∣∣∣p(x)

+ μ(x)

∣∣∣∣∇u

λ 

∣∣∣∣q(x)

log

(
e + |∇u|

λ 

)]
dx ≤ 1

⎫⎬⎭ .
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We also prove several embedding results for these spaces and the closedness of W1,Hlog (Ω) and 
W

1,Hlog
0 (Ω) under truncations. In addition we show the density of smooth functions in W1,Hlog (Ω) even 

in the case of an unbounded domain by supposing Nekvinda’s decay condition on p(·). The second part is 
devoted to the properties of the operator and it turns out that it is bounded, continuous, strictly monotone, 
of type (S+), coercive and a homeomorphism. Also, the related energy functional is of class C1. As a result 
of independent interest we also present a new version of Young’s inequality for the product of a power-law 
and a logarithm. In the last part of this work we consider equations of the form

Gu = f (x,u) in Ω, u = 0 on ∂Ω

with superlinear right-hand sides. We prove multiplicity results for this type of equation, in particular about 
sign-changing solutions, by making use of a suitable variation of the corresponding Nehari manifold to
gether with the quantitative deformation lemma and the Poincaré-Miranda existence theorem.
© 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In recent years double phase problems have received a lot of attention from the mathematical 
community. These problems typically involve a functional with the shape

u �→
∫
Ω 

(
|∇u|p(x)

p(x) 
+ μ(x)

|∇u|q(x)

q(x) 

)
dx (1.1)

or, alternatively, a differential operator of the form

−div
(
|∇u|p(x)−2 ∇u + μ(x) |∇u|q(x)−2 ∇u

)
. (1.2)

Naturally, one can see p,q as functions or limit the study to the constant exponents case. These 
problems are called double phase problems because of their nonuniform ellipticity, with two 
regions of different behavior. In the set {x ∈ Ω : μ(x) ≥ ε > 0} for any fixed ε > 0, the ellipticity 
in the gradient of the integrand is of order q(x), while in the set {x ∈ Ω : μ(x) = 0} that ellipticity 
is of order p(x).

Let p and q be constants, the double phase energy functional

u �→
∫
Ω 

(|∇u|p + μ(x)|∇u|q)dx (1.3)

appeared for the first time in a work of Zhikov [82] in order to describe models for strongly 
anisotropic materials in the context of homogenization and elasticity theory, see also Zhikov 
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[83,84]. Indeed, in elasticity theory, the modulating coefficient μ(·) dictates the geometry of com
posites made of two different materials with distinct power hardening exponents q(·) and p(·), 
see the mentioned works of Zhikov. We also point out that there are several other applications in 
physics and engineering of double phase differential operators and related energy functionals, see 
the works of Bahrouni–Rădulescu--Repovš [8] on transonic flows, Benci–D’Avenia--Fortunato
Pisani [15] on quantum physics and Cherfils–Il’yasov [18] on reaction diffusion systems.

In recent years functionals of the shape (1.3) have been treated in many papers con
cerning regularity, in particular of local minimizers (also for nonstandard growth). We refer 
to the works of Baroni–Colombo--Mingione [10,13], Baroni–Kuusi--Mingione [12], Byun–Oh 
[16], Byun–Ok--Song [17], Colombo–Mingione [23,24], De Filippis–Palatucci [29], Harjulehto--
Hästö--Toivanen [44], Ok [60,61], Ragusa–Tachikawa [67,68], Tachikawa [76] and the references 
therein. Furthermore, nonuniformly elliptic variational problems and nonautonomous function
als have been studied in the papers of Beck–Mingione [14], De Filippis–Mingione [26,27] and 
Hästö–Ok [45]. We point out that (1.3) also belongs to the class of the integral functionals 
with nonstandard growth condition as a special case of the outstanding papers of Marcellini 
[53,54], see also the recent papers by Cupini–Marcellini--Mascolo [25] and Marcellini [52] with 
u-dependence.

However, such works are limited to consider only a power-law type of growth in each of the 
addends. If one wants to consider other types of growth, the first idea that comes up naturally is 
to modify power-laws with a logarithm. For this reason, in this paper we consider logarithmic 
type functionals of the form

I (u) =
∫
Ω 

(
|∇u|p(x)

p(x) 
+ μ(x)

|∇u|q(x)

q(x) 
log(e + |∇u|)

)
dx, (1.4)

and its associated differential operator

Gu := −div

(
|∇u|p(x)−2 ∇u

+ μ(x)

[
log(e + |∇u|) + |∇u|

q(x)(e + |∇u|)
]

|∇u|q(x)−2 ∇u

)
,

(1.5)

where Ω ⊆ RN , N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, e stands for Euler’s 
number, p,q ∈ C(Ω) with 1 < p(x) ≤ q(x) for all x ∈ Ω and 0 ≤ μ(·) ∈ L1(Ω).

One work closely related to ours is Baroni–Colombo--Mingione [11], where they prove the 
local Hölder continuity of the gradient of local minimizers of the functional

w �→
∫
Ω 

[|Dw|p + a(x) |Dw|p log(e + |Dw|)]dx (1.6)

provided that 1 < p < ∞ and 0 ≤ a(·) ∈ C0,α(Ω). Note that when we take p = q and constant, 
(1.4) and (1.6) are the same functional up to a multiplicative constant. In another recent work of 
De Filippis–Mingione [28] the local Hölder continuity of the gradients of local minimizers of the 
functional
3 
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w �→
∫
Ω 

[|Dw| log(1 + |Dw|) + a(x)|Dw|q]dx (1.7)

has been shown provided 0 ≤ a(·) ∈ C0,α(Ω) and 1 < q < 1 + α
n whereby Ω ⊂ Rn. The func

tional (1.7) has its origin in the functional with nearly linear growth given by

w �→
∫
Ω 

|Dw| log(1 + |Dw|)dx, (1.8)

which has been studied in Fuchs–Mingione [37] and Marcellini–Papi [55]. Note that functionals 
of the form (1.8) appear in the theory of plasticity with logarithmic hardening, see, for example, 
Seregin–Frehse [69] and the monograph of Fuchs–Seregin [38] about variational methods for 
problems which have their origins in plasticity theory and generalized Newtonian fluids. Another 
closely related energy functional to (1.4) has been considered by Marcellini in [53] which has 
the form

w �→
∫
Ω 

(1 + |Dw|2) p
2 log(1 + |Dw|)dx .

The above functional can also be generalized to a energy functional related to (1.4) and a differ
ential operator satisfying p,q + ε--growth conditions for every a-priori fixed ε > 0. Such type 
of growth conditions was first introduced by Marcellini in [53] and later on, great attention has 
been paid to the study of several aspects of elliptic equations involving p,q--growth conditions, 
see the more recent works by Cupini–Marcellini--Mascolo [25] and Marcellini [52]. However, a 
detailed study of differential operators satisfying p,q--growth conditions, which includes double 
phase operators, logarithmic double phase operators, and anisotropic operators as specific cases, 
is far from complete.

To the best of our knowledge, our work is the first one dealing with such logarithmic operator 
given in (1.5) and associated energy functional (1.4) in a very general setting. Indeed, there are 
many innovations and novelties in this work which we want to summarize below. The first step in 
studying the operator and its energy functional is the finding of the right function space. For this 

purpose, we consider logarithmic Musielak-Orlicz Sobolev spaces W 1,Hlog(Ω) and W
1,Hlog
0 (Ω)

with the generalized weak Φ-function Hlog : Ω × [0,∞) → [0,∞) given by

Hlog(x, t) = tp(x) + μ(x)tq(x) log(e + t).

We are able to prove that these spaces are separable, reflexive Banach spaces and W
1,Hlog
0 (Ω)

can be equipped with the equivalent norm

inf

⎧⎨⎩λ > 0 :
∫
Ω 

[∣∣∣∣∇u

λ 

∣∣∣∣p(x)

+ μ(x)

∣∣∣∣∇u

λ 

∣∣∣∣q(x)

log

(
e + |∇u|

λ 

)]
dx ≤ 1

⎫⎬⎭ .

Such norm will be later useful in our existence results for corresponding logarithmic dou
ble phase equations. In addition, we prove several embedding results into variable exponent 
4 
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Lebesgue spaces and the closedness of W 1,Hlog(Ω) and W
1,Hlog
0 (Ω) under truncations. More

over, we show the density of smooth functions. To be more precise, under the assumptions that 
p,q : Ω → [1,∞) and μ : Ω → [0,∞) are Hölder continuous and(

q

p

)
+

< 1 + γ

N
, (1.9)

where γ is the Hölder exponent of μ, we obtain that C∞(Ω) ∩ W 1,Hlog(Ω) is dense in 
W 1,Hlog(Ω). As an result of independent interest, we extend this assertion to the case of un
bounded domains under the additional hypothesis that p satisfies Nekvinda’s decay condition 
and p and q are bounded. This condition was first introduced by Nekvinda in the article [59] 
and says that a measurable function r : Ω → [1,∞] satisfies Nekvinda’s decay condition if there 
exists r∞ ∈ [1,∞] and c ∈ (0,1) such that

∫
Ω 

c

1 ∣∣∣ 1 
r(x)

− 1 
r∞

∣∣∣ dx < ∞.

Let us come back to the inequality (1.9) and suppose the exponents p and q are constants 
such that 1 < p < q < N and μ to be Lipschitz (i.e. γ = 1). Then (1.9) reads as

q

p
< 1 + 1 

N
. (1.10)

Condition (1.10) has been used for regularity results of local minimizers to related energy func
tionals given by (1.1) (see the above mentioned works) and to guarantee the density of smooth 
functions in related Musielak-Orlicz Sobolev spaces, see here the work of Colasuonno–Squassina 
[20, Proposition 6.5]. For existence results for double phase problems, condition (1.10) was 
crucial to have the Poincaré inequality, see again [20, Proposition 2.18 (iv)]. Later, Crespo
Blanco–Gasiński--Harjulehto--Winkert [21] were able to prove the existence of the Poincaré 
inequality under the weaker assumption q < p∗. Note that (1.10) implies q < p∗. So in the 
existence theory, not using density results, the condition (1.10) is not needed anymore for most 
of the treatments. However, we believe that for a global regularity theory, which does not exist 
so far, condition (1.10) is the main assumption in the double phase setting.

In the second part of this paper we are interested in the properties of the logarithmic double 
phase operator G given in (1.5) and its corresponding energy functional I in (1.4). We prove 
that the operator is bounded, continuous, strictly monotone, of type (S+), coercive and a home
omorphism. Moreover, the functional I is of class C1. As a result of independent interest we 
also present a new version of Young’s inequality for the product of a power-law and a logarithm, 
which says that for s, t ≥ 0 and r > 1 it holds

str−1
[

log(e + t) + t

r(e + t)

]
≤ sr

r
log(e + s) + t r

[
r − 1

r
log(e + t) + t

r(e + t)

]
.

This inequality is essential for our proof that the operator fulfills the (S+)-property.
Finally, in the last part of the paper, we are interested in existence and multiplicity results for 

the equation
5 
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Gu = f (x,u) in Ω, u = 0 on ∂Ω, (1.11)

where G is given in (1.5) and f : Ω×R→ R is a Carathéodory function with subcritical growth 
which satisfies appropriate conditions, see (Hf), (f3’), (f4’) and (f6) for the details. We prove the 
existence of three nontrivial weak solutions of problem (1.11) including determining their sign. 
More precisely, one solution is positive, one is negative and the third one has changing sign. The 
existence of the sign-changing solution is the main difficult part in our existence section, the idea 
is to the use an appropriate variation N0 of the corresponding Nehari manifold of problem (1.11)
given by

N =
{
u ∈ W

1,Hlog
0 (Ω) : 〈ϕ′(u),u〉 = 0, u �= 0

}
,

where ϕ is the energy functional corresponding to (1.11). The definition of N is motivated by 

the works of Nehari [57,58] and the set N0 consists of all functions of W
1,Hlog
0 (Ω) such that 

the positive and negative parts are also in N . The idea in the proof is, among other things, a 
suitable combination of the quantitative deformation lemma and the Poincaré-Miranda existence 
theorem. Such treatment has been applied to double phase problems without logarithmic term and 
by using the Brouwer degree instead of the Poincaré-Miranda existence theorem by the works of 
Liu–Dai [50] for p,q constants and Crespo-Blanco–Winkert [22] for the operator given in (1.2)
with associated functional (1.1). Note that the appearance of the logarithmic term in our operator 
makes the treatment much more complicated than in the works [50] and [22].

As mentioned above, to the best of our knowledge, there exists no other work dealing with 
the logarithmic double phase operator given in (1.5). However, some papers deal with logarith
mic terms on the right-hand side for Schrödinger equations or p-Laplace problems. In 2009, 
Montenegro–de Queiroz [56] studied nonlinear elliptic problem

−Δu = χu>0(log(u) + λf (x,u)) in Ω, u = 0 on ∂Ω, (1.12)

where f : Ω × [0,∞) → [0,∞) is nondecreasing, sublinear and fu is continuous. The authors 
show that (1.12) has a maximal solution uλ ≥ 0 of type C1,γ (Ω). Logarithmic Schrödinger equa
tions of the shape

−Δu + V (x)u = Q(x)u log(u2) in RN (1.13)

have been studied by Squassina–Szulkin [74] proving that (1.13) has infinitely many solutions, 
where V and Q are 1-periodic functions of the variables x1, . . . , xN and Q ∈ C1(RN). Further 
results for logarithmic Schrödinger equations can be found in the works of Alves–de Morais 
Filho [3], Alves–Ji [4] and Shuai [71], see also Gao–Jiang--Liu-Wei [39] for logarithmic Kirch
hoff type equations and the recent work of Alves–da Silva [2] about logarithmic Schrödinger 
equations on exterior domains. We also refer to the papers of Alves–Moussaoui--Tavares [5] for 
singular systems with logarithmic right-hand sides driven by the Δp(·)-Laplacian and Shuai [72] 
for a Laplace equation with right-hand side a(x)u log(|u|) with weight function a which may 
change sign.

To finish this introduction, we would like to mention some famous works in the direction of 
double phase problems (without logarithmic term) appearing in the last years based on differ
ent methods and techniques. We refer to the papers by Aberqi–Bennouna--Benslimane--Ragusa 
6 
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[1] (elliptic equations on complete compact Riemannian manifolds), Arora–Shmarev [6,7] 
(parabolic double-phase problems), Bai–Papageorgiou--Zeng [9] (parametric singular problems), 
Clop–Gentile--Passarelli [19] (higher differentiability under sub-quadratic growth conditions), 
Colasuonno–Squassina [20] (double phase eigenvalue problems), Fang–Rădulescu--Zhang [35] 
(equivalence of weak and viscosity solutions), Farkas–Winkert [36] (Finsler double phase prob
lems), Gasiński–Papageorgiou [40] (locally Lipschitz right-hand sides), Gasiński–Winkert [41] 
(convection problems), Ho–Winkert [48] (new critical embedding results), Liu–Dai [50] (super
linear problems), Liu–Pucci [51] (multiplicity results without the AR-condition), Papageorgiou--
Rădulescu--Repovš [62,63] (property of the spectrum and ground state solutions), Perera--
Squassina [66] (Morse theory for double phase problems), Zhang–Rădulescu [81] and Shi--
Rădulescu--Repovš--Zhang [70] (double phase anisotropic variational problems with variable 
exponents), Zeng–Bai--Gasiński--Winkert [79] (implicit obstacle double phase problems), Zeng--
Rădulescu--Winkert [80] (implicit obstacle double phase problems with mixed boundary condi
tion), see also the references therein.

The paper is organized as follows. Section 2 consists of an outline of the properties of variable 
exponent spaces, Musielak-Orlicz spaces, their associated Sobolev spaces and other mathemati
cal tools used later in the text. These tools include some inequalities, the quantitative deformation 
lemma and the Poincaré-Miranda existence theorem. In Section 3 we introduce the functional 
space that will be used throughout the rest of the paper and we give its main characteristics. In 
Section 4 we provide some strong properties of the differential operator of problem (1.11). These 
are essential when applying many techniques used to study nonlinear PDEs, including our treat
ment. After that, in Section 5 we prove the existence of two nontrivial solutions of our problem, 
one of positive sign and one of negative sign. On top of this, in Section 6 we show the existence 
of a third nontrivial solution with changing sign using the Nehari manifold technique and varia
tional arguments. As a closing result, in Section 7 we give information on the nodal domains of 
this sign-changing solution.

2. Musielak-Orlicz spaces and preliminaries

Some of the natural ingredients to study this kind of operator are the variable exponent 
Lebesgue and Sobolev spaces. For this reason, we start this section with a small summary of their 
properties. Later in this section we will also work with the theory of Musielak-Orlicz spaces in 
order to build an appropriate space for this operator.

Let 1 ≤ r ≤ ∞, we denote by Lr(Ω) the standard Lebesgue space equipped with the norm 
‖ · ‖r and by W 1,r (Ω) and W 1,r

0 (Ω) the typical Sobolev spaces fitted with the norm ‖ · ‖1,r and, 
for the case 1 ≤ r < ∞, also the norm ‖ · ‖1,r,0.

Let us also denote the positive and negative part as follows. Let t ∈ R, then t± = max{±t,0}, 
i.e. t = t+ − t− and |t | = t+ + t−. For any function u : Ω →R, we denote u±(x) = [u(x)]± for 
all x ∈ Ω.

For the variable exponent case, we need to introduce some common notation. Let r ∈ C(Ω), 
we define r− = minx∈Ω r(x) and r+ = maxx∈Ω r(x) and also the space

C+(Ω) = {r ∈ C(Ω) : 1 < r−}.

Let r ∈ C+(Ω) and let M(Ω) = {u : Ω → R : u is measurable}, we denote by Lr(·)(Ω) the 
Lebesgue space with variable exponent given by
7 
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Lr(·)(Ω) = {
u ∈ M(Ω) : �r(·)(u) < ∞}

,

where the modular associated with r is

�r(·)(u) =
∫
Ω 

|u|r(x) dx

and it is equipped with its associated Luxemburg norm

‖u‖r(·) = inf
{
λ > 0 : �r(·)

(u

λ 

)
≤ 1

}
.

These spaces have been investigated in many works, and as a result we nowadays have 
a comprehensive theory. One can find most of the relevant results in the book by Diening--
Harjulehto--Hästö--Růžička [31]. We know that Lr(·)(Ω) is a separable and reflexive Banach 
space and its norm is uniformly convex. We also know that 

[
Lr(·)(Ω)

]∗ = Lr ′(·)(Ω), where 
r ′ ∈ C+(Ω) is the conjugate variable exponent of r and is given by r ′(x) = r(x)/[r(x) − 1] for 
all x ∈ Ω, see for example [31, Lemma 3.2.20]. In these spaces we also have a weaker version of 
Hölder’s inequality, like the one in [31, Lemma 3.2.20], which states that∫

Ω 

|uv|dx ≤
[

1 
r−

+ 1 
r ′−

]
‖u‖r(·)‖v‖r ′(·) ≤ 2‖u‖r(·)‖v‖r ′(·) for all u,v ∈ Lr(·)(Ω).

Additionally, if r1, r2 ∈ C+(Ω) and r1(x) ≤ r2(x) for all x ∈ Ω, it is possible to embed con
tinuously one space in the other like in [31, Theorem 3.3.1], meaning Lr2(·)(Ω) ↪→ Lr1(·)(Ω). 
Finally, the norm and its modular are strongly related as one can see in the following result, it 
can be found in the paper of Fan–Zhao [34, Theorems 1.2 and 1.3].

Proposition 2.1. Let r ∈ C+(Ω), λ > 0, and u ∈ Lr(·)(Ω), then

(i) ‖u‖r(·) = λ if and only if �r(·)
(

u
λ 
) = 1 with u �= 0;

(ii) ‖u‖r(·) < 1 (resp. = 1, > 1) if and only if �r(·)(u) < 1 (resp. = 1, > 1);
(iii) if ‖u‖r(·) < 1, then ‖u‖r+

r(·) ≤ �r(·)(u) ≤ ‖u‖r−
r(·);

(iv) if ‖u‖r(·) > 1, then ‖u‖r−
r(·) ≤ �r(·)(u) ≤ ‖u‖r+

r(·);
(v) ‖u‖r(·) → 0 if and only if �r(·)(u) → 0;

(vi) ‖u‖r(·) → +∞ if and only if �r(·)(u) → +∞.

For our purposes we will also need the associated Sobolev spaces to the variable exponent 
Lebesgue spaces. These are also treated in the book by Diening–Harjulehto--Hästö--Růžička [31]. 
Let r ∈ C+(Ω), the Sobolev space W 1,r(·)(Ω) is given by

W 1,r(·)(Ω) =
{
u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)

}
,

on it we can define the modular

�1,r(·)(u) = �r(·)(u) + �r(·)(∇u),
8 
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where �r(·)(∇u) = �r(·)(|∇u|), and it is equipped with its associated Luxemburg norm

‖u‖1,r(·) = inf
{
λ > 0 : �1,r(·)

(u

λ 

)
≤ 1

}
.

Furthermore, similarly to the standard case, we denote

W
1,r(·)
0 (Ω) = C∞

0 (Ω)
‖·‖1,r(·)

.

The spaces W 1,r(·)(Ω) and W 1,r(·)
0 (Ω) are both separable and reflexive Banach spaces and the 

norm ‖ · ‖1,r is uniformly convex.
A Poincaré inequality of the norms holds in the space W 1,r(·)

0 (Ω). One way to see this is 
the paper by Fan–Shen--Zhao [32, Theorem 1.3], together with the standard way to derive the 
Poincaré inequality from the compact embedding, see for example the paper by Crespo-Blanco--
Gasiński--Harjulehto--Winkert [21, Proposition 2.18 (ii)].

Proposition 2.2. Let r ∈ C+(Ω), then there exists c0 > 0 such that

‖u‖r(·) ≤ c0‖∇u‖r(·) for all u ∈ W
1,r(·)
0 (Ω).

Thus, we can define the equivalent norm on W 1,r(·)
0 (Ω) given by ‖u‖1,r(·),0 = ‖∇u‖r(·). This 

norm is also uniformly convex.
Alternatively, assuming an additional monotonicity condition on r , we also have a Poincaré 

inequality for the modular, see the paper by Fan–Zhang--Zhao [33, Theorem 3.3].

Proposition 2.3. Let r ∈ C+(Ω) be such that there exists a vector l ∈RN \ {0} with the property 
that for all x ∈ Ω the function

hx(t) = r(x + t l) with t ∈ Ix = {t ∈ R : x + t l ∈ Ω}
is monotone. Then there exists a constant C > 0 such that

�r(·)(u) ≤ C�r(·)(∇u) for all u ∈ W 1,r(·)(Ω),

where �r(·)(∇u) = �r(·)(|∇u|).

For r ∈ C+(Ω) we introduce the critical Sobolev variable exponents r∗ and r∗ with the fol
lowing expression

r∗(x) =
{

Nr(x) 
N−r(x)

if r(x) < N

+∞ if r(x) ≥ N
, for all x ∈ Ω,

r∗(x) =
{

(N−1)r(x)
N−r(x) if r(x) < N

+∞ if r(x) ≥ N
, for all x ∈ Ω.

Note that for any r ∈ C(Ω) it holds that (r∗)− = (r−)∗, so we will denote it simply by r∗ .
−

9 
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On the other hand, the space C0, 1 
| log t | (Ω) is the set of all functions h : Ω → R such that are 

log-Hölder continuous, i.e. there exists C > 0 such that

|h(x) − h(y)| ≤ C

| log |x − y|| for all x, y ∈ Ω with |x − y| < 1

2
.

In the variable exponent setting we also have embeddings analogous to the Sobolev embed
dings of the constant exponent case. The next two results can be found in Crespo-Blanco--
Gasiński--Harjulehto--Winkert [21, Propositions 2.1 and 2.2] or Ho–Kim--Winkert--Zhang [47, 
Proposition 2.4 and 2.5].

Proposition 2.4. Let r ∈ C
0, 1 

| log t | (Ω) ∩ C+(Ω) and let s ∈ C(Ω) be such that 1 ≤ s(x) ≤ r∗(x)

for all x ∈ Ω. Then, we have the continuous embedding

W 1,r(·)(Ω) ↪→ Ls(·)(Ω).

If r ∈ C+(Ω), s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for all x ∈ Ω, then this embedding is compact.

Proposition 2.5. Suppose that r ∈ C+(Ω) ∩ W 1,γ (Ω) for some γ > N . Let s ∈ C(Ω) be such 
that 1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω. Then, we have the continuous embedding

W 1,r(·)(Ω) ↪→ Ls(·)(∂Ω).

If r ∈ C+(Ω), s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for all x ∈ Ω, then the embedding is compact.

For the purpose of introducing the functional space mentioned in the Introduction, we present 
now the main features of Musielak-Orlicz spaces. Almost all definitions and results from this 
part of the work are from the book by Harjulehto–Hästö [43]. We start with some special types 
of growth. For the rest of this section let us denote by (A,Σ,μ) a σ finite, complete measure 
space with μ �≡ 0, while Ω still denotes a bounded domain in RN with N ≥ 2 and Lipschitz 
boundary ∂Ω.

Definition 2.6. Let ϕ : A × (0,+∞) →R. We say that

(i) ϕ is almost increasing in the second variable if there exists a ≥ 1 such that ϕ(x, s) ≤ aϕ(x, t)

for all 0 < s < t and for a.a. x ∈ A;
(ii) ϕ is almost decreasing in the second variable if there exists a ≥ 1 such that aϕ(x, s) ≥

ϕ(x, t) for all 0 < s < t and for a.a. x ∈ A.

Let ϕ : A × (0,+∞) →R and p,q > 0. We say that ϕ satisfies the property

(Inc)p if t−pϕ(x, t) is increasing in the second variable;
(aInc)p if t−pϕ(x, t) is almost increasing in the second variable;
(Dec)q if t−qϕ(x, t) is decreasing in the second variable;

(aDec)q if t−qϕ(x, t) is almost decreasing in the second variable.
10 
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Without subindex, that is (Inc), (aInc), (Dec) and (aDec), it indicates that there exists some p > 1
or q < ∞ such that the condition holds.

Now we are in the position to give the definition of a generalized Φ-function.

Definition 2.7. A function ϕ : A × [0,+∞) → [0,+∞] is said to be a generalized Φ-function if 
ϕ is measurable in the first variable, increasing in the second variable and satisfies ϕ(x,0) = 0, 
limt→0+ ϕ(x, t) = 0 and limt→+∞ ϕ(x, t) = +∞ for a.a. x ∈ A. Moreover, we say that

(i) ϕ is a generalized weak Φ-function if it satisfies (aInc)1 on A × (0,+∞);
(ii) ϕ is a generalized convex Φ-function if ϕ(x, ·) is left-continuous and convex for a.a. x ∈ A;

(iii) ϕ is a generalized strong Φ-function if ϕ(x, ·) is continuous in the topology of [0,∞] and 
convex for a.a. x ∈ A.

Remark 2.8. A generalized strong Φ-function is a generalized convex Φ-function, and a gener
alized convex Φ-function is a generalized weak Φ-function, check equation (2.1.1) in the book 
by Harjulehto–Hästö [43].

Associated to each generalized Φ-function, it is possible to define its conjugate function and 
its left-inverse.

Definition 2.9. Let ϕ : A × [0,+∞) → [0,+∞]. We denote by ϕ∗ the conjugate function of ϕ
which is defined for x ∈ A and s ≥ 0 by

ϕ∗(x, s) = sup
t≥0 

(ts − ϕ(x, t)).

We denote by ϕ−1 the left-continuous inverse of ϕ, defined for x ∈ A and s ≥ 0 by

ϕ−1(x, s) = inf{t ≥ 0 : ϕ(x, t) ≥ s}.

The function spaces that we will build based on these generalized Φ-functions can have spe
cially nice properties if these functions fulfill some extra assumptions like the following ones.

Definition 2.10. Let ϕ : A × [0,+∞) → [0,+∞], we say that

(i) ϕ is doubling (or satisfies the Δ2-condition) if there exists a constant K ≥ 2 such that

ϕ(x,2t) ≤ Kϕ(x, t)

for all t ∈ (0,+∞] and for a.a. x ∈ A;
(ii) ϕ satisfies the ∇2-condition if ϕ∗ satisfies the Δ2-condition.

Let Ω ⊂ RN and ϕ : Ω × [0,+∞) → [0,+∞] be a generalized Φ-function, we say that it 
satisfies the condition

(A0) if there exists 0 < β ≤ 1 such that β ≤ ϕ−1(x,1) ≤ β−1 for a.a. x ∈ Ω;
11 
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(A0)’ if there exists 0 < β ≤ 1 such that ϕ(x,β) ≤ 1 ≤ ϕ(x,β−1) for a.a. x ∈ Ω;
(A1) if there exists 0 < β < 1 such that βϕ−1(x, t) ≤ ϕ−1(y, t) for every t ∈ [1,1/|B|] and 

for a.a. x, y ∈ B ∩ Ω with every ball B such that |B| ≤ 1;
(A1)’ if there exists 0 < β < 1 such that ϕ(x,βt) ≤ ϕ(y, t) for every t ≥ 0 such that 

ϕ(y, t) ∈ [1,1/|B|] and for a.a. x, y ∈ B ∩ Ω with every ball B such that |B| ≤ 1;
(A2) if for every s > 0 there exists 0 < β ≤ 1 and h ∈ L1(Ω) ∩ L∞(Ω) such that 

βϕ−1(x, t) ≤ ϕ−1(y, t) for every t ∈ [h(x) + h(y), s] and for a.a. x, y ∈ Ω;
(A2)’ if there exists s > 0, 0 < β ≤ 1, ϕ∞ weak Φ-function (that is, constant in the first 

variable) and h ∈ L1(Ω) ∩ L∞(Ω) such that ϕ(x,βt) ≤ ϕ∞(t) + h(x) and ϕ∞(βt) ≤
ϕ(x, t) + h(x) for a.a. x ∈ Ω and for all t ≥ 0 such that ϕ∞(t) ≤ s and ϕ(x, t) ≤ s.

It is important to notice that some of the conditions we already mentioned are equivalent. The 
reason behind this is that, depending on the context, some conditions can be easier to check than 
others. For the following result, see Lemma 2.2.6, Corollary 2.4.11, Corollary 3.7.4, Corollary 
4.1.6 and Lemma 4.2.7 in the book by Harjulehto–Hästö [43].

Lemma 2.11. Let ϕ : A × [0,+∞) → [0,+∞] be a generalized weak Φ-function, then

(i) it satisfies the Δ2-condition if and only if it satisfies (aDec);
(ii) if it is a generalized convex Φ-function, it satisfies the Δ2-condition if and only if it satisfies 

(Dec);
(iii) it satisfies the ∇2-condition if and only if it satisfies (aInc);

Let ϕ : Ω × [0,+∞) → [0,+∞] be a generalized weak Φ-function, then

(iv) it satisfies the (A0) condition if and only if it satisfies the (A0)’ condition;
(v) if it satisfies the (A0) condition, the (A1) condition holds if and only if the (A1)’ condition 

holds;
(vi) it satisfies the (A2) condition if and only if it satisfies the (A2)’ condition.

Now we see how a Musielak-Orlicz space is defined, alongside with which properties it has 
based on the properties of its associated Φ-function. For this result check Lemma 3.1.3, Lemma 
3.2.2, Theorem 3.3.7, Theorem 3.5.2 and Theorem 3.6.6 in the book by Harjulehto–Hästö [43].

Proposition 2.12. Let ϕ : A×[0,+∞) → [0,+∞] be a generalized weak Φ-function and let its 
associated modular be

�ϕ(u) =
∫
A 

ϕ(x, |u(x)|) dμ(x).

Then, the set

Lϕ(A) = {u ∈ M(A) : �ϕ(λu) < ∞ for some λ > 0}
equipped with the associated Luxemburg quasi-norm

‖u‖ϕ = inf
{
λ > 0 : �ϕ

(u

λ 

)
≤ 1

}

12 
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is a quasi Banach space. Furthermore, if ϕ is a generalized convex Φ-function, it is a Banach 
space; if ϕ satisfies (aDec), it holds that

Lϕ(A) = {u ∈ M(A) : �ϕ(u) < ∞};
if ϕ satisfies (aDec) and μ is separable, then Lϕ(A) is separable; and if ϕ satisfies (aInc) and 
(aDec) it possesses an equivalent, uniformly convex norm, hence it is reflexive.

In Musielak-Orlicz spaces it is important to understand with detail the relation between the 
modular and the norm, because it is often used when dealing with growths or convergences. 
Because of this, the following result is of importance, one can find it as Lemma 3.2.9 in the book 
of Harjulehto–Hästö [43].

Proposition 2.13. Let ϕ : A × [0,+∞) → [0,+∞] be a generalized weak Φ-function that sat
isfies (aInc)p and (aDec)q , with 1 ≤ p ≤ q < ∞. Then

1 
a

min
{‖u‖p

ϕ ,‖u‖q
ϕ

} ≤ �ϕ(u) ≤ a max
{‖u‖p

ϕ ,‖u‖q
ϕ

}
for all measurable functions u : A →R, where a is the maximum of the constants of (aInc)p and 
(aDec)q .

There are embedding relations between the Musielak-Orlicz spaces depending of the chosen 
function. The following result characterizes these relations and can be found as Theorem 3.2.6 
of the book by Harjulehto–Hästö [43].

Proposition 2.14. Let ϕ,ψ : A × [0,+∞) → [0,+∞] be generalized weak Φ-functions and let 
μ be atomless. Then Lϕ(A) ↪→ Lψ(A) if and only if there exists K > 0 and h ∈ L1(A) with 
‖h‖1 ≤ 1 such that for all t ≥ 0 and for a.a. x ∈ Ω

ψ

(
x,

t

K

)
≤ ϕ(x, t) + h(x).

In Musielak-Orlicz spaces we even have a Hölder inequality based on the chosen function, 
see the following result which can be found as Lemma 3.2.11 of the book by Harjulehto–Hästö 
[43].

Proposition 2.15. Let ϕ : A × [0,+∞) → [0,+∞] be a generalized weak Φ-function, then∫
A 

|u| |v| dμ(x) ≤ 2‖u‖ϕ ‖v‖ϕ∗ for all u ∈ Lϕ(A), v ∈ Lϕ∗
(A).

Moreover, the constant 2 is sharp.

Lastly, one can define the associated Sobolev spaces to these Musielak-Orlicz spaces analo
gously to the classical case. The following result can be found as Theorem 6.1.4 and Theorem 
6.1.9 of the book by Harjulehto–Hästö [43].
13 
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Proposition 2.16. Let ϕ : Ω × [0,+∞) → [0,+∞] be a generalized weak Φ-function such that 
Lϕ(Ω) ⊆ L1

loc(Ω) and k ≥ 1. Then, the set

Wk,ϕ(Ω) = {u ∈ Lϕ(Ω) : ∂αu ∈ Lϕ(Ω) for all |α| ≤ k},
where we consider the modular

�k,ϕ(u) =
∑

0≤|α|≤k

�ϕ(∂αu)

and the associated Luxemburg quasi-norm

‖u‖k,ϕ = inf
{
λ > 0 : �k,ϕ

(u

λ 

)
≤ 1

}
is a quasi Banach space. Analogously, the set

W
k,ϕ
0 (Ω) = C∞

0 (Ω)
‖·‖k,ϕ

,

where C∞
0 (Ω) are the functions in C∞(Ω) with compact support, equipped with the same mod

ular and norm is also a quasi Banach space.
Furthermore, if ϕ is a generalized convex Φ-function, both spaces are Banach spaces; if ϕ

satisfies (aDec), then they are separable; and if ϕ satisfies (aInc) and (aDec) they possess an 
equivalent, uniformly convex norm, hence they are reflexive.

The following statement cannot be found explicitly written in the book by Harjulehto–Hästö 
[43]. However, due to the form of �k,ϕ(·) and ‖ · ‖k,ϕ , one can repeat step by step the arguments 
of the proof of Lemma 3.2.9 of this same book to obtain it.

Proposition 2.17. Let ϕ : Ω × [0,+∞) → [0,+∞] be a generalized weak Φ-function that sat
isfies (aInc)p and (aDec)q , with 1 ≤ p ≤ q < ∞. Then

1 
a

min
{
‖u‖p

k,ϕ ,‖u‖q
k,ϕ

}
≤ �k,ϕ(u) ≤ a max

{
‖u‖p

k,ϕ ,‖u‖q
k,ϕ

}
for all u ∈ Wk,ϕ(Ω), where a is the maximum of the constants of (aInc)p and (aDec)q .

One might also wonder when smooth functions are dense in a Sobolev Musielak-Orlicz space. 
Sufficient conditions are given in the next result taken from Theorem 6.4.7 of the book by 
Harjulehto–Hästö [43].

Theorem 2.18. Let ϕ : Ω×[0,+∞) → [0,+∞] be a generalized weak Φ-function that satisfies 
(A0), (A1), (A2) and (aDec). Then C∞(Ω) ∩ Wk,ϕ(Ω) is dense in Wk,ϕ(Ω).

As a penultimate, let us recall a few properties of the log function that are useful when dealing 
with logarithmic growth next to power-law growth. For s, t ≥ 0 and C ≥ 1,

log(e + st) ≤ log(e + s) + log(e + t), log(e + Cs) ≤ C log(e + s) (2.1)
14 
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and for s, t ≥ 0 and q ≥ 1,

(s + t)q log(e + s + t) ≤ (2s)q log(e + 2s) + (2t)q log(e + 2t)

≤ 2q+1sq log(e + s) + 2q+1tq log(e + t)
(2.2)

Lastly, we give here the statement of a version of the mountain pass theorem, the quantitative 
deformation lemma and the Poincaré-Miranda existence theorem, all of which will be used later. 
Let X be a Banach space, we say that a functional ϕ : X → R satisfies the Cerami condition or 
C-condition if for every sequence {un}n∈N ⊆ X such that {ϕ(un)}n∈N ⊆ R is bounded and it 
also satisfies

(1 + ‖un‖)ϕ′(un) → 0 as n → ∞,

then it contains a strongly convergent subsequence. Furthermore, we say that it satisfies the Ce
rami condition at the level c ∈ R or the Cc-condition if it holds for all the sequences such that 
ϕ(un) → c as n → ∞ instead of for all the bounded sequences. The proof of the following 
mountain pass theorem can be found in the book by Papageorgiou–Rădulescu--Repovš [64, The
orem 5.4.6]. For the quantitative deformation lemma after it we refer to the book by Willem [77, 
Lemma 2.3] and regarding the Poincaré-Miranda existence theorem, the proof can be found in 
the book by Dinca–Mawhin [30, Corollary 2.2.15].

Theorem 2.19 (Mountain pass theorem). Let X be a Banach space and suppose ϕ ∈ C1(X), 
u0, u1 ∈ X with ‖u1 − u0‖ > δ > 0,

max{ϕ(u0), ϕ(u1)} ≤ inf{ϕ(u) : ‖u − u0‖ = δ} = mδ,

c = inf 
γ∈Γ

max 
0≤t≤1

ϕ(γ (t)) with Γ = {γ ∈ C([0,1],X) : γ (0) = u0, γ (1) = u1}

and ϕ satisfies the Cc-condition. Then c ≥ mδ and c is a critical value of ϕ. Moreover, if c = mδ , 
then there exists u ∈ ∂Bδ(u0) such that ϕ′(u) = 0.

Lemma 2.20 (Quantitative deformation lemma). Let X be a Banach space, ϕ ∈ C1(X;R), ∅ �=
S ⊆ X, c ∈ R, ε, δ > 0 such that for all u ∈ ϕ−1([c − 2ε, c + 2ε]) ∩ S2δ there holds ‖ϕ′(u)‖∗ ≥
8ε/δ, where Sr = {u ∈ X : d(u,S) = infu0∈S ‖u − u0‖ < r} for any r > 0. Then there exists 
η ∈ C([0,1] × X;X) such that

(i) η(t, u) = u, if t = 0 or if u / ∈ ϕ−1([c − 2ε, c + 2ε]) ∩ S2δ;
(ii) ϕ(η(1, u)) ≤ c − ε for all u ∈ ϕ−1((−∞, c + ε]) ∩ S;

(iii) η(t, ·) is an homeomorphism of X for all t ∈ [0,1];
(iv) ‖η(t, u) − u‖ ≤ δ for all u ∈ X and t ∈ [0,1];
(v) ϕ(η(·, u)) is decreasing for all u ∈ X;

(vi) ϕ(η(t, u)) < c for all u ∈ ϕ−1((−∞, c]) ∩ Sδ and t ∈ (0,1].

Theorem 2.21 (Poincaré-Miranda existence theorem). Let P = [−t1, t1] × · · · × [−tN , tN ] with 
ti > 0 for i ∈ 1, . . . ,N and d : P → RN be continuous. If for each i ∈ {1, . . . ,N} one has
15 
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di(a) ≤ 0 when a ∈ P and ai = −ti ,

di(a) ≥ 0 when a ∈ P and ai = ti ,

then d has at least one zero in P .

3. Logarithmic function space

In light of the previous section, we now choose an appropriate Φ-function that allows us to 
study our problem (1.11). Let Hlog : Ω × [0,∞) → [0,∞) be given by

Hlog(x, t) = tp(x) + μ(x)tq(x) log(e + t),

where we assume the following conditions:

(H0) Ω ⊆ RN , with N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, p,q ∈ C+(Ω)

with p(x) ≤ q(x) for all x ∈ Ω and 0 ≤ μ(·) ∈ L1(Ω).

We can see that this Φ-function satisfies some important properties from the previous section.

Lemma 3.1. The function fε : [0,+∞) → [0,+∞) given by

fε(t) = tε

log(e + t)

is increasing for ε ≥ κ and almost increasing for 0 < ε < κ with constant aε , where κ = e/(e +
t0), with t0 being the only positive solution of t0 = e log(e + t0).

Proof. It is immediate to check that f ′
ε(t) > 0 (= 0,< 0) if and only if

ε(e + t) log(e + t) − t > 0 (= 0,< 0).

Hence we are interested in when the function

g(t) = t

(e + t) log(e + t)

satisfies g(t) < ε (= ε,> ε). Arguing similarly, g′(t) > 0 (= 0,< 0) if and only if

e log(e + t) − t > 0 (= 0,< 0).

Therefore we now look at the function

h(t) = e log(e + t) − t,

which is strictly decreasing, strictly positive at 0 and −∞ at +∞. Thus g achieves its global 
maximum at t0 defined by h(t0) = 0 and it holds that g(t0) = κ . This proves the case ε ≥ κ .

If 0 < ε < κ , then there exist t1,ε < t0 < t2,ε such that t1,ε is the unique local maximum of fε

and t2,ε is the unique local minimum of fε apart from 0. Since fε is increasing in (0, t1,ε) and in 
16 
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fε

•
fε(t1,ε)

•
fε(t2,ε)

g
ε

•
g(t0)

•

•
t1,ε

•

•
t2,ε

h

•
t0

Fig. 1. Functions in the proof of Lemma 3.1. 

(t2,ε,∞), fε is almost increasing if and only if there exists aε > 0 such that fε(t1,ε)/fε(t2,ε) ≤ aε , 
which is trivially true (Fig. 1). �
Remark 3.2. Note that with the choice of aε in the proof of the previous result we cannot ensure 
that there exists a constant uniform in ε. On the other hand, note also that t0 � 5.8340 and 
κ � 0.31784.

Lemma 3.3. Let (H0) be satisfied, then Hlog is a generalized strong Φ-function and it fulfills

(i) (Inc)p− ;
(ii) (Dec)q++κ ;

(iii) (aDec)q++ε for 0 < ε < κ and with constant aε,

where κ and aε are the same as in Lemma 3.1.

Proof. First we see that it is a generalized strong Φ-function. Since the other conditions are 
straightforward, we only need to check the convexity in the second variable, which follows from

∂t
2Hlog(x, t)

= p(x)(p(x) − 1)tp(x)−2

+ μ(x)tq(x)−2
[
q(x)(q(x) − 1) log(e + t) + (2q(x) − 1)

t

e + t
+ et 

(e + t)2

]
> 0

for all t > 0 and for a.a. x ∈ Ω.
17 
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Now we prove (i), (ii) and (iii). Notice that

Hlog(x, t)

tp− = tp(x)−p− + μ(x)tq(x)−p− log(e + t)

is an increasing function because all the exponents are positive. Similarly, by Lemma 3.1

Hlog(x, t)

tq++ε
= tp(x)−q+−ε + μ(x)tq(x)−q+ log(e + t)

tε

is a decreasing function when ε ≥ κ and almost decreasing when 0 < ε < κ , with the constant aε

from Lemma 3.1. �
As a consequence of the previous result, we obtain the following.

Proposition 3.4. Let (H0) be satisfied, then LHlog(Ω) is a separable, reflexive Banach space and 
the following hold:

(i) ‖u‖Hlog
= λ if and only if �Hlog

(
u
λ 
) = 1 for u �= 0 and λ > 0;

(ii) ‖u‖Hlog
< 1 (resp. = 1, > 1) if and only if �Hlog (u) < 1 (resp. = 1, > 1);

(iii) min
{
‖u‖p−

Hlog
,‖u‖q++κ

Hlog

}
≤ �Hlog (u) ≤ max

{
‖u‖p−

Hlog
,‖u‖q++κ

Hlog

}
for κ > 0 as in Lemma 

3.1;

(iv) 1 
aε

min
{
‖u‖p−

Hlog
,‖u‖q++ε

Hlog

}
≤ �Hlog (u) ≤ aε max

{
‖u‖p−

Hlog
,‖u‖q++ε

Hlog

}
for 0 < ε < κ , 

where κ and aε are the same as in Lemma 3.1;
(v) ‖u‖Hlog

→ 0 if and only if �Hlog (u) → 0;
(vi) ‖u‖Hlog

→ ∞ if and only if �Hlog (u) → ∞.

Proof. First, by Proposition 2.12 and Lemma 3.3, we know that LHlog(Ω) is a separable, reflex
ive Banach space.

For (i) and (ii), note that the function λ �→ �Hlog (u/λ) with λ ≥ 0 is continuous, convex and 
strictly increasing. This directly implies (i), and (i) with the strict increasing property yields (ii).

Finally, (iii) and (iv) follow from Proposition 2.13 and Lemma 3.3; and (v) and (vi) follow 
from (iii). �

This space satisfies the following embeddings. As in the usual notation, given r ∈ C+(Ω), let 
Lr(x) logL(Ω) = Lζ (Ω), where ζ(x, t) = t r(x) log(e + t).

Proposition 3.5. Let (H0) be satisfied and let ε > 0, then it holds

Lq(·)+ε(Ω) ↪→ Lq(·) logL(Ω) and LHlog(Ω) ↪→ Lp(·)(Ω).

If we further assume 0 ≤ μ(·) ∈ L∞(Ω), then it also holds Lq(·) logL(Ω) ↪→ LHlog(Ω).

Proof. We will prove all the embeddings by applying Proposition 2.14 to the corresponding 
Φ-functions.
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First, for any K > 0, by the inequality log(e + t) ≤ Cε + tε it holds that

(
t

K

)q(x)

log

(
e + t

K

)
≤ tq(x)+ε + 1

Kq(x)
Cε + tq(x)+ε

Kq(x)+ε

and if we choose K ≥ max{21/(q−+ε), (2Cε)
1/q− , (Cε|Ω|)1/q−}, it follows

(
t

K

)q(x)

log

(
e + t

K

)
≤ Cε

Kq(x)
+ tq(x)+ε, with 

∫
Ω 

Cε

Kq(x)
dx ≤ 1.

This concludes the proof of the first embedding. The condition for the second embedding is 
straightforward to verify. Finally, for any K > 0,

Hlog

(
x,

t

K

)
≤ 1 

Kp(x)
+

(
1 

Kp(x)
+ ‖μ‖∞

Kq(x)

)
tq(x) log

(
e + t

K

)
and if we choose K ≥ max{21/p− , (2‖μ‖∞)1/q− , |Ω|1/p−}, it follows

Hlog

(
x,

t

K

)
≤ 1 

Kp(x)
+ tq(x) log (e + t) with 

∫
Ω 

1 
Kp(x)

dx ≤ 1.

This shows the proof of the third embedding. �
For our purposes we further need to work on the associated Sobolev space, whose proper

ties are summarized in the following statement. Its proof is completely analogous to the proof 
of Proposition 3.4 except that now we use Proposition 2.16 (instead of Proposition 2.12) and 
Proposition 2.17 (instead of Proposition 2.13).

Proposition 3.6. Let (H0) be satisfied, then W 1,Hlog(Ω) and W
1,Hlog
0 (Ω) are separable, reflexive 

Banach spaces and the following hold:

(i) ‖u‖1,Hlog
= λ if and only if �1,Hlog

(
u
λ 
) = 1 for u �= 0 and λ > 0;

(ii) ‖u‖1,Hlog
< 1 (resp. = 1, > 1) if and only if �1,Hlog (u) < 1 (resp. = 1, > 1);

(iii) min
{
‖u‖p−

1,Hlog
,‖u‖q++κ

1,Hlog

}
≤ �1,Hlog (u) ≤ max

{
‖u‖p−

1,Hlog
,‖u‖q++κ

1,Hlog

}
;

(iv)

1 
aε

min
{
‖u‖p−

1,Hlog
,‖u‖q++ε

1,Hlog

}
≤ �1,Hlog (u) ≤ aε max

{
‖u‖p−

1,Hlog
,‖u‖q++ε

1,Hlog

}
for 0 < ε < κ , where κ and aε are the same as in Lemma 3.1;

(v) ‖u‖1,Hlog
→ 0 if and only if �1,Hlog (u) → 0;

(vi) ‖u‖1,Hlog
→ ∞ if and only if �1,Hlog (u) → ∞.

These Sobolev spaces satisfy the following embeddings.
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Proposition 3.7. Let (H0) be satisfied, then the following hold:

(i) W 1,Hlog(Ω) ↪→ W 1,p(·)(Ω) and W
1,Hlog
0 (Ω) ↪→ W

1,p(·)
0 (Ω) are continuous;

(ii) if p ∈ C+(Ω) ∩ C
0, 1 

| log t | (Ω), then W 1,Hlog(Ω) ↪→ Lp∗(·)(Ω) and W
1,Hlog
0 (Ω) ↪→ Lp∗(·)(Ω)

are continuous;

(iii) W 1,Hlog(Ω) ↪→ Lr(·)(Ω) and W
1,Hlog
0 (Ω) ↪→ Lr(·)(Ω) are compact for r ∈ C(Ω) with 1 ≤

r(x) < p∗(x) for all x ∈ Ω;
(iv) if p ∈ C+(Ω) ∩ W 1,γ (Ω) for some γ > N , then W 1,Hlog(Ω) ↪→ Lp∗(·)(∂Ω) and 

W
1,Hlog
0 (Ω) ↪→ Lp∗(·)(∂Ω) are continuous;

(v) W 1,Hlog(Ω) ↪→ Lr(·)(∂Ω) and W
1,Hlog
0 (Ω) ↪→ Lr(·)(∂Ω) are compact for r ∈ C(Ω) with 

1 ≤ r(x) < p∗(x) for all x ∈ Ω.

Proof. The proof of (i) follows directly from Proposition 3.5. The proofs of (ii) - (v) follow 
from (i) and the usual Sobolev embeddings of W 1,p(·)(Ω) and W 1,p(·)

0 (Ω) in Propositions 2.4
and 2.5. �

We also have the property that the truncation of functions on W 1,Hlog(Ω) and W
1,Hlog
0 (Ω)

stays within the space, as it is proven in the next result.

Proposition 3.8. Let (H0) be satisfied, then

(i) If u ∈ W 1,Hlog(Ω), then u± ∈ W 1,Hlog(Ω) with ∇(±u) = ∇u1{±u>0};
(ii) if un → u in W 1,Hlog(Ω), then u±

n → u± in W 1,Hlog(Ω);

(iii) if we further assume 0 ≤ μ(·) ∈ L∞(Ω), then u ∈ W
1,Hlog
0 (Ω) implies u± ∈ W

1,Hlog
0 (Ω).

Proof. Part (i) follows from the classical case. Indeed, let r ∈ R with 1 ≤ r ≤ ∞, then for any 
u ∈ W 1,r (Ω) we know that u± ∈ W 1,r (Ω) and ∇(±u) = ∇u1{±u>0}; see, for example, the book 
by Heinonen–Kilpeläinen--Martio [46, Lemma 1.19]. The reason is that by Proposition 3.7 (i)
u ∈ W 1,p−(Ω) and 

∣∣±u±∣∣ ≤ |u|.
For part (ii), note again that 

∣∣±u±
n ∓ u±∣∣ ≤ |un − u|. Then by Proposition 3.6 (v), we have that 

�Hlog

(
u±

n − u±) → 0. It is only left to see the convergence of the terms with the gradients. We 
do only the logarithmic term, the other one can be done similarly. Note that 

∣∣±∇u±
n ∓ ∇u±∣∣ =∣∣1{±un>0}∇un − 1{±u>0}∇u

∣∣, then by (2.2) we have∫
Ω 

μ(x)
∣∣±∇u±

n ∓ ∇u±∣∣q(x)
log(e + ∣∣±∇u±

n ∓ ∇u±∣∣)dx

≤ 2q++1
∫
Ω 

μ(x) |∇un − ∇u|q(x) log(e + |∇un − ∇u|)dx

+ 2q++1
∫
Ω 

μ(x) |∇u|q(x)
∣∣1{±un>0} − 1{±u>0}

∣∣q(x)

× log(e + |∇u| ∣∣1{±un>0} − 1{±u>0}
∣∣)dx .
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The first term on the right-hand side converges to zero by Proposition 3.4 (v). The second one 
also converges to zero by taking an a.e. convergent subsequence, using the dominated conver
gence theorem and then using the subsequence principle. For the application of the dominated 
convergence theorem, take into account that ∇u = 0 on the set {u = 0} by (i). All in all, this 
yields �1,Hlog

(
u±

n − u±) → 0 and the final result by Proposition 3.6 (v).

Part (iii) is more technical. For u ∈ W
1,Hlog
0 (Ω) we know that there exists a sequence 

{un}n∈N ⊆ C∞
0 (Ω) such that un → u in W 1,Hlog(Ω), which by part (ii) implies u±

n → u±
in W 1,Hlog(Ω). In particular we have that u±

n ∈ C0 = {v ∈ C(Ω) : suppv is compact} and 
∂xi

u±
n ∈ L∞(Ω) for all n ∈ N and all 1 ≤ i ≤ N . Consider the standard mollifier ηε . For each 

n ∈ N there is a small εn > 0 such that ηε ∗ u±
n ∈ C∞

0 (Ω) for 0 < ε < εn. Moreover, for any 
δ > 0

ηε ∗ u±
n → u±

n uniformly in Ω as ε → 0,

∂xi
(ηε ∗ u±

n ) = ηε ∗ ∂xi
u±

n → ∂xi
u±

n in Lq++δ(Ω) as ε → 0.

By Propositions 3.5 and 3.4 (v) this means that �1,Hlog

(
ηε ∗ u±

n − u±
n

) → 0 as ε → 0, or also in 
the norm. Altogether, for each u+

n ,u−
n we can find some vn, ṽn ∈ C∞

0 (Ω) as close as we want 
to them in the norm of W 1,Hlog(Ω); and these new sequences satisfy vn → u+ and ̃vn → u− in 
W 1,Hlog(Ω). �

As a consequence of the embeddings above we can prove that a Poincaré inequality is satisfied 

in W
1,Hlog
0 (Ω) if we further assume in (H0) that 0 ≤ μ(·) ∈ L∞(Ω) and q(x) < p∗(x) for all 

x ∈ Ω. So we suppose the following:

(H) Ω ⊆ RN , with N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, p,q ∈ C+(Ω)

with p(x) ≤ q(x) < p∗(x) for all x ∈ Ω and 0 ≤ μ(·) ∈ L∞(Ω).

As it is usual in the literature, we denote ‖∇u‖Hlog
= ‖ |∇u| ‖Hlog

and �Hlog (∇u) = �Hlog (|∇u|).

Proposition 3.9. Let (H) be satisfied. Then W 1,Hlog(Ω) ↪→ LHlog(Ω) is a compact embedding 
and there exists a constant C > 0 such that

‖u‖Hlog
≤ C ‖∇u‖Hlog

for all u ∈ W
1,Hlog
0 (Ω).

Proof. From (H) we can deduce that there exists ε > 0 such that q(x)+ ε < p∗(x) for all x ∈ Ω. 
Then the compact embedding follows from Propositions 3.7 (iii) and 3.5.

The inequality follows from the compact embedding in the standard way (see, for example, 
Proposition 2.18 in the paper by Crespo-Blanco–Gasiński--Harjulehto--Winkert [21]) �

Due to the previous inequality we can take in the space W
1,Hlog
0 (Ω) the equivalent norm 

‖u‖1,Hlog,0 = ‖∇u‖Hlog
.

In the last part of this section, we investigate the density of smooth functions in the space 
W 1,Hlog(Ω). For this purpose, we check which of the (A0), (A1) and (A2) assumptions are satis
fied by Hlog.
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Lemma 3.10. Let (H0) be satisfied, then Hlog satisfies (A0) and (A2).

Proof. By Lemma 2.11 (iv) and (vi), it is equivalent to check the conditions (A0)’ and (A2)’. 
For (A0)’ one can take β = [

2(‖μ‖∞ + 1) log(e + 1/2)
]−1 since

Hlog(x,β) ≤ 1

2
+ 1

2

‖μ‖∞
‖μ‖∞ + 1

log
(
e + 1

2

)
log

(
e + 1

2

) ≤ 1,

Hlog(x,β−1) ≥ 2 + 0 ≥ 1.

For (A2)’, take s = 1, ϕ∞(t) = tp++1 and β = 1. First note that ϕ∞(t) ≤ 1 implies t ≤ 1. Thus, 
by Young’s inequality

Hlog(x,βt) ≤ [1 + ‖μ‖∞ log(e + 1)]tp(x)

≤ p(x) 
p+ + 1

tp++1 + p+ − p(x) + 1

p+ + 1 
[1 + ‖μ‖∞ log(e + 1)]

p++1 
p+−p(x)+1

≤ ϕ∞(t) + [1 + ‖μ‖∞ log(e + 1)]p++1.

Take h as the additive constant in the previous line, then we also have

ϕ∞(βt) ≤ tp(x) ≤ Hlog(x, t) + h(x). �
Remark 3.11. Note that in the proof of (A2)’ the function h would not be in L1(Ω) if |Ω| = ∞, 
so this argument does not generalize for unbounded domains. For that purpose, one needs an 
extra assumption, see Theorem 3.13.

For the remaining assumption (A1) we use much stricter assumptions. Indeed, instead of 
supposing just continuity on p and q as well as L1-integrability of μ, we require now, among 
others, that all three exponents are Hölder continuous on Ω.

Theorem 3.12. Let Ω ⊆ RN , with N ≥ 2, be a bounded domain and the functions p,q : Ω →
[1,∞) and μ : Ω → [0,∞) be Hölder continuous functions such that 1 < p(x) ≤ q(x) for all 
x ∈ Ω and (

q

p

)
+

< 1 + γ

N
,

where γ is the Hölder exponent of μ. Then Hlog satisfies (A1) and C∞(Ω)∩W 1,Hlog(Ω) is dense 
in W 1,Hlog(Ω).

Proof. It suffices to show that Hlog satisfies (A1) because the density follows from Theo
rem 2.18, Lemma 3.3 and Lemma 3.10.

By Lemma 2.11 (v), it is equivalent to check (A1)’. Let B ⊆ RN be a ball such that |B| ≤ 1. 
We start by rewriting the condition Hlog(y, t) ∈ [1,1/|B|] into a simpler statement. From this 
condition we can derive that
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if t ≤ 1, 1 ≤ Hlog(y, t)

if t ≥ 1, 1

}
≤ [1 + ‖μ‖∞ log(e + 1)]tp(y),

and

if t ≤ 1, 1 
|B| ≥ 1

if t ≥ 1, 1 
|B| ≥Hlog(y, t)

⎫⎬⎭ ≥ tp(y),

which altogether means

1 

[1 + ‖μ‖∞ log(e + 1)] 1 
p(y)

≤ t ≤ 1 

|B| 1 
p(y)

. (3.1)

Claim: There exists a constant M > 0 depending only on N,p,q,μ such that

tp(x) ≤ Mtp(y) and tq(x) ≤ Mtq(y)

for all x, y ∈ B ∩ Ω and t ≥ 0 such that Hlog(y, t) ∈ [1,1/|B|], and any ball B ⊆ RN such that 
|B| ≤ 1.

We only do the p case, the q case is identical. If either t ≤ 1 and p(x) ≥ p(y), or t ≥ 1 and 
p(x) ≤ p(y), then one can simply take M = 1. If t ≤ 1 and p(x) ≤ p(y), from (3.1) we obtain

tp(x) = tp(x)−p(y)tp(y) ≤
(
[1 + ‖μ‖∞ log(e + 1)] 1 

p(y)

)p(y)−p(x)

tp(y)

≤ [1 + ‖μ‖∞ log(e + 1)]
p+
p− tp(y),

so we can take M = [1 +‖μ‖∞ log(e + 1)]p+/p− . Consider the remaining case t ≥ 1 and p(x) ≥
p(y). Note that for any ball B ⊆ RN of radius R we have |B| = ω(N)RN , where ω(N) > 0 is 
the constant associated to RN , and also that x, y ∈ |B| implies |x − y| ≤ 2R. As p is Hölder 
continuous with exponent 0 < α ≤ 1 and constant cp > 0, x, y ∈ |B| implies |p(x) − p(y)| ≤
cp2αRα . Remember that |B| ≤ 1, so |B|−1/p(y) ≤ |B|−1/p− . From this and (3.1) we get

tp(x) = tp(x)−p(y)tp(y) ≤
(
ω(N)RN

) −1 
p− cp2αRα

tp(y)

=
(

ω(N)
−cp2α

p−
)Rα (

RRα
)−cp2αN

p−
tp(y).

Since |B| ≤ 1, we know that R ≤ ω(N)−1/N . On the other hand, the function h(R) =(
ω(N)−cp2α/p−)Rα (

RRα )−cp2αN/p− is strictly positive and continuous in the interval [0, 
ω(N)−1/N ] (note h(0) = 1). Thus it attains its maximum at some R0 in that interval and we 
can take M = h(R0). This ends the proof of the Claim.

Let us now prove the inequality of (A1)’ using the previous information. To this end, let 
0 < β < M−1/p− < 1, 0 < γ ≤ 1 be the Hölder exponent of μ and cμ > 0 be the corresponding 
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constant, so as in the proof of the Claim x, y ∈ |B| implies |μ(x) − μ(y)| ≤ cμ2γ Rγ . By all of 
this and the Claim above we have

Hlog(βx, t) ≤ βp−
(
tp(x) + μ(x)tq(x) log(e + t)

)
≤ βp−M

(
tp(y) + μ(x)tq(y) log(e + t)

)
≤ βp−M

(
tp(y) + μ(y)tq(y) log(e + t) + cμ2γ Rγ tq(y) log(e + t)

)
≤ βp−M

(
tp(y) + cμ2γ Rγ tq(y) log(e + t)

)
+ μ(y)tq(y) log(e + t).

We continue the inequality using (3.1), where we take again into account that |B| = ω(N)RN , 
with result

Hlog(βx, t)

≤ βp−Mtp(y)
(

1 + cμ2γ Rγ tq(y)−p(y) log(e + t)
)

+ μ(y)tq(y) log(e + t)

≤ βp−Mtp(y)

[
1 + cμ2γ Rγ

(
ω(N)RN

) −1 
p(y)

(q(y)−p(y))

log

(
e +

(
ω(N)RN

) −1 
p(y)

)]
+ μ(y)tq(y) log(e + t).

Now we need to estimate the part in square brackets independently of y and R. Let τp,q,N =
q−/p+ if ω(N) > 1 and τp,q,N = q+/p− if ω(N) ≤ 1. Once again, as ω(N)RN ≤ 1

Rγ
(
ω(N)RN

) −1 
p(y)

(q(y)−p(y))

log

(
e +

(
ω(N)RN

) −1 
p(y)

)
≤ ω(N)1−τp,q,N R

γ+N−N
q(y) 
p(y) log

(
e +

(
ω(N)RN

) −1 
p−

)
.

Let us distinguish two cases. If R ≤ 1,

R
γ+N−N

q(y) 
p(y) log

(
e +

(
ω(N)RN

) −1 
p−

)
≤ R

γ+N−N
(

q
p

)
+ log

(
e +

(
ω(N)RN

) −1 
p−

)
= h(R).

This function h is positive and continuous in the interval [0,ω(N)−1/N ] because

lim 
R→0+ h(R) = 0,

where this limit follows from γ + N − N(q/p)+ > 0 and by L’Hospital’s rule. Hence h attains 
its maximum at some R0 in that interval and we can use h(R0) as upper estimate. In the other 
case, if R ≥ 1
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R
γ+N−N

q(y) 
p(y) log

(
e +

(
ω(N)RN

) −1 
p−

)
≤ R

γ+N−N
(

q
p

)
− log

(
e + (ω(N))

−1 
p−

)
≤ ω(N)

−γ
N

−1+
(

q
p

)
− log

(
e + (ω(N))

−1 
p−

)
= Λ̃p,q,N ,

which follows from γ + N − N(
q
p
)− > 0 and R ≤ ω(N)−1/N (or equivalently |B| ≤ 1). Let 

Λp,q,N be the maximum of ω(N)1−τp,q,N h(R0) and ω(N)1−τp,q,N Λ̃p,q,N . Altogether, we have 
proved that

Hlog(βx, t) ≤ βp−Mtp(y)
[
1 + cμ2γ Λp,q,N

]+ μ(y)tq(y) log(e + t).

If we take

β < M
−1 
p−

[
1 + cμ2γ Λp,q,N

] −1 
p− ,

we obtain Hlog(βx, t) ≤Hlog(y, t) and the proof is complete. �
In this work and in the previous result we deal with bounded domains. However, one can 

also obtain the density for unbounded domains by adding one more assumption at infinity, hence 
we include it here for the shake of completion. Let Ω ⊆ RN be an open subset, we say that a 
measurable function r : Ω → [1,∞] satisfies Nekvinda’s decay condition if there exists r∞ ∈
[1,∞] and c ∈ (0,1) such that

∫
Ω 

c

1 ∣∣∣ 1 
r(x)

− 1 
r∞

∣∣∣ dx < ∞,

or, equivalently, 1 ∈ Ls(·)(Ω), where s−1(x) = ∣∣p−1(x) − p−1∞
∣∣. This condition was first intro

duced in the paper by Nekvinda [59].

Theorem 3.13. Let Ω ⊆ RN , with N ≥ 2, be an unbounded domain and the functions p,q : Ω →
[1,∞) and μ : Ω → [0,∞) be bounded, Hölder continuous functions such that p satisfies 
Nekvinda’s decay condition, 1 < p(x) ≤ q(x) for all x ∈ Ω and(

q

p

)
+

< 1 + γ

N
,

where γ is the Hölder exponent of μ. Then Hlog satisfies (A0), (A1), (A2), (aDec) and C∞(Ω)∩
W 1,Hlog(Ω) is dense in W 1,Hlog(Ω).

Proof. The proof of (A0), (A1) and (aDec) is exactly like in Lemma 3.3 and Lemma 3.10, they 
are not affected if Ω is unbounded. Therefore, it suffices to show that Hlog satisfies (A2) because 
the density follows from Theorem 2.18.
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By Lemma 2.11 (v), it is equivalent to check (A2)’. For this purpose, take s = 1, ϕ∞(t) = tp∞

and β ≤ 1. First note that ϕ∞(t) ≤ 1 implies t ≤ 1. Let us distinguish two cases. In the points 
where p(x) < p∞, by Young’s inequality

Hlog(x,βt) ≤ [1 + ‖μ‖∞ log(e + 1)]βp(x)tp(x)

≤ p(x)

p∞
tp∞ + p∞ − p(x)

p∞
[1 + ‖μ‖∞ log(e + 1)] p∞

p∞−p(x) β

1 ∣∣∣ 1 
p(x)

− 1 
p∞

∣∣∣

≤ ϕ∞(t) + (β[1 + ‖μ‖∞ log(e + 1)])
1 ∣∣∣ 1 

p(x)
− 1 

p∞
∣∣∣
.

Let us take

β < c[1 + ‖μ‖∞ log(e + 1)]−1,

h(x) = (β[1 + ‖μ‖∞ log(e + 1)])
1 ∣∣∣ 1 

p(x)
− 1 

p∞
∣∣∣
,

where c ∈ (0,1) is the constant of Nekvinda’s decay condition of p. Then we know that h ∈
L1(Ω) ∩ L∞(Ω). In the points where p(x) ≥ p∞, with the same choice of β we have

Hlog(x,βt) ≤ [1 + ‖μ‖∞ log(e + 1)]βtp∞ ≤ ϕ∞(t).

We do the other inequality in a similar way. In the points where p(x) ≤ p∞, as β ≤ 1

ϕ∞(βt) ≤ tp(x) ≤Hlog(x, t),

and in the points where p(x) > p∞, using again Young’s inequality

ϕ∞(βt) ≤ p∞
p(x)

tp(x) + p(x) − p∞
p(x) 

β

1 ∣∣∣ 1 
p(x)

− 1 
p∞

∣∣∣

≤Hlog(x, t) + h(x). �
Remark 3.14. Note that in the previous result we only imposed Nekvinda’s decay condition on 
p, there is no condition at infinity imposed on q .

4. Energy functional and logarithmic operator

In this section we investigate the properties of the associated energy functional and the loga

rithmic operator given in (1.5). We denote by 〈· , ·〉 the duality pairing between W
1,Hlog
0 (Ω) and 

its dual space [W 1,Hlog
0 (Ω)]∗. Let A : W

1,Hlog
0 (Ω) → [W 1,Hlog

0 (Ω)]∗ be our operator of interest, 

which for each u,v ∈ W
1,Hlog

(Ω) is given by the expression
0
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〈A(u), v〉 =
∫
Ω 

|∇u|p(x)−2 ∇u · ∇v dx

+
∫
Ω 

μ(x)

[
log(e + |∇u|) + |∇u|

q(x)(e + |∇u|)
]

|∇u|q(x)−2 ∇u · ∇v dx .

Furthermore, let I : W
1,Hlog
0 (Ω) → R be its associated energy functional, which for each u ∈

W
1,Hlog
0 (Ω) is given by

I (u) =
∫
Ω 

(
|∇u|p(x)

p(x) 
+ μ(x)

|∇u|q(x)

q(x) 
log(e + |∇u|)

)
dx .

We first deal with the differentiability of the energy functional.

Theorem 4.1. Let (H0) be satisfied, then the functional I is C1 with I ′(u) = A(u).

Proof. By the additivity of the Fréchet derivative, we only do the argument for the logarithmic 
term, the other one can be done analogously (and can also be found in previous literature, for ex
ample, Proposition 3.1 in the paper by Crespo-Blanco–Gasiński--Harjulehto--Winkert [21]). The 
proof is divided in two steps: first we prove the Gateaux differentiability and later its continuous 
dependence.

For the Gateaux differentiability, let u,v ∈ W
1,Hlog
0 (Ω) and t ∈ R. In the points where ∇u �= 0, 

by the mean value theorem there exists θx,t ∈ (0,1) such that

β(x, t)

= μ(x) 
tq(x)

(
|∇u + t∇v|q(x) log(e + |∇u + t∇v|) − |∇u|q(x) log(e + |∇u|)

)
= μ(x)

(
log(e + ∣∣∇u + tθx,t∇v

∣∣) ∣∣∇u + tθx,t∇v
∣∣q(x)−2

(∇u + tθx,t∇v) · ∇v

+ ∣∣∇u + tθx,t∇v
∣∣q(x) 1 

q(x)(e + ∣∣∇u + tθx,t∇v
∣∣) (∇u + tθx,t∇v) · ∇v∣∣∇u + tθx,t∇v

∣∣
)

t→0 −−→ μ(x)

(
log(e + |∇u|) |∇u|q(x)−2 ∇u · ∇v + |∇u|q(x) 1 

q(x)(e + |∇u|)
∇u · ∇v

|∇u|
)

and in the points where ∇u = 0 we can derive the same limit directly. So this convergence is true 
a.e. in Ω. On the other hand, using (2.2), for t ≤ 1

|β(x, t)| ≤ μ(x)
[
(|∇u| + |∇v|)q(x)−1 |∇v| (log(e + |∇u| + |∇v|) + 1)

]
≤ 2q++1μ(x)

[
|∇u|q(x) log(e + |∇u|) + |∇v|q(x) log(e + |∇v|) + 1

]
,
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which is an L1(Ω)-function. Hence, by the dominated convergence theorem, we proved that the 
Gateaux derivative exists and coincides with A.

For the C1-property, let un → u in W
1,Hlog
0 (Ω) and v ∈ W

1,Hlog
0 (Ω) with ‖v‖1,Hlog

≤ 1. For 
the following computations, we define

wn(x) =
[

log(e + |∇un|) + |∇un|
q(x)(e + |∇un|)

]
|∇un|q(x)−2 ∇un

−
[

log(e + |∇u|) + |∇u|
q(x)(e + |∇u|)

]
|∇u|q(x)−2 ∇u,

gn(x) = log1/q(x)(e + max{|∇u| , |∇un|}),
Ωu = {x ∈ Ω : max{|∇v| , |∇u| , |∇un|} = |∇u|},

Ωun = {x ∈ Ω : |∇u| < max{|∇v| , |∇u| , |∇un|} = |∇un|},
Ωv = {x ∈ Ω : |∇u| , |∇un| < max{|∇v| , |∇u| , |∇un|} = |∇v|}.

By Hölder’s inequality in Lq(·)(Ω), we have∣∣∣∣∣∣
∫
Ω 

μ(x)wn · ∇v dx

∣∣∣∣∣∣ ≤ 2

∥∥∥∥(μ(x))
q(x)−1
q(x) |wn|

gn

∥∥∥∥
q(·) 

q(·)−1

∥∥∥(μ(x))1/q(x) |∇v|gn

∥∥∥
q(·) .

The second factor is uniformly bounded in n and v by Proposition 2.1 (vi) and

�q(·)
(
(μ(x))1/q(x) |∇v|gn

)
≤

∫
Ωu

μ(x) |∇v|q(x) log(e + |∇u|)dx

+
∫

Ωun

μ(x) |∇v|q(x) log(e + |∇un|)dx

+
∫
Ωv

μ(x) |∇v|q(x) log(e + |∇v|)dx

≤ �Hlog (∇u) + �Hlog (∇v)︸ ︷︷ ︸
≤1 

+�Hlog (∇un)︸ ︷︷ ︸
≤M 

,

where the last two estimates follow from Proposition 3.4 (ii) and (vi) and un → u in W
1,Hlog
0 (Ω). 

Therefore, we only need to prove that the first factor converges to zero. By Proposition 2.1 (v), it 

is enough to see that this happens in the modular of L
q(·) 

q(·)−1 (Ω), that is

� q(·) 
q(·)−1

(
(μ(x))

q(x)−1
q(x) |wn|

gn

)
=

∫
Ω 

μ(x)

( |wn|
gn

) q(x) 
q(x)−1

dx
n→∞ −−−→ 0.
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We prove this convergence by using Vitali’s theorem. By Proposition 3.7 (i), ∇un → ∇u in 
measure, and using the property that convergence in measure is preserved by composition with 
continuous functions, we obtain the convergence in measure to zero of the integrand. For the 
uniform integrability, note that

μ(x)

( |wn|
gn

) q(x) 
q(x)−1

≤ μ(x)
([

log1− 1 
q(x) (e + |∇un|) + 1

]
|∇un|q(x)−1

+
[
log1− 1 

q(x) (e + |∇u|) + 1
]
|∇u|q(x)−1

) q(x) 
q(x)−1

≤ Cμ(x)
([

log(e + |∇un|) + 1
] |∇un|q(x) + [

log(e + |∇u|) + 1
] |∇u|q(x)

)
.

As ∇un → ∇u in measure and �Hlog (∇un) → �Hlog (∇u), we know that |∇un|q(x) log(e +
|∇un|) is uniformly integrable, hence we also know that our sequence is uniformly integrable 
and this finishes the proof. �

Next we are concerned with the properties of the operator A. For this purpose, we need the 
following two lemmas. The first one is concerned with the monotonicity of terms that are not 
power laws, but still something similar.

Lemma 4.2. Let h : [0,∞) → [0,∞) be a increasing function and r > 1. Then, for any ξ, η ∈
RN

(
h(|ξ |) |ξ |r−2 ξ − h(|η|) |η|r−2 η

)
· (ξ − η) ≥ Cr |ξ − η|r h(m)

if r ≥ 2, and

(|ξ | + |η|)2−r
(
h(|ξ |) |ξ |r−2 ξ − h(|η|) |η|r−2 η

)
· (ξ − η) ≥ Cr |ξ − η|2 h(m)

if 1 < r < 2, where m = min{|ξ | , |η|} and

Cr =
{

min{22−r ,2−1} if r ≥ 2,

r − 1 if 1 < r < 2.

Proof. For the case r ≥ 2, we obtain the identity(
h(|ξ |) |ξ |r−2 ξ − h(|η|) |η|r−2 η

)
· (ξ − η)

=
(
h(|ξ |) |ξ |r−2 ξ

)
· (ξ − η) +

(
−h(|η|) |η|r−2 η

)
· (ξ − η)

= h(|ξ |) |ξ |r−2
(

1
ξ − 1

η

)
· (ξ − η) + h(|η|) |η|r−2

(
1
ξ − 1

η

)
· (ξ − η)
2 2 2 2

29 



R. Arora, Á. Crespo-Blanco and P. Winkert Journal of Differential Equations 433 (2025) 113247 
+ h(|ξ |) |ξ |r−2
(

1

2
ξ + 1

2
η

)
· (ξ − η) + h(|η|) |η|r−2

(
−1

2
ξ − 1

2
η

)
· (ξ − η)

= 1

2

(
h(|ξ |) |ξ |r−2 + h(|η|) |η|r−2

)
|ξ − η|2

+ 1

2

(
h(|ξ |) |ξ |r−2 − h(|η|) |η|r−2

)(
|ξ |2 − |η|2

)
.

Since h is an increasing function, the second term is nonnegative if r ≥ 2. Hence the inequality 
follows when r ≥ 2. This is the same strategy in which one proves the usual inequality without 
h (see for example, Chapter 12, (I) in the book by Lindqvist [49]). From here the inequality 
follows.

For the case 1 < r < 2, we follow the argument of equation (2.2) from the paper by Simon 
[73]. The main difference now is that the expression is nonhomogeneous and therefore cannot 
be scaled, but it is still invariant under rotations. For this reason it is enough to consider the case 
|ξ | ≥ |η|, ξ = |ξ | e1, η = η1e1 + η2e2. We split the argument in two cases. First, if η1 ≤ 0(

h(|ξ |) |ξ |r−1 − h(|η|) |η|r−2 η1

)
≥ h(|η|) |ξ |r−2 (|ξ | − η1)

and if 0 ≤ η1 ≤ |ξ |, by the mean value theorem(
h(|ξ |) |ξ |r−1 − h(|η|) |η|r−2 η1

)
≥ h(|ξ |)

(
|ξ |r−1 − ηr−1

1

)
≥ h(|η|)(r − 1) |ξ |r−2 (|ξ | − η1) .

Altogether, this yields(
h(|ξ |) |ξ |r−2 ξ − h(|η|) |η|r−2 η

)
· (ξ − η)

=
(
h(|ξ |) |ξ |r−1 − h(|η|) |η|r−2 η1

)
(|ξ | − η1) + h(|η|) |η|r−2 η2

2

≥ h(|η|)(r − 1) (|ξ | + |η|)r−2
(
[|ξ | − η1]2 + η2

2

)
= h(|η|)(r − 1) (|ξ | + |η|)r−2 |ξ − η|2 . �

The second lemma is concerned with a version of Young’s inequality specially tailored for 
our line of work. It becomes indispensable in the proof of the (S+)-property.

Lemma 4.3 (Young’s inequality for the product of a power-law and a logarithm). Let s, t ≥ 0, 
r > 1 then

str−1
[

log(e + t) + t

r(e + t)

]
≤ sr

r
log(e + s) + t r

[
r − 1

r
log(e + t) + t

r(e + t)

]
.

Proof. The result is a consequence of the general version of Young’s inequality for functions 
that are positive, continuous, strictly increasing and vanish at zero, see for example Theorem 156 
of the classical book by Hardy–Littlewood--Pólya [42]. Let h : [0,∞) → [0,∞) satisfy all of the 
above, then for any s, t ≥ 0 it holds
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sh(t) ≤
s∫

0 

h(y)dy+
h(t)∫
0 

h−1(y)dy .

We also make use of another general result about the primitive of the inverse of a function. For 
h as above and t > 0 it holds

h(t)∫
0 

h−1(y)dy = th(t) −
t∫

0 

h(y)dy .

Choosing

h(t) = t r−1
[

log(e + t) + t

r(e + t)

]
,

hence 
∫ t

0 h(y)dy = t r/r log(e + t), one obtains the desired result. �
Now we can state the main properties of the operator A.

Theorem 4.4. Let (H0) be satisfied, then the operator A is bounded, continuous and strictly 
monotone. If we further assume (H), then it also is of type (S+), coercive and a homeomorphism.

Proof. The continuity follows directly from Theorem 4.1. The strict monotonicity follows from 
Lemma 4.2 and the widely-known inequality(

|ξ |r−2 ξ − |η|r−2 η
)

· (ξ − η) > 0 if r > 1 for all ξ, η ∈ RN with ξ �= η,

since for u,v ∈ W
1,Hlog
0 (Ω) with u �= v they imply

〈A(u) − A(v),u − v〉 ≥
∫
Ω 

(
|∇u|p(x)−2 ∇u − |∇v|p(x)−2 ∇v

)
· (∇u − ∇v)dx > 0.

For the boundedness, let us take u,v ∈ W
1,Hlog
0 (Ω) \ {0} with ‖v‖1,Hlog

= 1. Then, use (2.1) in 

the case ‖u‖1,Hlog
≥ 1 and that t �→ log(e+ t) is increasing and ‖u‖1−p−

1,Hlog
≤ ‖u‖1−q−

1,Hlog
in the case 

‖u‖1,Hlog
≤ 1. Together with Young’s inequality it holds

min
{
‖u‖−q+

1,Hlog
,‖u‖1−p−

1,Hlog

}
|〈A(u), v〉|

≤ min
{
‖u‖−q+

1,Hlog
,‖u‖1−p−

1,Hlog

}
×

∫ (
|∇u|p(x)−1 |∇v|+μ(x)

[
log(e + |∇u|) + 1

] |∇u|q(x)−1 |∇v|
)

dx
Ω 
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≤
∫
Ω 

∣∣∣∣∣ ∇u 
‖u‖1,Hlog

∣∣∣∣∣
p(x)−1

|∇v|dx

+
∫
Ω 

⎛⎝μ(x)

[
log

(
e + |∇u|

‖u‖1,Hlog

)
+ 1

]∣∣∣∣∣ ∇u 
‖u‖1,Hlog

∣∣∣∣∣
q(x)−1

|∇v|
⎞⎠dx

≤ p+ − 1

p−

∫
Ω 

∣∣∣∣∣ ∇u 
‖u‖1,Hlog

∣∣∣∣∣
p(x)

dx+ 1 
p−

∫
Ω 

|∇v|p(x) dx

+ q+ − 1

q−

∫
Ω 

μ(x)

[
log

(
e + |∇u|

‖u‖1,Hlog

)
+ 1

]∣∣∣∣∣ ∇u 
‖u‖1,Hlog

∣∣∣∣∣
q(x)

dx

+ 1 
q−

∫
Ω 

μ(x)

[
log

(
e + |∇u|

‖u‖1,Hlog

)
+ 1

]
|∇v|q(x) dx .

We can estimate the last addend by splitting Ω in the set where |∇v| is greater than 
|∇u|/‖u‖1,Hlog

and its complement. This together with Proposition 3.6 (i) leads to

min
{
‖u‖−q+

1,Hlog
,‖u‖1−p−

1,Hlog

}
|〈A(u), v〉|

≤ max

{
q+

q−
,
p+ − 1

p−

}
�Hlog

(
∇u 

‖u‖1,Hlog

)
+ 1 

p−
�Hlog (∇v)

≤ max

{
q+

q−
,
p+ − 1

p−

}
�1,Hlog

(
u 

‖u‖1,Hlog

)
+ 1 

p−
�1,Hlog (v)

= max

{
q+

q−
,
p+ − 1

p−

}
+ 1 

p−
= max

{
q+p− + q−

q−p−
,
p+
p−

}
.

As a consequence

‖A(u)‖∗ = sup 
‖v‖1,Hlog

=1
〈A(u), v〉

≤ max

{
q+p− + q−

q−p−
,
p+
p−

}
max

{
‖u‖q+

1,Hlog
,‖u‖p−−1

1,Hlog

}
.

From now on we assume that (H) holds for the proof of the remaining properties. Now we 

will deal with the (S+)-property. Let {un}n∈N ⊆ W
1,Hlog
0 (Ω) be a sequence such that

un ⇀ u in W
1,Hlog
0 (Ω) and lim sup

n→∞ 
〈A(un),un − u〉 ≤ 0. (4.1)

By the strict monotonicity of A and the weak convergence of un, we obtain
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0 ≤ lim inf
n→∞ 

〈A(un) − A(u),un − u〉 ≤ lim sup
n→∞ 

〈A(un) − A(u),un − u〉

= lim sup
n→∞ 

〈A(un),un − u〉 ≤ 0,

which means

lim 
n→∞〈A(un) − A(u),un − u〉 = 0.

Claim: ∇un → ∇u in measure.
In particular, as the previous expression can be decomposed in the sum of nonnegative terms, 

it follows

lim 
n→∞

∫
{p≥2}

(
|∇un|p(x)−2 ∇un − |∇u|p(x)−2 ∇u

)
· (∇un − ∇u)dx = 0, (4.2)

lim 
n→∞

∫
{p<2}

(
|∇un|p(x)−2 ∇un − |∇u|p(x)−2 ∇u

)
· (∇un − ∇u)dx = 0. (4.3)

From Lemma 4.2 with h = 1 and (4.2), we can directly derive that

lim 
n→∞

∫
{p≥2}

|∇un − ∇u|p(x) dx = 0,

hence ∇un1{p≥2} → ∇u1{p≥2} in measure. On the other hand, let

En = {∇un �= 0} ∪ {∇u �= 0},

then for any ε > 0 we know that{
1{p<2}(p− − 1) |∇un − ∇u|2 1En (|∇un| + |∇u|)p(x)−2 ≥ ε

}
⊆

{
1{p<2}

(
|∇un|p(x)−2 ∇un − |∇u|p(x)−2 ∇u

)
· (∇un − ∇u) ≥ ε

}
.

From (4.3) and the previous expression we obtain that

1{p<2} |∇un − ∇u|2 1En (|∇un| + |∇u|)p(x)−2 → 0 in measure.

Hence the same convergence is true a.e. along a subsequence unk
and then for a.a. x ∈ Ω there 

exists M(x) > 0 such that for all k ∈N

M(x) ≥ 1{p<2}
∣∣∇unk

− ∇u
∣∣2 1Enk

(∣∣∇unk

∣∣+ |∇u|)p(x)−2

≥ 1{p<2}
∣∣∣∣∇unk

∣∣− |∇u|∣∣2 1Enk

(∣∣∇unk

∣∣+ |∇u|)p(x)−2
.
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Note that, given any c > 0 and 0 < P < 1, the function h(t) = |t − c|2 (t + c)P−2 satisfies 
limt→+∞ h(t) = +∞. Therefore, there exists m(x) > 0 such that 

∣∣∇unk

∣∣ ≤ m(x) for a.a. x ∈ Ω

and all k ∈N . As a consequence

1{p<2}
∣∣∇unk

− ∇u
∣∣2 1Enk

(∣∣∇unk

∣∣+ |∇u|)p(x)−2

≥ 1{p<2}
∣∣∇unk

− ∇u
∣∣2 1Enk

(m(x) + |∇u|)p(x)−2

and the convergence a.e. to zero of the left-hand side yields 1{p<2}
∣∣∇unk

− ∇u
∣∣ → 0 a.e., since

for all x ∈ Ω such that ∇u(x) �= 0,1Enk
(x) = 1 for all k ∈ N;

for all x ∈ Ω such that ∇u(x) = 0, along any subsequence such that ∣∣∇unk′ (x)
∣∣ > ε > 0 it holds that 1En

k′ (x) = 1 for all k′ ∈ N.

Then 1{p<2}
∣∣∇unk

− ∇u
∣∣ → 0 in measure and by the subsequence principle, this is also true for 

the whole sequence un. Together with the case on {p ≥ 2}, this finishes the proof of the Claim.
By the usual Young’s inequality and Lemma 4.3 it follows∫

Ω 

|∇un|p(x)−2 ∇un · ∇(un − u)dx

+
∫
Ω 

μ(x)

[
log(e + |∇un|) + |∇un|

q(x)(e + |∇un|)
]

|∇un|q(x)−2 ∇un · ∇(un − u)dx

=
∫
Ω 

|∇un|p(x) dx−
∫
Ω 

|∇un|p(x)−2 ∇un · ∇udx

+
∫
Ω 

μ(x)

[
log(e + |∇un|) + |∇un|

q(x)(e + |∇un|)
]

|∇un|q(x) dx

−
∫
Ω 

μ(x)

[
log(e + |∇un|) + |∇un|

q(x)(e + |∇un|)
]

|∇un|q(x)−2 ∇un · ∇udx

≥
∫
Ω 

|∇un|p(x) dx−
∫
Ω 

|∇un|p(x)−1 |∇u|dx

+
∫
Ω 

μ(x)

[
log(e + |∇un|) + |∇un|

q(x)(e + |∇un|)
]

|∇un|q(x) dx

−
∫
Ω 

μ(x)

[
log(e + |∇un|) + |∇un|

q(x)(e + |∇un|)
]

|∇un|q(x)−1 |∇u|dx

≥
∫

|∇un|p(x) dx−
∫ (

p(x) − 1

p(x) 
|∇un|p(x) + 1 

p(x)
|∇u|p(x)

)
dx
Ω Ω 

34 



R. Arora, Á. Crespo-Blanco and P. Winkert Journal of Differential Equations 433 (2025) 113247 
+
∫
Ω 

μ(x)

[
log(e + |∇un|) + |∇un|

q(x)(e + |∇un|)
]

|∇un|q(x) dx

−
∫
Ω 

μ(x)

([
q(x) − 1

q(x) 
log(e + |∇un|) + |∇un|

q(x)(e + |∇un|)
]

|∇un|q(x)

+ 1 
q(x)

|∇u|q(x) log(e + |∇u|)
)

dx

=
∫
Ω 

1 
p(x)

|∇un|p(x) dx−
∫
Ω 

1 
p(x)

|∇u|p(x) dx

+
∫
Ω 

μ(x)

q(x) 
|∇un|q(x) log(e + |∇un|)dx−

∫
Ω 

μ(x)

q(x) 
|∇u|q(x) log(e + |∇u|)dx .

As a consequence, by (4.1)

lim sup
n→∞ 

∫
Ω 

(
|∇un|p(x)

p(x) 
+ μ(x)

|∇un|q(x)

q(x) 
log(e + |∇un|)

)
dx

≤
∫
Ω 

(
|∇u|p(x)

p(x) 
+ μ(x)

|∇u|q(x)

q(x) 
log(e + |∇u|)

)
dx .

By Fatou’s Lemma one can obtain that the limit inferior satisfies the opposite inequality, so all 
in all

lim 
n→∞

∫
Ω 

(
|∇un|p(x)

p(x) 
+ μ(x)

|∇un|q(x)

q(x) 
log(e + |∇un|)

)
dx

=
∫
Ω 

(
|∇u|p(x)

p(x) 
+ μ(x)

|∇u|q(x)

q(x) 
log(e + |∇u|)

)
dx .

By the previous Claim, passing to a.e. convergence along a subsequence and using the subse
quence principle, we can prove that the integrand of the left-hand side converges in measure to 
the integrand of the right-hand side. Then we can derive from the so-called converse of Vitali’s 
theorem its L1 convergence, and in particular the uniform integrability of the sequence{

|∇un|p(x)

p(x) 
+ μ(x)

|∇un|q(x)

q(x) 
log(e + |∇un|)

}
n∈N

.

On the other hand, by (2.2) we know that

|∇un − ∇u|p(x) + μ(x) |∇un − ∇u|q(x) log(e + |∇un − ∇u|)
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≤ 2q++1q+

(
|∇un|p(x)

p(x) 
+ |∇u|p(x)

p(x) 

+|∇un|q(x)

q(x) 
log(e + |∇un|) + |∇u|q(x)

q(x) 
log(e + |∇u|)

)
,

which yields the uniform integrability of the sequence{
|∇un − ∇u|p(x) + μ(x) |∇un − ∇u|q(x) log(e + |∇un − ∇u|)

}
n∈N .

As above, by the Claim, passing to a.e. convergence along a subsequence and using the sub
sequence principle, we can prove that this sequence converges in measure to zero. By Vitali’s 
theorem, these two facts imply

lim 
n→∞�Hlog (∇un − ∇u)

= lim 
n→∞

∫
Ω 

(
|∇un − ∇u|p(x) + μ(x) |∇un − ∇u|q(x) log(e + |∇un − ∇u|)

)
dx = 0.

By Proposition 3.4 (v), this is equivalent to ‖un − u‖1,Hlog,0 = ‖∇un − ∇u‖Hlog
→ 0, i.e. by 

Proposition 3.9 we know that un → u in W
1,Hlog
0 (Ω).

Let us now prove that the operator is coercive. For any u ∈ W 1,Hlog(Ω) with ‖u‖1,Hlog,0 ≥ 1, 
using the fact that t �→ log(e + t) is increasing, by Proposition 3.4 (i) it follows

〈A(u),u〉
‖u‖1,Hlog,0

=
∫
Ω 

‖u‖p(x)−1
1,Hlog,0

(
|∇u|

‖u‖1,Hlog,0

)p(x)

dx

+
∫
Ω 

‖u‖q(x)−1
1,Hlog,0

μ(x)

(
|∇u|

‖u‖1,Hlog,0

)q(x)

log(e + |∇u|)dx

≥ ‖u‖p−−1
1,Hlog,0

�1,Hlog,0

(
∇u 

‖u‖1,Hlog,0

)
= ‖u‖p−−1

1,Hlog,0
→ +∞

as ‖u‖1,Hlog,0 → +∞.
Finally, we show that A is a homeomorphism. By the previously proven properties and the 

Minty-Browder theorem (see, for example, Zeidler [78, Theorem 26.A]), we know that A is in
vertible and that A−1 is strictly monotone, demicontinuous and bounded. It is only left to see that 

A−1 is continuous. With this purpose in mind, let {yn}n∈N ⊆ [W 1,Hlog
0 (Ω)]∗ be a sequence such 

that yn → y in [W 1,Hlog
0 (Ω)]∗ and let un = A−1(yn) as well as u = A−1(y). The strong conver

gence of {yn}n∈N and the boundedness of A−1 imply that un is bounded in W
1,Hlog
0 (Ω). Thus, 

there exists a subsequence {unk
}k∈N such that unk

⇀ u0 in W
1,Hlog
0 (Ω). All these properties 

yield
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lim 
k→∞

〈
A(unk

) − A(u0), unk
− u0

〉
= lim 

k→∞
〈
ynk

− y,unk
− u0

〉+ lim 
k→∞

〈
y − A(u0), unk

− u0
〉 = 0.

By the (S+)-property of A we obtain that unk
→ u0 in W

1,Hlog
0 (Ω). The operator A is also 

continuous, so

A(u0) = lim 
k→∞A(unk

) = lim 
k→∞ynk

= y = A(u).

As A is injective, this proves that u = u0. By the subsequence principle we can show that this 
convergence holds for the whole sequence. �

When we consider the operator Ã : W 1,Hlog(Ω) →
[
W 1,Hlog(Ω)

]∗
given by the same expres

sion as A, one has the following result.

Theorem 4.5. Let (H0) be satisfied, then the operator Ã is bounded, continuous and monotone. 
If we further assume (H), then it also is of type (S+).

Proof. For the (S+)-property, repeat the same argument as before for the gradient part together 
with the compact embedding W 1,Hlog(Ω) ↪→ LHlog(Ω) from Proposition 3.9. The rest of the 
assertions follow in the same way as before. �
Remark 4.6. As seen in the previous theorem, the operator Ã has weaker properties than A. 
However, by choosing the space appropriately one can recover the original strong properties. For 
example, one could define the operator Ã on the space of zero mean functions, i.e.

L
Hlog
〈·〉 (Ω) =

⎧⎨⎩u ∈ LHlog(Ω) :
∫
Ω 

udx = 0

⎫⎬⎭ ,

W
1,Hlog
〈·〉 (Ω) =

⎧⎨⎩u ∈ W 1,Hlog(Ω) :
∫
Ω 

udx = 0

⎫⎬⎭ .

Following analogous steps as in Proposition 3.9 it is possible to prove the compact embedding 

W
1,Hlog
〈·〉 (Ω) ↪→ L

Hlog
〈·〉 (Ω) and the Poincaré inequality. As a consequence, one can repeat all the 

steps from Theorem 4.4 for Ã and obtain exactly the same properties.

For completeness, we consider the operator B : W 1,Hlog(Ω) →
[
W 1,Hlog(Ω)

]∗
given by

〈B(u), v〉 =
∫
Ω 

|∇u|p(x)−2 ∇u · ∇v dx

+
∫

μ(x)

[
log(e + |∇u|) + |∇u|

q(x)(e + |∇u|)
]

|∇u|q(x)−2 ∇u · ∇v dx
Ω 
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+
∫
Ω 

|u|p(x)−2 uv dx

+
∫
Ω 

μ(x)

[
log(e + |u|) + |u|

q(x)(e + |u|)
]

|u|q(x)−2 uv dx,

and the operator B̃ : W
1,Hlog
0 (Ω) →

[
W

1,Hlog
0 (Ω)

]∗
given by the same expression. Then we have 

the following result without the need for the condition (H).

Theorem 4.7. Let (H0) be satisfied, then the operators B and B̃ are bounded, continuous, strictly 
monotone, of type (S+), coercive and homeomorphisms.

Proof. Repeat the arguments of Theorem 4.4 separately for the part with the gradients and the 
part without the gradients. �

One direct consequence of the previous theorems is the following existence and uniqueness 

result. We say that u ∈ W
1,Hlog
0 (Ω) is a weak solution of (1.11) if for all v ∈ W

1,Hlog
0 (Ω) it holds 

that ∫
Ω 

|∇u|p(x)−2 ∇u · ∇v dx

+
∫
Ω 

μ(x)

[
log(e + |∇u|) + |∇u|

q(x)(e + |∇u|)
]

|∇u|q(x)−2 ∇u · ∇v dx

=
∫
Ω 

f (x,u)v dx .

Theorem 4.8. Let (H) hold and f ∈ L
r(·) 

r(·)−1 (Ω), where either r ∈ C+(Ω) and r(x) < p∗(x) for 

all x ∈ Ω or r ∈ C+(Ω)∩C
0, 1 

| log t | (Ω) and r(x) ≤ p∗(x) for all x ∈ Ω. Then there exists a unique 

weak solution u ∈ W
1,Hlog
0 (Ω) of problem (1.11).

Proof. As by Proposition 3.7 (ii) and (iii) W
1,Hlog
0 (Ω) ↪→ Lr(·)(Ω), then f ∈ Lr ′(·)(Ω) =[

Lr(·)(Ω)
]∗

↪→
[
W

1,Hlog
0 (Ω)

]∗
. The result follows because A is a bijection by Theorem 4.4. �

5. Constant sign solutions

After the comprehensive list of properties of the function space and the logarithmic double 
phase operator given in the previous sections, we are now in the position to prove our first multi
plicity result for problem (1.11). We impose the following assumptions on the right-hand side f
and some slightly stricter requirements on the exponents than on (H):

(H2) Ω ⊆ RN , with N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, p,q ∈ C+(Ω)

with p(x) ≤ q(x) ≤ q+ < p∗ for all x ∈ Ω and 0 ≤ μ(·) ∈ L∞(Ω).
−
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(Hf) Let f : Ω ×R→R and F(x, t) = ∫ t

0 f (x, s)ds.

(f1) The function f is Carathéodory type, i.e. t �→ f (x, t) is continuous for a.a. x ∈ Ω and 
x �→ f (x, t) is measurable for all t ∈ R.

(f2) There exists r ∈ C+(Ω) with r+ < p∗− and C > 0 such that

|f (x, t)| ≤ C
(

1 + |t |r(x)−1
)

for a.a. x ∈ Ω and for all t ∈R.

(f3)

lim 
s→±∞

F(x, s) 
|s|q+ log(e + |s|) = +∞ uniformly for a.a. x ∈ Ω.

(f4) There exists θ > 0 such that F(x, t) ≤ 0 for |t | ≤ θ and for a.a. x ∈ Ω and f (x,0) = 0
for a.a. x ∈ Ω.

(f5) There exists l, l̃ ∈ C+(Ω) such that min{l−, l̃−} ∈
(
(r+ − p−) N

p− , r+
)

and K > 0 with

0 < K ≤ lim inf
s→+∞ 

f (x, s)s − q+
(

1 + κ
q−

)
F(x, s)

|s|l(x)

uniformly for a.a. x ∈ Ω, and

0 < K ≤ lim inf
s→−∞ 

f (x, s)s − q+
(

1 + κ
q−

)
F(x, s)

|s |̃l(x)

uniformly for a.a. x ∈ Ω, where κ is the same one as in Lemma 3.1.

As a consequence the function f has the following properties.

Lemma 5.1. Let f : Ω ×R →R.

(i) If f fulfills (f2) and (f3), then q+ < r−.
(ii) If f fulfills (f2) and (f3), then there exist some M > 0 such that

F(x, t) > −M for a.a. x ∈ Ω and for all t ∈R.

(iii) If f fulfills (f2) and (f4), then there exists C > 0 such that

F(x, t) ≤ C |t |r(x) for a.a. x ∈ Ω.

(iv) If f fulfills (f2) and (f3), then for each ε > 0 there exists Cε > 0 such that

F(x, t) ≥ ε |t |q+ log(e + |t |) − Cε for a.a. x ∈ Ω.

q+
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(v) If f fulfills (f1) and (f2), then the functional If : W
1,Hlog
0 (Ω) → R given by

If (u) =
∫
Ω 

F(x,u)dx

and its derivative I ′
f : W

1,Hlog
0 (Ω) →

[
W

1,Hlog
0 (Ω)

]∗
, given by

〈
I ′
f (u), v

〉
=

∫
Ω 

f (x,u)v dx,

are strongly continuous, i.e. un ⇀ u in W
1,Hlog
0 (Ω) implies If (un) → If (u) in R and 

I ′
f (un) → I ′

f (u) in 
[
W

1,Hlog
0 (Ω)

]∗
.

Remark 5.2. As in (H2) we assumed q+ < p∗−, we can always find at least one r ∈ C+(Ω) such 
that q+ < r− ≤ r+ < p+− .

In order to find weak solutions we will work on the associated energy functional to problem 
(1.11), since they coincide with the critical points of this functional. It is defined as the functional 

ϕ : W
1,Hlog
0 (Ω) → R given by

ϕ(u) =
∫
Ω 

(
|∇u|p(x)

p(x) 
+ μ(x)

|∇u|q(x)

q(x) 
log(e + |∇u|)

)
dx −

∫
Ω 

F(x,u)dx .

In particular, as we are interested in constant sign solutions, we consider the truncated functionals 

ϕ± : W
1,Hlog
0 (Ω) →R defined by

ϕ±(u) =
∫
Ω 

(
|∇u|p(x)

p(x) 
+ μ(x)

|∇u|q(x)

q(x) 
log(e + |∇u|)

)
dx −

∫
Ω 

F(x,±u±)dx .

Remark 5.3. Note that by the second half of (f4), F(x,±t±) = ∫ t

0 f (x,±s±)ds for a.a. x ∈ Ω

and all t ∈ R. This will allow us to use Lemma 5.1 (v) on the truncated functionals both for the 
differentiability and the strong continuity.

In the remaining part of this section we check the assumptions of the mountain pass theorem, 
see Theorem 2.19, for the truncated functionals ϕ±. We start by checking the compactness-type 
property. For this purpose, we first need the following lemma. Its proof is straightforward.

Lemma 5.4. Let Q > 1 and h : [0,∞) → [0,∞) given by h(t) = t
Q(e+t) log(e+t)

. Then h attains 
its maximum value at t0 and the value is κ

Q
, where t0 and κ are the same as in Lemma 3.1.

Proposition 5.5. Let (H2) be satisfied and f fulfill (f1), (f2), (f4) and (f5). Then the functionals 
ϕ± satisfy the C-condition.
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Proof. Here we give the argument only for ϕ+, the case of ϕ− is almost the same. Let C1 > 0

and {un}n∈N ⊆ W
1,Hlog
0 (Ω) be a sequence such that

|ϕ+(un)| ≤ C1 for all n ∈ N, (5.1)

(1 + ‖un‖1,Hlog,0)ϕ
′+(un) → 0 in 

[
W

1,Hlog
0 (Ω)

]∗
. (5.2)

From (5.2) we know that there exists a sequence εn → 0 such that for all v ∈ W
1,Hlog
0 (Ω)∣∣∣∣∣∣

∫
Ω 

|∇un|p(x)−2 ∇un · ∇v dx

+
∫
Ω 

μ(x)

[
log(e + |∇un|) + |∇un|

q(x)(e + |∇un|)
]

|∇un|q(x)−2 ∇un · ∇v dx

−
∫
Ω 

f (x,u+
n )v dx

∣∣∣∣∣∣ ≤ εn ‖v‖1,Hlog,0

1 + ‖un‖1,Hlog,0
for all n ∈ N.

(5.3)

For any v ∈ W
1,Hlog
0 (Ω) we know that v± ∈ W

1,Hlog
0 (Ω) by Proposition 3.8. In particular we 

can take v = −u−
n ∈ W

1,Hlog
0 (Ω) in (5.3). As the fraction in the brackets is nonnegative and 

f (x,u+
n )u−

n = 0 for a.a. x ∈ Ω, we have

�1,Hlog,0
(
u−

n

)
≤

∫
Ω 

(∣∣∇u−
n

∣∣p(x) + μ(x)

[
log(e + ∣∣∇u−

n

∣∣) +
∣∣∇u−

n

∣∣
q(x)(e + ∣∣∇u−

n

∣∣)
]∣∣∇u−

n

∣∣q(x)

)
dx

≤ εn for all n ∈N,

or equivalently (see Proposition 3.4 (v))

−u−
n → 0 in W

1,Hlog
0 (Ω). (5.4)

Claim: There exists M > 0 such that 
∥∥u+

n

∥∥
1,Hlog,0

≤ M for all n ∈N .

By Lemma 5.4 and taking v = u+
n ∈ W

1,Hlog
0 (Ω) in (5.3) we have

−
(

1 + κ

q−

)
�1,Hlog,0

(
u+

n

)+
∫
Ω 

f (x,u+
n )u+

n dx

≤ −
∫ (∣∣∇u+

n

∣∣p(x) + μ(x)

[
log(e + ∣∣∇u+

n

∣∣) +
∣∣∇u+

n

∣∣
q(x)(e + ∣∣∇u+

n

∣∣)
]∣∣∇u+

n

∣∣q(x)

)
dx
Ω 
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+
∫
Ω 

f (x,u+
n )u+

n dx ≤ εn for all n ∈ N.

On the other hand, from (5.1) we also know that(
1 + κ

q−

)
�1,Hlog,0

(
u+

n

)−
∫
Ω 

q+
(

1 + κ

q−

)
F(x,u+

n )dx ≤ C2 for all n ∈N.

Adding both inequalities one gets∫
Ω 

(
f (x,u+

n )u+
n − q+

(
1 + κ

q−

)
F(x,u+

n )

)
dx ≤ C3 for all n ∈ N.

By (f5), where we assume, without loss of generality, that l− ≤ l̃−, there exist C4,C5 > 0 such 
that

C4|s|l− − C5 ≤ f (x, s)s − q+
(

1 + κ

q−

)
F(x, s)

for all s ∈R and for a.a. x ∈ Ω. The combination of the last two inequalities implies∥∥u+
n

∥∥
l− ≤ C6 for all n ∈N. (5.5)

Note that l− < r+ < p∗− because of (f2) and (f5), so one can find t ∈ (0,1) such that

1 
r+

= t

p∗−
+ 1 − t

l−
.

This situates us in the appropriate setting to apply an interpolation inequality, like the one found 
in Proposition 2.3.17 in the book by Papageorgiou–Winkert [65]. Together with (5.5), this gives 
us ∥∥u+

n

∥∥r+
r+ ≤

(∥∥u+
n

∥∥t

p∗−

∥∥u+
n

∥∥1−t

l−

)r+ ≤ C
(1−t)r+
6

∥∥u+
n

∥∥tr+
p∗−

for all n ∈N.

For simplicity, we consider the case that 
∥∥u+

n

∥∥
1,Hlog,0

≥ 1 for all n ∈ N . From Proposition 3.4

(iii), and then by (5.3) with v = u+
n ∈ W

1,Hlog
0 (Ω) and (f2) we have∥∥u+

n

∥∥p−
1,Hlog,0

≤ �1,Hlog,0
(
u+

n

) ≤ C7(1 + ∥∥u+
n

∥∥
1 + ∥∥u+

n

∥∥r+
r+) for all n ∈N.

These last two inequalities together with the embeddings (see Proposition 3.7 (i))

W
1,Hlog
0 (Ω) ↪→ W 1,p−(Ω) ↪→ Lp∗−(Ω), Lr+(Ω) ↪→ L1(Ω)

yield
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∥∥u+
n

∥∥p−
1,Hlog,0

≤ C9

(
1 + ∥∥u+

n

∥∥tr+
1,Hlog,0

)
for all n ∈N.

From the interval assumption in (f5), we know that

tr+ = p∗−(r+ − l−)

p∗− − l−
= Np−(r+ − l−) 

Np− − Nl− + p−l−

<
Np−(r+ − l−) 

Np− − Nl− + p−(r+ − p−) N
p−

= p−,

thus there exists M > 0 such that 
∥∥u+

n

∥∥
1,Hlog,0

≤ M for all n ∈ N and this completes the proof 
of the Claim.

The boundedness of {un}n∈N in W
1,Hlog
0 (Ω) is established by (5.4) and the previous Claim. 

Hence there is a subsequence {unk
}k∈N such that

unk
⇀ u in W

1,Hlog
0 (Ω).

Now taking v = unk
− u ∈ W

1,Hlog
0 (Ω) in (5.3), we know that

lim 
k→∞〈ϕ′+(unk

), unk
− u〉 = 0,

and from the weak convergence of {unk
}k∈N and Lemma 5.1 (v) (check Remark 5.3) we obtain

lim 
k→∞

∫
Ω 

f (x,u+
nk

)(unk
− u)dx = 0.

The last two limits together yield

lim 
k→∞〈A(unk

), unk
− u〉 = 0

and the (S+)-property of the operator A (see Theorem 4.4) implies that

unk
→ u in W

1,Hlog
0 (Ω). �

Now we have to check the mountain pass geometry.

Proposition 5.6. Let (H2) be satisfied and f fulfill (f1), (f2) and (f4). Then there exist constants 
C1,C2,C3 > 0 such that for all ε > 0

ϕ(u),ϕ±(u) ≥
{

C1a
−1
ε ‖u‖q++ε

1,Hlog,0
− C2 ‖u‖r−

1,Hlog,0
, if ‖u‖1,Hlog,0 ≤ min{1,C3},

C1 ‖u‖p−
1,Hlog,0

− C2 ‖u‖r+
1,Hlog,0

, if ‖u‖1,Hlog,0 ≥ max{1,C3},

where aε is the same one as in Lemma 3.1.
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Proof. We do the argument only for ϕ, as for ϕ± we can use �r(·)(±u±) ≤ �r(·)(u). Applying 

Lemma 5.1 (iii), the embedding of W
1,Hlog
0 (Ω) ↪→ Lr(·)(Ω) with constant CHlog from Proposi

tion 3.7 (iii) and Proposition 2.1 (iii), (iv), we have for any u ∈ W
1,Hlog
0 (Ω)

ϕ(u) ≥ 1 
q+

�1,Hlog,0 (u) − C�r(·)(u)

≥ 1 
q+

�1,Hlog,0 (u) − Cε max 
k∈{r+,r−}{C

k
Hlog

‖u‖k
1,Hlog,0

}.

Choosing C3 = 1/CHlog , the result follows from Proposition 3.4 (iii) and (iv) with

C1 = 1 
q+

and C2 =
{

CεC
r−
Hlog

for ‖u‖1,Hlog,0 ≤ C3,

CεC
r+
Hlog

for ‖u‖1,Hlog,0 > C3.
�

Corollary 5.7. Let (H2) be satisfied and f fulfill (f1), (f2) with q+ < r− and (f4). Then there exist 
δ > 0 such that

inf ‖u‖1,Hlog,0=δ
ϕ(u) > 0 and inf ‖u‖1,Hlog,0=δ

ϕ±(u) > 0.

Alternatively, there exists δ′ > 0 such that ϕ(u) > 0 for 0 < ‖u‖1,Hlog,0 < δ′.

Proposition 5.8. Let (H2) be satisfied and f fulfill (f1), (f2) and (f3). Let 0 �= u ∈ W
1,Hlog
0 (Ω), 

then ϕ(tu)
t→±∞ −−−−→ −∞. Furthermore, if u ≥ 0 a.e. in Ω, ϕ±(tu)

t→±∞ −−−−→ −∞.

Proof. As before, we only show the argument for ϕ. We can do this because if u ≥ 0 a.e. in Ω, 
ϕ±(tu) = ϕ(tu) for ±t > 0.

Fix any 0 �= u ∈ W
1,Hlog
0 (Ω) and let t, ε ≥ 1. First note that ‖u‖q+ < ∞ due to Proposition 3.7

(iii) and Lemma 5.1 (i). From (2.1) and Lemma 5.1 (iv) we obtain

ϕ(tu) ≤ |t |p+

p−
�p(·)(∇u) + |t |q+

q−
log(e + |t |)

∫
Ω 

μ(x) |∇u|q(x) dx

+ |t |q+

q−

∫
Ω 

μ(x) |∇u|q(x) log(e + |∇u|)dx

− ε |t |q+

q+

∫
Ω 

|u|q+ log(e + t |u|)dx + Cε|Ω|.

Note that ∫
{u≥1}

|u|q+ log(e + t |u|)dx ≥ log(e + t)

∫
{u≥1}

|u|q+ dx
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and again by (2.1)∫
{0<u<1}

|u|q+ 1/ |u|
1/ |u| log(e + t |u|)dx ≥ log(e + t)

∫
{0<u<1}

|u|q++1 dx .

Applying these two inequalities in the first inequality yields

ϕ(tu) ≤ |t |p+

p−
�p(·)(∇u) + |t |q+ log(e + |t |)

×
⎛⎜⎝ 1 

q−

∫
Ω 

μ(x) |∇u|q(x) dx−ε
1 
q+

⎡⎢⎣ ∫
{u≥1}

|u|q+ dx+
∫

{0<u<1}
|u|q++1 dx

⎤⎥⎦
⎞⎟⎠

+ |t |q+

q−

∫
Ω 

μ(x) |∇u|q(x) log(e + |∇u|)dx+Cε|Ω|.

The second term is negative for values of ε large enough. Setting such a value directly yields 

ϕ(tu)
t→±∞ −−−−→ −∞. �

Now we have all the required properties to apply the mountain pass theorem.

Theorem 5.9. Let (H2) be satisfied and f fulfill (f1), (f2), (f3), (f4) and (f5). Then there exist 

nontrivial weak solutions u0, v0 ∈ W
1,Hlog
0 (Ω) of problem (1.11) such that u0 ≥ 0 and v0 ≤ 0

a.e. in Ω.

Proof. Due to the combination of Propositions 5.7, 5.8 and 5.5, the assumptions of Theo
rem 2.19 are satisfied for the truncated energy functionals ϕ±. This yields the existence of 

u0, v0 ∈ W
1,Hlog
0 (Ω) such that ϕ′+(u0) = 0 = ϕ′−(v0) and

ϕ+(u0), ϕ−(v0) ≥ inf ‖u‖1,Hlog,0=δ
ϕ±(u) > 0 = ϕ+(0),

which proves that u0 �= 0 �= v0. Furthermore, testing ϕ′+(u0) = 0 with −u−
0 we obtain 

�1,Hlog,0
(
u−) = 0, which by Proposition 3.4 (i) means that −u−

0 = 0 a.e. in Ω, so u0 = u+
0 ≥ 0

a.e. in Ω. Analogously, v0 ≤ 0 a.e. in Ω. �
Alternatively, we could have used the following assumptions instead of (H2) and (f4).

(H2’) Ω ⊆ RN , with N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, p,q ∈ C+(Ω)

with p(x) ≤ q(x) ≤ q+ < p∗− for all x ∈ Ω, p satisfies a monotonicity condition, that is, 
there exists a vector l ∈ RN \ {0} such that for all x ∈ Ω the function

hx(t) = p(x + t l) with t ∈ Ix = {t ∈R : x + t l ∈ Ω}
is monotone, and 0 ≤ μ(·) ∈ L∞(Ω).
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(f4’)

lim 
s→0

F(x, s)

|s|p(x)
= 0 uniformly for a.a. x ∈ Ω.

This new assumption in (f4’) has a slightly different consequence than its counterpart earlier in 
this section.

Lemma 5.10. Let f : Ω ×R→ R.

(i) If f fulfills (f1) and (f4’), then f (x,0) = 0 for a.a. x ∈ Ω.
(ii) If f fulfills (f2) and (f4’), then for each ε > 0 there exists Cε > 0 such that

|F(x, t)| ≤ ε

p(x)
|t |p(x) + Cε |t |r(x) for a.a. x ∈ Ω.

Remark 5.11. Without the assumption (f4) one needs to prove a result like Lemma 5.10 (i), since 
this condition is necessary to ensure that ϕ± are differentiable among other important properties, 
see Remark 5.3.

In this case, all the propositions are identical except for the behavior close to zero, for which 
we provide the following proof.

Proposition 5.12. Let (H2’) be satisfied and f fulfill (f1), (f2) and (f4’). Then there exist constants 
C1,C2,C3 > 0 such that for all ε > 0

ϕ(u),ϕ±(u) ≥
{

C1a
−1
ε ‖u‖q++ε

1,Hlog,0
− C2 ‖u‖r−

1,Hlog,0
, if ‖u‖1,Hlog,0 ≤ min{1,C3},

C1 ‖u‖p−
1,Hlog,0

− C2 ‖u‖r+
1,Hlog,0

, if ‖u‖1,Hlog,0 ≥ max{1,C3},

where aε is the same as in Lemma 3.1.

Proof. As in Proposition 5.6 we only do the argument for ϕ for the same reasons. Using 
Lemma 5.10 (ii), Poincaré inequality for the modular in W 1,p(·)

0 (Ω) with constant Cp(·) from 

Proposition 2.3, the embedding of W
1,Hlog
0 (Ω) ↪→ Lr(·)(Ω) with constant CHlog from Proposi

tion 3.7 (iii) and Proposition 2.1 (iii), (iv), we obtain for any u ∈ W
1,Hlog
0 (Ω)

ϕ(u)

≥ 1 
p+

�p(·)(∇u) + 1 
q+

∫
Ω 

μ(x) |∇u|q(x) log(e + |∇u|)dx− λ 
p−

�p(·)(u) − Cλ�r(·)(u)

≥
(

1 
p+

− Cp(·)λ
p−

)
�p(·)(∇u) + 1 

q+

∫
Ω 

μ(x) |∇u|q(x) log(e + |∇u|)dx

− Cλ max {Ck
Hlog

‖u‖k
1,Hlog,0

}

k∈{r+,r−}
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≥ min

{
1 

p+
− Cp(·)λ

p−
,

1 
q+

}
�1,Hlog,0 (u) − Cλ max 

k∈{r+,r−}{C
k
Hlog

‖u‖k
1,Hlog,0

}.

If p+ = q+, any λ > 0 works, otherwise choose 0 < λ <
p−(q+−p+)
Cp(·)q+p+ . By Proposition 3.4 (iii) and 

(iv) the result follows with C3 = 1/CHlog ,

C1 = 1 
q+

and C2 =
{

CλC
r−
Hlog

for ‖u‖1,Hlog,0 ≤ C3,

CλC
r+
Hlog

for ‖u‖1,Hlog,0 > C3.
�

With a reasoning identical to Theorem 5.9 but using Proposition 5.12, we obtain the next 
result.

Theorem 5.13. Let (H2’) be satisfied and f fulfill (f1), (f2), (f3), (f4’) and (f5). Then there exist 

nontrivial weak solutions u0, v0 ∈ W
1,Hlog
0 (Ω) of problem (1.11) such that u0 ≥ 0 and v0 ≤ 0

a.e. in Ω.

6. Sign-changing solution

The aim of this section is to prove the existence of a sign-changing solution on top of the other 
two solutions from last section, which were one positive and one negative. We need to substitute 
(f3) with a stronger assumption and to restrict a bit more the assumptions on the functional space 
with respect to (H2’):

(H3) Ω ⊆ RN , with N ≥ 2, is a bounded domain with Lipschitz boundary ∂Ω, p,q ∈ C+(Ω)

with p(x) ≤ q(x) ≤ q+ < q+ + 1 < p∗− for all x ∈ Ω, p satisfies a monotonicity condition, 
that is, there exists a vector l ∈RN \ {0} such that for all x ∈ Ω the function

hx(t) = p(x + t l) with t ∈ Ix = {t ∈R : x + t l ∈ Ω}

is monotone, and 0 ≤ μ(·) ∈ L∞(Ω).

(f3’) The function t �→ f (x, t)/ |t |q+ is increasing in (−∞,0) and in (0,+∞) for a.a. x ∈ Ω.

Remark 6.1. A necessary condition for (H3) to be satisfied is that p+ + 1 ≤ p∗−. For the case of 

constant exponents, which is the least restrictive case, this is equivalent to −1+√
1+4N

2 ≤ p. This 
strong assumption is required for (f3’).

Similarly to the previous sections, we have some important consequences of these assump
tions on the right-hand side.

Lemma 6.2. Let f : Ω ×R →R satisfy the following assumptions.

(i) If f fulfills (f2) and (f3’), then q+ + 1 ≤ r−.
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(ii) If f fulfills (f3’) then for any ε > 0

lim 
s→±∞

F(x, s) 

|s|q++1−ε
= +∞ uniformly for a.a. x ∈ Ω.

In particular, (f3) is satisfied.

Remark 6.3. As in (H3) we assumed q+ + 1 < p∗−, we can always find at least one r ∈ C+(Ω)

such that q+ + 1 ≤ r− ≤ r+ < p∗−.

We achieve the existence of such sign-changing solution making use of the Nehari manifold 
technique. Our treatment is inspired by the recent work by Crespo-Blanco–Winkert [22], a more 
comprehensive explanation of this technique can be found in the book chapter by Szulkin–Weth 
[75]. The Nehari manifold associated to ϕ is the set

N =
{
u ∈ W

1,Hlog
0 (Ω) : 〈ϕ′(u),u〉 = 0, u �= 0

}
.

A significant property of this set is that all weak solutions of (1.11) (or critical points of ϕ) 
belong to this set, except for u = 0, which can be studied separately. An important remark is that, 
although the most used name in the literature is Nehari manifold, it does not have to be one in 
general. For our purposes this is not relevant, so we do not do any discussion in this direction. We 
are looking for sign-changing solutions, so in the center of our results we work with the variation

N0 =
{
u ∈ W

1,Hlog
0 (Ω) : ± u± ∈N

}
.

Note that in our case N0 is a subset of N , but this might not be true in general. Our treatment 
starts by establishing some structure on N which is needed for the work on N0. The following 
lemma is used in the proof and the main reason why we need (f3’) as it is instead of with exponent 
q+ − 1 (which would be much less restrictive).

Lemma 6.4. Let b > 0 and Q > 1, the mapping t �→ t1−εb 
Q(e+tb)

is decreasing on (0,∞) only for 
ε ≥ 1.

Proposition 6.5. Let (H3) be satisfied and f fulfill (f1), (f2), (f3’) and (f4’). Then for any 

u ∈ W
1,Hlog
0 (Ω) \ {0} there exists a unique tu > 0 such that tuu ∈ N . Furthermore, ϕ(tuu) > 0, 

d 
dt

ϕ(tu) > 0 for 0 < t < tu, d 
dt

ϕ(tu) = 0 for t = tu, d 
dt

ϕ(tu) < 0 for t > tu, and therefore 
ϕ(tu) < ϕ(tuu) for all 0 < t �= tu.

Proof. For any u ∈ W
1,Hlog
0 (Ω) \ {0} we define its associated fibering function θu : [0,∞) →

R as θu(t) = ϕ(tu). This function is C1 in (0,∞) and continuous in [0,∞) because it is the 
composition of such functions. Clearly θu(0) = 0 and from Propositions 5.12 and 5.8 we know 
that there exist δ,K > 0 with the properties

θu(t) > 0 for 0 < t < δ and θu(t) < 0 for t > K. (6.1)
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Then the extreme value theorem implies that the global maximum of θu is attained at some 
tu ∈ (0,K]. Furthermore, it is a critical point of θu and by the chain rule we know

0 = θ ′
u(tu) = 〈ϕ′(tuu),u〉,

which proves that tuu ∈N .
In order to see the uniqueness and the sign of the derivatives, observe that for t > 0 and due 

to (f3’), it holds

f (x, tu) 
tq+ |u|q+ increasing in t , so 

f (x, tu)u

tq+ increasing in t , for x ∈ Ω with u(x) > 0,

f (x, tu) 
tq+ |u|q+ decreasing in t , so 

f (x, tu)u

tq+ increasing in t , for x ∈ Ω with u(x) < 0.

Similarly to above, we know that tu ∈ N implies u �= 0 and θ ′
u(t) = 0. By multiplying this 

equation with 1/tq+ it follows∫
Ω 

(
1 

tq++1−p(x)
|∇u|p(x)

+ 1 
tq+−q(x)

μ(x) |∇u|q(x)

[
log(e + t |∇u|)

t
+ |∇u|

q(x)(e + t |∇u|)
]

−f (x, tu)u

tq+

)
dx = 0.

On the set {∇u �= 0}, the first term is strictly decreasing since p+ < q+ + 1, the second term is 
decreasing by Lemmas 3.1 and 6.4, and the third one is decreasing by the observation just above 
it. We know that u �= 0, so the whole left-hand side of the equation is strictly decreasing as a 
function of t , which means that there can be at most one value tu > 0 such that θ ′

u(tu) = 0, i.e. 
tuu ∈N . Furthermore, θ ′

u(t) cannot take value 0 anywhere else, so it has constant sign on (0, tu)

and (tu,∞), and they must be positive and negative respectively by (6.1). �
The advantage of working in the Nehari manifold instead of the whole space is that our func

tional, even when it was not coercive in the original space, it does have some coercivity-type 
property on the restricted space.

Proposition 6.6. Let (H3) be satisfied and f fulfill (f1), (f2), (f3’) and (f4’). Then the func
tional ϕ|N is sequentially coercive, in the sense that for any sequence {un}n∈N ⊆ N such that 

‖un‖1,Hlog,0
n→∞ −−−→ +∞ it follows that ϕ(un)

n→∞ −−−→ +∞.

Proof. Consider a sequence {un}n∈N with the property that ‖un‖1,Hlog,0
n→∞ −−−→ ∞. Let us define 

yn = un/‖un‖1,Hlog,0. Due to Proposition 3.7 (iii), we know that there exists a subsequence 

{ynk
}k∈N and y ∈ W

1,Hlog
0 (Ω) such that

ynk
⇀ y in W

1,Hlog
0 (Ω), ynk

→ y in Lr(·)(Ω) and pointwisely a.e. in Ω.
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Claim: y = 0
We proceed by contradiction, so assume that y �= 0. Let ε > 0 and without loss of generality 

let 
∥∥unk

∥∥
1,Hlog,0

≥ 1 for all k ∈ N . Proposition 3.6 (iii) and (iv) yield for all k ∈N

ϕ(unk
) ≤ 1 

p−
�1,Hlog,0

(
unk

)−
∫
Ω 

F(x,unk
)dx

≤ aε

p−
∥∥unk

∥∥q++ε

1,Hlog,0
−

∫
Ω 

F(x,unk
)dx

and dividing by 
∥∥unk

∥∥q++ε

1,Hlog,0
we obtain for all k ∈N

ϕ(unk
) ∥∥unk

∥∥q++ε

1,Hlog,0

≤ aε

p−
−

∫
Ω 

F(x,unk
) ∥∥unk

∥∥q++ε

1,Hlog,0

dx . (6.2)

On the other hand, by Lemma 6.2 (ii) we know

lim 
k→∞

F(x,unk
) ∥∥unk

∥∥q++ε

1,Hlog,0

= lim 
k→∞

F(x,unk
) ∣∣unk

∣∣q++ε

∣∣ynk

∣∣q++ε = ∞

for x ∈ Ω with y(x) �= 0. So by Lemma 5.1 (ii) and Fatou’s Lemma, where in the following 
Ω0 = {x ∈ Ω : y(x) = 0}∫

Ω 

F(x,unk
) ∥∥unk

∥∥q++ε

1,Hlog,0

dx =
∫

Ω\Ω0

F(x,unk
) ∥∥unk

∥∥q++ε

1,Hlog,0

dx+
∫
Ω0

F(x,unk
) ∥∥unk

∥∥q++ε

1,Hlog,0

dx

≥
∫

Ω\Ω0

F(x,unk
) ∥∥unk

∥∥q++ε

1,Hlog,0

dx− M|Ω| ∥∥unk

∥∥q++ε

1,Hlog,0

k→∞ −−−→ ∞.

Together with (6.2), this implies that ϕ(unk
) < 0 for k large enough, which is a contradiction to 

the fact that ϕ(un) > 0 for all n ∈N given by Proposition 6.5 and the Claim is proved.
Take any C > 1. By Proposition 6.5, as unk

∈ N for all k ∈ N , we know that ϕ(unk
) ≥

ϕ(Cynk
) for all k ∈ N . Also by using Proposition 3.6 (iii) one gets for all k ∈N

ϕ(unk
) ≥ ϕ(Cynk

) ≥ 1 
q+

�1,Hlog,0
(
Cynk

)−
∫
Ω 

F(x,Cynk
)dx

≥ 1 
q+

∥∥Cynk

∥∥p−
1,Hlog,0 −

∫
Ω 

F(x,Cynk
)dx = Cp−

q+
−

∫
Ω 

F(x,Cynk
)dx .

We also know that Cynk
⇀ 0, which together with the strong continuity of Lemma 5.1 (v) gives 

us a k0 ∈N such that for all k ≥ k0
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ϕ(unk
) ≥ Cp−

q+
− 1.

In the previous argument, C can be as big as desired and k0 depends on C, so we derived that 

ϕ(unk
)

k→∞ −−−→ +∞. The subsequence principle yields ϕ(un)
n→∞ −−−→ +∞. �

Minimizing over the Nehari manifold we always stay strictly positive. This is useful to ensure 
that we are not converging to zero along a minimizing sequence.

Proposition 6.7. Let (H3) be satisfied and f fulfill (f1), (f2), (f3’) and (f4’). Then

inf 
u∈N

ϕ(u) > 0 and inf 
u∈N0

ϕ(u) > 0.

Proof. From Proposition 6.5 and Corollary 5.7, for any u ∈ N we know that

ϕ(u) ≥ ϕ

(
δ

‖u‖1,Hlog,0
u

)
≥ inf ‖u‖1,Hlog,0=δ

ϕ(u) > 0,

which proves the first part. The second one follows from the first one since ϕ(u) = ϕ(u+) +
ϕ(−u−) and u+,−u− ∈N for u ∈ N0. �

We can now perform calculus of variations on N0 to obtain our candidate for a third solution.

Proposition 6.8. Let (H3) be satisfied and f fulfill (f1), (f2), (f3’) and (f4’). Then there exists 
w0 ∈ N0 such that ϕ(w0) = infu∈N0 ϕ(u).

Proof. We prove the result via the direct method of calculus of variations. Let {un}n∈N ⊆ N0
be a minimizing sequence, i.e., a sequence such that ϕ(un) ↘ infu∈N0 ϕ(u). Recall that, by 

Proposition 3.8, u+
n ,−u−

n ∈ W
1,Hlog
0 (Ω) for all n ∈ N . Then the sequences {ϕ(u+

n )}n∈N and 
{ϕ(−u−

n )}n∈N are bounded in R, since ϕ(un) = ϕ(u+
n )+ϕ(−u−

n ) for all n ∈ N and by Proposi
tion 6.5 we have that ϕ(u+

n ) > 0 and ϕ(−u−
n ) > 0 for all n ∈ N . Hence the coercivity condition 

of Proposition 6.6 yields the boundedness of {u+
n }n∈N and {−u−

n }n∈N in W
1,Hlog
0 (Ω). By Propo

sition 3.7 (iii), we obtain subsequences {u+
nk

}k∈N and {−u−
nk

}k∈N , and z1, z2 ∈ W
1,Hlog
0 (Ω) such 

that

u+
nk

⇀ z1 in W
1,Hlog
0 (Ω), u+

nk
→ z1 in Lr(·)(Ω) and a.e. in Ω,

− u−
nk

⇀ z2 in W
1,Hlog
0 (Ω), −u−

nk
→ z2 in Lr(·)(Ω) and a.e. in Ω,

with z1 ≥ 0, z2 ≤ 0 and z1z2 = 0.

(6.3)

Claim: z1 �= 0 �= z2
We only prove the assertion for z1, the other one is exactly the same. Arguing by contradiction, 

let z1 = 0. By assumption u+ ∈ N , so we have
nk
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0 = 〈ϕ′(u+
nk

), u+
nk

〉

= �1,Hlog,0
(
u+

nk

)+
∫
Ω 

∣∣∇u+
nk

∣∣
q(x)(e + ∣∣∇u+

nk

∣∣) ∣∣∇u+
nk

∣∣q(x)
dx−

∫
Ω 

f (x,u+
nk

)u+
nk

dx

≥ �1,Hlog,0
(
u+

nk

)−
∫
Ω 

f (x,u+
nk

)u+
nk

dx .

The weak convergence of (6.3) along with the strong continuity of Lemma 5.1 (v) yields 

�1,Hlog,0
(
u+

nk

) → 0, i.e., u+
nk

→ 0 in W
1,Hlog
0 (Ω) by Proposition 3.4 (v). However, as ϕ is con

tinuous and by Proposition 6.7

0 < inf 
u∈N

ϕ(u) ≤ ϕ(u+
nk

) −→ ϕ(0) = 0 as k → ∞.

This is a contradiction and finishes the proof of the Claim.
From the previous Claim and Proposition 6.5, we have t1, t2 > 0 such that t1z1, t2z2 ∈N . We 

define w0 = t1z1 + t2z2, which by (6.3) satisfies that w+
0 = t1z1 and −w−

0 = t2z2, thus w0 ∈N0. 
In order to see that this is the minimizer, we note that ϕ is sequentially weakly lower semicontin
uous. Indeed, the F term is even strongly continuous by Lemma 5.1 (v), the part with exponent 
p(·) is weakly lower semicontinuous because it is continuous and convex, and the part with 
exponent q(·) and logarithm is also weakly lower semicontinuous for the same reasons. If we 
combine Proposition 6.5 with the previous property, we get

inf 
u∈N0

ϕ(u) = lim 
k→∞ϕ(unk

) = lim 
k→∞ϕ(u+

nk
) + ϕ(−u−

nk
)

≥ lim inf
k→∞ 

ϕ(t1u
+
nk

) + ϕ(−t2u
−
nk

)

≥ ϕ(t1z1) + ϕ(t2z2)

= ϕ(w+
0 ) + ϕ(−w−

0 ) = ϕ(w0) ≥ inf 
u∈N0

ϕ(u). �
Our last step towards finding a sign-changing solution is to see that any minimizer like the 

one we obtained in the previous proposition is actually a critical point of ϕ.

Proposition 6.9. Let (H3) be satisfied and f fulfill (f1), (f2), (f3’) and (f4’). Let w0 ∈ N0 such 
that ϕ(w0) = infu∈N0 ϕ(u). Then w0 is a critical point of ϕ.

Proof. This is a proof by contradiction. Assume that ϕ′(w0) �= 0, one can find λ, δ0 > 0 such 
that ∥∥ϕ′(u)

∥∥∗ ≥ λ, for all u ∈ W
1,Hlog
0 (Ω) with ‖u − w0‖1,Hlog,0 < 3δ0.

On the other hand, let CHlog be the constant of the embedding W
1,Hlog
0 (Ω) ↪→ Lp−(Ω) given by 

Proposition 3.7 (i) and the usual embedding W 1,p−
0 (Ω) ↪→ Lp−(Ω). As w+

0 �= 0 �= w−
0 , for any 

v ∈ W
1,Hlog

(Ω) we know that
0
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‖w0 − v‖1,Hlog,0 ≥ C−1
Hlog

‖w0 − v‖p− ≥
{

C−1
Hlog

∥∥w−
0

∥∥
p− , if v− = 0,

C−1
Hlog

∥∥w+
0

∥∥
p− , if v+ = 0.

We can choose some value 0 < δ1 < min{C−1
Hlog

∥∥w−
0

∥∥
p− ,C−1

Hlog

∥∥w+
0

∥∥
p−}. As a consequence, 

for any v ∈ W
1,Hlog
0 (Ω) with ‖w0 − v‖1,Hlog,0 < δ1 we know that v+ �= 0 �= v−. For the rest of 

the proof we work with δ = min{δ0, δ1/2}.
Observe that the mapping (s, t) �→ sw+

0 − tw−
0 is a continuous mapping [0,∞)2 →

W
1,Hlog
0 (Ω). Hence, we can find some 0 < α < 1 such that for all s, t ≥ 0 with max{|s − 1| , 

|t − 1|} < α it holds ∥∥sw+
0 − tw−

0 − w0
∥∥

1,Hlog,0
< δ.

Let D = (1 − α,1 + α)2. Note also that for any s, t ≥ 0 with s �= 1 �= t , by Proposition 6.5 we 
know

ϕ(sw+
0 − tw−

0 ) = ϕ(sw+
0 ) + ϕ(−tw−

0 )

< ϕ(w+
0 ) + ϕ(−w−

0 ) = ϕ(w0) = inf 
u∈N0

ϕ(u).
(6.4)

In particular, this implies that

ζ = max 
(s,t)∈∂D

ϕ(sw+
0 − tw−

0 ) < ϕ(w0) = inf 
u∈N0

ϕ(u).

At this point we are in the position to apply the quantitative deformation lemma given in 
Lemma 2.20. With its notation, take

S = B(w0, δ), c = inf 
u∈N0

ϕ(u), ε = min

{
c − ζ

4 
,
λδ

8 

}
, δ be as defined above.

The assumptions are satisfied because S2δ = B(w0,3δ) and the choice of ε, so we know that 
there is a mapping η with the properties stated in the lemma. Because of the choice of ε we also 
know that

ϕ(sw+
0 − tw−

0 ) ≤ ζ + c − c < c −
(

c − ζ

2 

)
≤ c − 2ε (6.5)

for all (s, t) ∈ ∂D. Let us define h : [0,∞)2 → W
1,Hlog
0 (Ω) and H : (0,∞)2 → R2 by

h(s, t) = η(1, sw+
0 − tw−

0 )

H(s, t) =
(

1

s
〈ϕ′(h+(s, t)), h+(s, t)〉 , 1

t
〈ϕ′(−h−(s, t)),−h−(s, t)〉 

)
.

As η is continuous, so is h, and as ϕ is C1, H is also continuous. Because of Lemma 2.20 (i) and 
(6.5), for all (s, t) ∈ ∂D we know that h(s, t) = sw+ − tw− and
0 0

53 



R. Arora, Á. Crespo-Blanco and P. Winkert Journal of Differential Equations 433 (2025) 113247 
H(s, t) = ( 〈ϕ′(sw+
0 ),w+

0 〉 , 〈ϕ′(−tw−
0 ),−w−

0 〉 ) .

Furthermore, if we also take into consideration the information on the derivatives from Proposi
tion 6.5 we have the componentwise inequalities

H1(1 − α, t) > 0 > H1(1 + α, t),

H2(t,1 − α) > 0 > H2(t,1 + α) for all t ∈ [1 − α,1 + α],

where H = (H1,H2). With the information above, by the Poincaré-Miranda existence theorem 
given in Theorem 2.21 applied to d(s, t) = −H(1 + s,1 + t), we find (s0, t0) ∈ D such that 
H(s0, t0) = 0, or equivalently

〈ϕ′(h+(s0, t0)), h
+(s0, t0)〉 = 0 = 〈ϕ′(−h−(s0, t0)),−h−(s0, t0)〉.

From Lemma 2.20 (iv) and the choice of α, we also know that

‖h(s0, t0) − w0‖1,Hlog,0 ≤ 2δ ≤ δ1,

which by the choice of δ1 gives us

h+(s0, t0) �= 0 �= −h−(s0, t0).

Altogether, this means that h(s0, t0) ∈ N0. However, by Lemma 2.20 (ii), the choice of α and 
(6.4), we also know that ϕ(h(s0, t0)) ≤ c − ε, which is a contradiction and this finishes the 
proof. �

The combination of Propositions 6.8 and 6.9, Lemma 6.2 (ii) and Theorem 5.13 yields the 
following results.

Theorem 6.10. Let (H3) be satisfied and f fulfill (f1), (f2), (f3’) and (f4’). Then there exists a 

nontrivial weak solution w0 ∈ W
1,Hlog
0 (Ω) of problem (1.11) with changing sign.

Theorem 6.11. Let (H3) be satisfied and f fulfill (f1), (f2), (f3’), (f4’) and (f5). Then there exist 

nontrivial weak solutions u0, v0,w0 ∈ W
1,Hlog
0 (Ω) of problem (1.11) such that u0 ≥ 0, v0 ≤ 0

and w0 has changing sign.

7. Nodal domains

In this last section, we provide more information on the sign-changing solution found in 
Section 6. In particular we will determine the number of nodal domains, that is, the number 
of maximal regions where it does not change sign. The usual definition of nodal domains for 
u ∈ C(Ω,R) is the connected components of Ω \ Z, where the set Z = {x ∈ Ω : u(x) = 0} is 
called the nodal set of u. In our case, we have no information on the continuity of the solutions, 
so this definition is not meaningful for us. A similar situation was already noted in a previous 
work by Crespo-Blanco–Winkert [22], where the following definition was proposed.
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Let u ∈ W
1,Hlog
0 (Ω) and A be a Borelian subset of Ω with |A| > 0. We say that A is a nodal 

domain of u if

(i) u ≥ 0 a.e. on A or u ≤ 0 a.e. on A;

(ii) 0 �= u1A ∈ W
1,Hlog
0 (Ω);

(iii) A is minimal w.r.t. (i) and (ii), i.e., if B ⊆ A with B being a Borelian subset of Ω, |B| > 0
and B satisfies (i) and (ii), then |A \ B| = 0.

For the purpose of determining the number of nodal domains, we need one last assumption 
on our right-hand side.

(f6) f (x, t)t − q+
(

1 + κ
q−

)
F(x, t) ≥ 0 for all t ∈R and for a.a. x ∈ Ω.

Proposition 7.1. Let (H3) be satisfied and f fulfill (f1), (f2), (f3’), (f4’) and (f6). Then, any 
minimizer of ϕ|N0

has exactly two nodal domains.

Proof. Let w0 be such that ϕ(w0) = infu∈N0 ϕ(u). The sets Ωw0>0 = {x ∈ Ω : w0(x) > 0} and 
Ωw0<0 = {x ∈ Ω : w0(x) < 0} are determined up to a zero measure set (for any choice of a 
representative of the class w0 they may differ, but at most in a zero measure set), which is no 
problem for the definition above. Furthermore, by Proposition 3.8 and w+

0 = w01Ωw0>0 , −w−
0 =

w01Ωw0<0 , conditions (i) and (ii) hold for these sets. So it is only left to see their minimality.
We proceed by contradiction. Without loss of generality, let B1,B2 be Borelian subsets of Ω

with the following properties: disjoint sets with Ωw0<0 = B1∪̇B2, both have positive measure 
and B1 fulfills (i) and (ii) in the definition above. This implies that for B2 conditions (i) and (ii)

hold too, since w01B2 = w01Ωw0<0 − w01B1 ∈ W
1,Hlog
0 (Ω).

Let u = 1Ωw0>0w0 + 1B1w0 and v = 1B2w0, hence u+ = 1Ωw0>0w0 and −u− = 1B1w0. By 
Proposition 6.9 we know that ϕ′(w0) = 0 and as the supports of u+,−u− and v are disjoint, we 
get

0 = 〈ϕ′(w0), u
+〉 = 〈ϕ′(u+), u+〉,

that is, u+ ∈N . With a similar argument −u− ∈N , so u ∈N0; and also 〈ϕ′(v), v〉 = 0.
Altogether, by these properties, condition (f6) and Lemma 5.4, we get

inf 
w∈N0

ϕ(w) = ϕ(w0) = ϕ(u) + ϕ(v) − 1 

q+
(

1 + κ
q−

) 〈ϕ′(v), v〉

≥ ϕ(u) +
⎡⎣ 1 

p+
− 1 

q+
(

1 + κ
q−

)
⎤⎦�p(·)(∇v)

+
∫ ⎡⎣ 1 

q+
(

1 + κ
)f (x, v)v − F(x, v)

⎤⎦dx
Ω q−
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+ 1 
q+

∫
Ω 

μ(x) |∇v|q(x) log(e + |∇v|)dx

− 1 

q+
(

1 + κ
q−

) ∫
Ω 

μ(x) |∇v|q(x)

[
log(e + |∇v|) + |∇v|

q(x)(e + |∇v|)
]

dx

≥ ϕ(u) +
⎡⎣ 1 

p+
− 1 

q+
(

1 + κ
q−

)
⎤⎦�p(·)(∇v)

≥ inf 
w∈N0

ϕ(w) +
⎡⎣ 1 

p+
− 1 

q+
(

1 + κ
q−

)
⎤⎦�p(·)(∇v).

Since p+ ≤ q+ and v �= 0, we get the desired contradiction. �
Combining Theorems 6.10 and 6.11 with Proposition 7.1, we obtain the final existence results 

of this work.

Theorem 7.2. Let (H3) be satisfied and f fulfill (f1), (f2), (f3’), (f4’) and (f6). Then there exists a 

nontrivial weak solution w0 ∈ W
1,Hlog
0 (Ω) of problem (1.11) with changing sign and two nodal 

domains.

Theorem 7.3. Let (H3) be satisfied and f fulfill (f1), (f2), (f3’), (f4’), (f5) and (f6). Then there 

exist nontrivial weak solutions u0, v0,w0 ∈ W
1,Hlog
0 (Ω) of problem (1.11) such that u0 ≥ 0, v0 ≤

0 and w0 has changing sign with two nodal domains.

Let us finish this work with some examples of right-hand side functions that would fit in our 
assumptions.

Example 7.4. For simplicity, assume not only (H3), but also q+κ/q− < 1, which implies q+(1 +
κ/q−) < q+ + 1 < p∗−.

(i) Let 0 < ε < 1 − q+κ/q− and take

f (x, t) = |t |q+
(

1+ κ
q−

)
+ε−2

t.

This function satisfies (f1), (f2), (f3’), (f4’), (f5) and (f6). For (f2) take r = q+(1 + κ/q−)+ ε

and for (f5) take l = l̃ = q+(1 + κ/q−).
(ii) Let l, l̃,m ∈ C+(Ω) such that q+ + 1 ≤ min{m−, l−, l̃−}, max{l+, l̃+} < p∗− and

max{l+, l̃+}
p−

− min{l−, l̃−}
N

< 1.

Then we can take
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f (x, t) =

⎧⎪⎨⎪⎩
|t |̃l(x)−2t[1 + log(−t)], if t ≤ −1,

|t |m(x)−2t, if − 1 < t < 1,

|t |l(x)−2t[1 + log(t)], if 1 ≤ t,

which also satisfies (f1), (f2), (f3’), (f4’), (f5) and (f6). For (f2) take r(x) = max{l(x), l̃(x)}+
ε, where 0 < ε < p∗− − max{l+, l̃+} and is also small enough so that

r+
p−

− min{l−, l̃−}
N

< 1.

For (f5) take l and ̃l to be the same ones as here. This inequality is why we need the com
patibility assumption on max{l+, l̃+} and min{l−, l̃−}. In particular, when l = l̃ and they are 
constant functions, this condition is exactly l < p∗−, hence redundant in this case.
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