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Abstract

In this paper we study quasilinear elliptic equations driven by the so-called double phase operator and 
with a nonlinear boundary condition. Due to the lack of regularity, we prove the existence of multiple 
solutions by applying the Nehari manifold method along with truncation and comparison techniques and 
critical point theory. In addition, we can also determine the sign of the solutions (one positive, one negative, 
one nodal). Moreover, as a result of independent interest, we prove for a general class of such problems the 
boundedness of weak solutions.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Given a bounded domain � ⊆RN , N ≥ 2, with Lipschitz boundary ∂�, we study the follow-
ing double phase problem with nonlinear boundary condition
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−div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
= f (x,u) − |u|p−2u − μ(x)|u|q−2u in �,(

|∇u|p−2∇u + μ(x)|∇u|q−2∇u
)

· ν = g(x,u) on ∂�,

(1.1)

where ν(x) denotes the outer unit normal of � at x ∈ ∂�, 1 < p < q < N , μ ∈ L∞(�) such that 
μ(x) ≥ 0 for almost all (a. a.) x ∈ � and f : � × R → R, g : ∂� × R → R are Carathéodory 
functions which have (p − 1)-superlinear growth near ±∞.

The differential operator in (1.1) is the so-called double phase operator and is given by

div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
for u ∈ W 1,H(�) (1.2)

with an appropriate Musielak-Orlicz Sobolev space W 1,H(�), see its definition in Section 2. 
Special cases of (1.2), studied extensively in the literature, occur when inf� μ > 0 (the weighted 
(q, p)-Laplacian) or when μ ≡ 0 (the p-Laplace differential operator). The operator (1.2) is 
related to the energy functional

u 
→
∫
�

(|∇u|p + μ(x)|∇u|q)dx, (1.3)

where the integrand H(x, ξ) = |ξ |p + μ(x)|ξ |q for all (x, ξ) ∈ � ×RN has unbalanced growth, 
that is,

|ξ |p ≤ H(x, ξ) ≤ b
(
1 + |ξ |q) for a. a. x ∈ � and for all ξ ∈ RN,

with b > 0. The integral functional (1.3) is characterized by the fact that the energy density 
changes its ellipticity and growth properties according to the point in the domain. More precisely, 
its behavior depends on the values of the weight function μ(·). Indeed, on the set {x ∈ � : μ(x) =
0} it will be controlled by the gradient of order p and in the case {x ∈ � : μ(x) �= 0} it is the 
gradient of order q . This is the reason why it is called double phase.

Originally, Zhikov [49] was the first who studied so-called double phase functionals of 
the form (1.3) in order to describe models of strongly anisotropic materials, see also Zhikov 
[50], [51] and the monograph of Zhikov-Kozlov-Oleinik [53]. Functionals like (1.3) have 
been studied by several authors with respect to regularity and nonstandard growth. We refer 
to the works of Baroni-Colombo-Mingione [4], [5], [6], Baroni-Kuusi-Mingione [7], Cupini-
Marcellini-Mascolo [16], Colombo-Mingione [14], [15], Marcellini [27], [28], Ok [33], [34], 
Ragusa-Tachikawa [43] and the references therein. We also mention the recent works of Beck-
Mingione [8], [9] concerning nonuniformly elliptic variational problems.

In general, double phase differential operators and corresponding energy functionals given in 
(1.2) and (1.3), respectively, appear in several physical applications. For example, in the elasticity 
theory, the modulating coefficient μ(·) dictates the geometry of composites made of two differ-
ent materials with distinct power hardening exponents q and p, see Zhikov [52]. We also refer to 
other applications which can be found in the works of Bahrouni-Rădulescu-Repovš [2] on tran-
sonic flows, Benci-D’Avenia-Fortunato-Pisani [10] on quantum physics and Cherfils-Il′yasov 
[11] on reaction diffusion systems.

The aim of our paper is to prove multiplicity results for problems of the form (1.1) where 
the nonlinearities are supposed to be (p − 1)-superlinear at ±∞. Due to the lack of regularity 
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for problems (1.1), several tools, which are usually applied in the theory of multiplicity results 
based on the regularity results of Lieberman [24] and Pucci-Serrin [41], cannot be used in our 
treatment. Instead we will make use of the so-called Nehari manifold which was first introduced 
by Nehari in the works [31], [32]. This method developed into a very powerful tool in order 
to find solutions (especially, sign-changing solutions) via critical point theory. The idea in this 
method is the following: Let X be a real Banach space and let J ∈ C1(X, R) be a functional. If 
u �= 0 is a critical point of J , then u belongs to the set

N =
{
u ∈ X \ {0} : 〈J ′(u),u〉 = 0

}
,

where 〈·, ·〉 is the duality paring between X and its dual space X∗. Therefore, N is an appropri-
ate constraint for finding nontrivial critical points of J . Although N may not be a manifold in 
general, it is called Nehari manifold. So, we are looking for nontrivial minimizers of the func-
tional J in a subset of the whole space which contains the nontrivial critical points of J , namely 
N . We refer to the book chapter of Szulkin-Weth [44] which describes the method very well. 
Although there is no regularity theory for double phase problems, we are also going to prove a 
boundedness result for weak solutions of (1.1) by using Moser’s iteration which can be seen as a 
starting point in order to obtain the smoothness of the solutions.

A pioneer work for multiplicity results with superlinear nonlinearities was published by Wang 
[45] for semilinear Dirichlet problems driven by the Laplacian. Although double phase prob-
lems have been known for a while, existence results have only been obtained by few authors. 
Perera-Squassina [40] showed the existence of a solution of problem (1.1) with Dirichlet bound-
ary condition by applying Morse theory where they used a cohomological local splitting to get 
an estimate of the critical groups at zero. The corresponding eigenvalue problem of the double 
phase operator with Dirichlet boundary condition has been studied by Colasuonno-Squassina 
[13] who proved the existence and properties of related variational eigenvalues. By applying 
variational methods, Liu-Dai [26] treated double phase problems and proved existence and mul-
tiplicity results, as well as sign-changing solutions. A similar treatment has been recently done 
by Gasiński-Papageorgiou [17, Proposition 3.4] via the Nehari manifold method for locally Lip-
schitz continuous right-hand sides. Furthermore, we refer to a recent work of the authors [21] in 
which the existence of at least one solution for Dirichlet double phase problems with convection 
is shown by applying the surjectivity result for pseudomonotone operators. This can be realized 
by an easy condition on the convection term, in addition to the usual growth condition. For mul-
tiple constant sign solutions we refer to another work of the authors in [20]. To the best of our 
knowledge this is the first work dealing with a double phase phenomenon along with a nonlinear 
boundary condition.

Finally, we mention recent papers which are very close to our topic dealing with certain types 
of double phase problems. We refer to Bahrouni-Rădulescu-Winkert [3], Cencelj-Rădulescu-
Repovš [12], Marino-Winkert [29], Papageorgiou-Rădulescu-Repovš [35], [36], [37], Rădulescu 
[42], Zhang-Rădulescu [48], Zeng-Gasiński-Winkert-Bai [46], [47] and the references therein.

The paper is organized as follows. In Section 2 we recall the definition of the Musielak-Orlicz 
space LH(�) and its corresponding Musielak-Orlicz Sobolev space W 1,H(�) and we give some 
embedding results dealing with boundary Lebesgue spaces following the work of Colasuonno-
Squassina [13]. In Section 3 we present a boundedness result for a more general class of problems 
than (1.1) following the treatment of Marino-Winkert [30], see Theorem 3.1. In Section 4 we 
state the full assumptions on the data of problem (1.1), give the definition of the weak solution 
and state and prove our existence result concerning constant sign solutions, see Proposition 4.5. 
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Finally, in Section 5, we prove the existence of a sign-changing solution by applying the Nehari 
manifold method described above and state our full multiplicity result, see Theorem 5.9.

2. Preliminaries

In this section we give some definitions and results which will be needed later. We denote by 
Lr(�) and Lr(�; RN) the usual Lebesgue spaces endowed with the norm ‖ · ‖r for 1 ≤ r < ∞
and by W 1,r (�) and W 1,r

0 (�) we identify the corresponding Sobolev spaces equipped with the 
norms ‖ · ‖1,r and ‖ · ‖1,r,0, respectively, for 1 < r < ∞. From the Sobolev embedding theorem 
it is clear that we have the embedding

W 1,r (�) → Lr̂(�),

which is compact for any r̂ < r∗ and continuous for r̂ = r∗, where r∗ is the critical exponent of 
r defined by

r∗ =
{

Nr
N−r

if r < N,

any � ∈ (r,∞) if r ≥ N.
(2.1)

Furthermore, we consider the (N − 1)-dimensional Hausdorff (surface) measure σ on the 
boundary ∂� of �. Based on this, we can introduce in the usual way the boundary Lebesgue 
space Lr(∂�) with norm ‖ · ‖r,∂�. It is well-known that there exists a unique continuous linear 
operator γ : W 1,r (�) → Lr̃(∂�) with r̃ ≤ r∗, called trace map, such that

γ (u) = u
∣∣
∂�

for all u ∈ W 1,p(�) ∩ C0(�).

Here, r∗ is the critical exponent of r on the boundary given by

r∗ =
{

(N−1)r
N−r

if r < N,

any � ∈ (r,∞) if r ≥ N.
(2.2)

By the trace embedding theorem we know that γ is compact for any r̃ < r∗. So, we understand 
all restrictions of Sobolev functions to ∂� in the sense of traces. For simplification we will avoid 
the notation of the trace operator in this paper.

In the entire paper we assume that

1 < p < q < N,
Nq

N + q − 1
< p, μ ∈ L∞(�), μ(x) ≥ 0 for a. a. x ∈ �. (2.3)

Remark 2.1. Note that the second inequality in (2.3) is equivalent to the inequality q < p∗ and 
so q < p∗ is true as well. Hence, we have the compactness of W 1,H(�) into suitable Lebesgue 
spaces defined on the domain and also on the boundary, see Proposition 2.2 below. We point 
out that (2.3) is different from the usual conditions when dealing with Dirichlet double phase 
problems, see, for example, [20] and [21] of the authors. Indeed, in these papers it is supposed 
that
1040
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1 < p < q < N,
q

p
< 1 + 1

N
, 0 ≤ μ(·) ∈ C0,1(�). (2.4)

Condition (2.4) was used for the first time by Baroni-Colombo-Mingione [4, see (1.8)] in order 
to obtain regularity results of local minimizers for double phase integrals, see also the related 
works [5] and [6] of the same authors and Colombo-Mingione [14], [15]. The meaning of (2.4) is 
twofold. On the one hand, from (2.4), we know that smooth functions are dense in the Musielak-
Orlicz Sobolev space W 1,H(�), see, for example, Colasuonno-Squassina [13, Proposition 6.5]
or Harjulehto-Hästö [22, Theorem 6.4.7 and Section 7.2]. On the other hand, (2.4) is required 
to have an equivalent norm on the space W 1,H

0 (�), see Colasuonno-Squassina [13, Proposition 
2.18(iv)]. Since we do not need both arguments in our work, we suppose the conditions stated in 
(2.3). As far as we know there is no relationship between

Nq

N + q − 1
< p and

q

p
< 1 + 1

N
,

only that both inequalities imply that q < p∗.

Now, let H : � × [0, ∞) → [0, ∞) be the function

(x, t) 
→ tp + μ(x)tq .

We set

ρH(u) :=
∫
�

H(x, |u|) dx =
∫
�

(|u|p + μ(x)|u|q)dx. (2.5)

Based on the definition of the modular function ρH we are now in the position to introduce the 
so-called Musielak-Orlicz space LH(�) which is defined by

LH(�) =
{
u

∣∣∣ u : � →R is measurable and ρH(u) < +∞
}

equipped with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : ρH

(u

τ

)
≤ 1

}
.

From Colasuonno-Squassina [13, Proposition 2.14] we know that the space LH(�) is uniformly 
convex and so reflexive. Furthermore, we introduce the seminormed space

Lq
μ(�) =

⎧⎨
⎩u

∣∣∣ u : � →R is measurable and
∫
�

μ(x)|u|qdx < +∞
⎫⎬
⎭

endowed with the seminorm
1041
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‖u‖q,μ =
⎛
⎝∫

�

μ(x)|u|qdx

⎞
⎠

1
q

.

In the same way we define the space Lq
μ(�; RN). By W 1,H(�) we denote the corresponding 

Musielak-Orlicz Sobolev space which is defined by

W 1,H(�) =
{
u ∈ LH(�) : |∇u| ∈ LH(�)

}
equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. Since W 1,H(�) is uniformly convex, see again Colasuonno-
Squassina [13, Proposition 2.14], we know that it is a reflexive Banach space.

We have the following embedding results for the spaces LH(�) and W 1,H(�).

Proposition 2.2. Let (2.3) be satisfied and let

p∗ := Np

N − p
and p∗ := (N − 1)p

N − p
(2.6)

be the critical exponents to p, see (2.1) and (2.2) for r = p. Then the following embeddings hold:

(i) LH(�) ↪→ Lr(�) and W 1,H(�) ↪→ W 1,r (�) are continuous for all r ∈ [1, p];
(ii) W 1,H(�) ↪→ Lr(�) is continuous for all r ∈ [1, p∗];

(iii) W 1,H(�) ↪→ Lr(�) is compact for all r ∈ [1, p∗);
(iv) W 1,H(�) ↪→ Lr(∂�) is continuous for all r ∈ [1, p∗];
(v) W 1,H(�) ↪→ Lr(∂�) is compact for all r ∈ [1, p∗);

(vi) LH(�) ↪→ L
q
μ(�) is continuous;

(vii) Lq(�) ↪→ LH(�) is continuous.

For the continuity of the embedding LH(�) ↪→ Lr(�) we refer to Colasuonno-Squassina [13, 
Propositions 2.3 and 2.15] while (ii)–(v) follow from the classical Sobolev embedding theorem 
and the trace embedding result. The statements (vi) and (vii) can be also found in Colasuonno-
Squassina [13, Propositions 2.15 (iv) and (v)].

The norm ‖ · ‖H and the modular function ρH are related as follows, see Liu-Dai [26, Propo-
sition 2.1].

Proposition 2.3. Let (2.3) be satisfied and let ρH be defined by (2.5).

(i) If y �= 0, then ‖y‖H = λ if and only if ρH(
y
λ
) = 1;

(ii) ‖y‖H < 1 (resp. > 1, = 1) if and only if ρH(y) < 1 (resp. > 1, = 1);
(iii) If ‖y‖H < 1, then ‖y‖q

H � ρH(y) � ‖y‖p

H;
(iv) If ‖y‖H > 1, then ‖y‖p

H � ρH(y) � ‖y‖q

H;
(v) ‖y‖H → 0 if and only if ρH(y) → 0;
1042
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(vi) ‖y‖H → +∞ if and only if ρH(y) → +∞.

For u ∈ W 1,H(�) let

ρ̂H(u) =
∫
�

(|∇u|p + μ(x)|∇u|q) dx +
∫
�

(|u|p + μ(x)|u|q) dx. (2.7)

Following the proof of Liu-Dai [26, Proposition 2.1] we have a similar result for the norm 
‖ · ‖1,H and the modular function ρ̂H.

Proposition 2.4. Let (2.3) be satisfied and let ρ̂H be defined by (2.7).

(i) If y �= 0, then ‖y‖1,H = λ if and only if ρ̂H(
y
λ
) = 1;

(ii) ‖y‖1,H < 1 (resp. > 1, = 1) if and only if ρ̂H(y) < 1 (resp. > 1, = 1);
(iii) If ‖y‖1,H < 1, then ‖y‖q

1,H � ρ̂H(y) � ‖y‖p

1,H;

(iv) If ‖y‖1,H > 1, then ‖y‖p

1,H � ρ̂H(y) � ‖y‖q

1,H;
(v) ‖y‖1,H → 0 if and only if ρ̂H(y) → 0;

(vi) ‖y‖1,H → +∞ if and only if ρ̂H(y) → +∞.

We denote by 〈·, ·〉H the duality pairing between W 1,H(�) and its dual space W 1,H(�)∗ and 
consider the nonlinear operator A : W 1,H(�) → W 1,H(�)∗ which is defined by

〈A(u),ϕ〉H :=
∫
�

(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
· ∇ϕ dx (2.8)

for all u, ϕ ∈ W 1,H(�). The properties of the operator A : W 1,H(�) → W 1,H(�)∗ are stated in 
the following proposition, see Liu-Dai [26].

Proposition 2.5. The operator A defined by (2.8) is bounded (that is, it maps bounded sets to 
bounded sets), continuous, strictly monotone (hence maximal monotone) and it is of type (S)+, 
that is,

un ⇀ u in W 1,H(�) and lim sup
n→∞

〈A(un),un − u〉 ≤ 0,

imply un → u in W 1,H(�).

For s ∈ R, we set s± = max{±s, 0} and for u ∈ W 1,H(�) we define u±(·) = u(·)±. We have

u± ∈ W 1,H(�), |u| = u+ + u−, u = u+ − u−.

If X is a Banach space and ϕ ∈ C1(X, R), then we define

Kϕ = {
u ∈ X : ϕ′(u) = 0

}
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being the critical set of ϕ. Furthermore, we say that ϕ satisfies the Cerami condition, if every 
sequence {un}n≥1 ⊆ X such that {ϕ(un)}n≥1 ⊆ R is bounded and such that

(1 + ‖un‖X)ϕ′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence.
This compactness-type condition on the functional ϕ leads to a deformation theorem from 

which one can derive the minimax theory for the critical values of ϕ. A central result of this 
theory is the so-called mountain pass theorem due to Ambrosetti-Rabinowitz [1] which we recall 
next.

Theorem 2.6. Let ϕ ∈ C1(X) be a functional satisfying the C-condition and let u1, u2 ∈ X, ‖u2 −
u1‖X > ρ > 0,

max{ϕ(u1), ϕ(u2)} < inf{ϕ(u) : ‖u − u1‖X = ρ} =: mρ

and c = infγ∈� max0≤t≤1 ϕ(γ (t)) with � = {γ ∈ C ([0,1],X) : γ (0) = u1, γ (1) = u2}. Then 
c ≥ mρ with c being a critical value of ϕ.

3. A priori estimates for double phase problems

In this section we are going to prove the boundedness of weak solutions for double phase prob-
lems stated in a more general form than (1.1). For example, we allow in this section a convection 
term, that is, the dependence on the right-hand side on the gradient of the solution. We point out 
that such a result is of independent interest and can be applied for several model problems of this 
type. We consider the problem

−div
(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
= h1(x,u,∇u) in �,(

|∇u|p−2∇u + μ(x)|∇u|q−2∇u
)

· ν = h2(x,u) on ∂�,

(3.1)

where we assume the following hypotheses on the data:

H(h1, h2) h1 : � ×R ×RN → R and h2 : ∂� ×R → R are Carathéodory functions satisfying

|h1(x, s, ξ)| ≤ a1|ξ |p
r1−1
r1 + a2|s|r1−1 + a3 for a. a. x ∈ �,

|h2(x, s)| ≤ a4|s|r2−1 + a5 for a. a. x ∈ ∂�,

for all s ∈ R and for all ξ ∈ RN with positive constants ai , i ∈ {1, . . . , 5}, and q <

r1 ≤ p∗ as well as q < r2 ≤ p∗, where p∗ and p∗ are the critical exponents of p stated 
in (2.6).

We call u ∈ W 1,H(�) a weak solution of problem (3.1) if∫ (
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
· ∇v dx =

∫
h1(x,u,∇u)v dx +

∫
h2(x,u)v dσ (3.2)
� � ∂�
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is satisfied for all test functions v ∈ W 1,H(�).
Exploiting the recent result of Marino-Winkert [30] we can prove the following result about 

the boundedness of weak solutions of (3.2).

Theorem 3.1. Let hypotheses (2.3) and H(h1, h2) be satisfied and let u ∈ W 1,H(�) be a weak 
solution of problem (3.1). Then, u ∈ L∞(�).

Proof. It is known that u = u+ − u−. Therefore, we can assume, without any loss of generality, 
that u ≥ 0.

Let h > 0 and define uh := min{u, h}. Choosing v = uu
κp
h with κ > 0 as test function in (3.2)

we have ∫
�

|∇u|pu
κp
h dx + κp

∫
�

|∇u|p−2∇u · ∇uhu
κp−1
h udx

+
∫
�

μ(x)|∇u|qu
κp
h dx + κp

∫
�

μ(x)|∇u|q−2∇u · ∇uhu
κp−1
h udx

=
∫
�

h1(x,u,∇u)uu
κp
h dx +

∫
∂�

h2(x,u)uu
κp
h dσ.

(3.3)

Obviously, the third and the fourth integral on the left-hand side of (3.3) are nonnegative. This 
gives ∫

�

|∇u|pu
κp
h dx + κp

∫
�

|∇u|p−2∇u · ∇uhu
κp−1
h udx

≤
∫
�

h2(x,u,∇u)uu
κp
h dx + uu

κp
h +

∫
∂�

h2(x,u)uu
κp
h dσ.

Since W 1,H(�) ⊆ W 1,p(�) we can proceed exactly as in the proof of Theorem 3.1 of Marino-
Winkert [30, starting with (3.2)] to obtain that u ∈ L∞(�). �
4. Constant sign solutions

In this section we are going to prove the existence of constant sign solutions of problem (1.1). 
First, we state our assumptions.

(H) f : � × R → R and g : ∂� × R → R are Carathéodory functions such that the following 
hold:

(i) There exist constants c1, c2 > 0 such that

|f (x, s)| ≤ c1

(
1 + |s|r1−1

)
for a. a. x ∈ �,

|g(x, s)| ≤ c2

(
1 + |s|r2−1

)
for a. a. x ∈ ∂�,
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for all s ∈ R, where q < r1 < p∗ and q < r2 < p∗ with the critical exponents p∗ and 
p∗ given in (2.1) and (2.2), respectively;

(ii)

lim
s→±∞

f (x, s)

|s|q−2s
= +∞ uniformly for a. a. x ∈ �;

lim
s→±∞

g(x, s)

|s|q−2s
= +∞ uniformly for a. a. x ∈ ∂�;

(iii)
lim
s→0

f (x, s)

|s|p−2s
= 0 uniformly for a. a. x ∈ �;

lim
s→0

g(x, s)

|s|p−2s
= 0 uniformly for a. a. x ∈ ∂�;

(iv) The functions

s 
→ f (x, s)s − qF(x, s) and s 
→ g(x, s)s − qG(x, s)

are nondecreasing on R+ and nonincreasing on R− for a. a. x ∈ � and for a. a. x ∈ ∂�, 
respectively, where

F(x, s) =
s∫

0

f (x, t) dt and G(x, s) =
s∫

0

g(x, t) dt;

(v) The functions

f (x, s)

|s|q−1 and
g(x, s)

|s|q−1

are strictly increasing on (−∞, 0) and on (0, +∞) for a. a. x ∈ � and for a. a. x ∈ ∂�, 
respectively.

Note that the continuity of f (x, ·) and g(x, ·) along with (H)(iii) implies that

f (x,0) = 0 for a. a. x ∈ � and g(x,0) = 0 for a. a. x ∈ ∂�.

We say that u ∈ W 1,H(�) is a weak solution of problem (1.1) if it satisfies

∫
�

(
|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
· ∇v dx +

∫
�

(
|u|p−2u + μ(x)|u|q−2u

)
v dx

=
∫
�

f (x,u)v dx +
∫
∂�

g(x,u)v dσ
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for all test functions v ∈ W 1,H(�).
The energy functional ϕ : W 1,H(�) → R corresponding to problem (1.1) is defined by

ϕ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q,μ + 1

p
‖u‖p

p + 1

q
‖u‖q

q,μ −
∫
�

F(x,u)dx −
∫
∂�

G(x,u)dσ

for all u ∈ W 1,H(�). Note that ϕ ∈ C1(W 1,H(�)), see Perera-Squassina [40, Proposition 2.1], 
and that any u ∈ Kϕ is a solution of problem (1.1).

First we want to produce two constant sign solutions. To this end, we consider the positive and 
negative truncations of the energy functional ϕ. So, we consider ϕ± : W 1,H(�) → R defined by

ϕ±(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q,μ + 1

p
‖u‖p

p + 1

q
‖u‖q

q,μ

−
∫
�

F
(
x,±u±) dx −

∫
∂�

G
(
x,±u±) dσ.

Proposition 4.1. Let hypotheses (2.3) and (H) be satisfied. Then the functionals ϕ± fulfill the 
Cerami condition.

Proof. We will show the proof only for ϕ+, the proof for ϕ− works in a similar way.
Let {un}n≥1 ⊆ W 1,H(�) be a sequence such that

|ϕ+(un)| ≤ M1 for some M1 > 0 and for all n ∈N (4.1)

and

(
1 + ‖un‖1,H

)
ϕ′+(un) → 0 in W 1,H(�)∗. (4.2)

Due to (4.2) we have∣∣∣∣∣∣
∫
�

|∇un|p−2∇un · ∇v dx +
∫
�

μ(x)|∇un|q−2∇un · ∇v dx

+
∫
�

|un|p−2unv dx +
∫
�

μ(x)|un|q−2unv dx

−
∫
�

f
(
x,u+

n

)
v dx −

∫
∂�

g
(
x,u+

n

)
v dσ

∣∣∣∣∣∣≤
εn‖v‖1,H

1 + ‖un‖1,H

(4.3)

for all v ∈ W 1,H(�) with εn → 0+. Taking v = −u−
n ∈ W 1,H(�) in (4.3) we obtain

∥∥∇u−
n

∥∥p

p
+ ∥∥∇u−

n

∥∥q
q,μ+∥∥u−

n

∥∥p

p
+ ∥∥u−

n

∥∥q

q,μ
≤ εn for all n ∈N.

Then, ρ̂H(u−) → 0 as n → ∞. Hence, by Proposition 2.4(v) we have
n
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∥∥u−
n

∥∥
1,H → 0 as n → ∞.

Thus

u−
n → 0 in W 1,H(�). (4.4)

Using (4.1) and (4.4) we get

q

p

∥∥∇u+
n

∥∥p

p
+ ∥∥∇u+

n

∥∥q

q,μ
+ q

p

∥∥u+
n

∥∥p

p
+ ∥∥u+

n

∥∥q

q,μ

−
∫
�

qF
(
x,u+

n

)
dx −

∫
∂�

qG
(
x,u+

n

)
dσ ≤ M2 for all n ∈N

(4.5)

for some M2 > 0. We choose v = u+
n ∈ W 1,H(�) in (4.3) and obtain

− ∥∥∇u+
n

∥∥p

p
− ∥∥∇u+

n

∥∥q

q,μ
− ∥∥u+

n

∥∥p

p
− ∥∥u+

n

∥∥q

q,μ

+
∫
�

f
(
x,u+

n

)
u+

n dx +
∫
∂�

g
(
x,u+

n

)
u+

n dσ ≤ εn for all n ∈N.
(4.6)

Now we add (4.5) and (4.6) to get

(
q

p
− 1

)∥∥∇u+
n

∥∥p

p
+
(

q

p
− 1

)∥∥u+
n

∥∥p

p
+
∫
�

(
f
(
x,u+

n

)
u+

n − qF
(
x,u+

n

))
dx

+
∫
∂�

(
g
(
x,u+

n

)
u+

n − qG
(
x,u+

n

))
dσ ≤ M3 for all n ∈ N.

(4.7)

Claim: The sequence {u+
n }n≥1 ⊆ W 1,H(�) is bounded.

Arguing indirectly, we suppose, by passing to a subsequence if necessary, that

∥∥u+
n

∥∥
1,H → +∞ as n → +∞. (4.8)

Defining yn = u+
n∥∥u+

n

∥∥
1,H

for n ∈ N we see that ‖yn‖1,H = 1 and yn ≥ 0 for all n ∈ N . Thus, we 

may assume that

yn ⇀ y in W 1,H(�) and yn → y in Lr1(�) and Lr2(∂�), y ≥ 0, (4.9)

see Proposition 2.2(iii), (v).

Case 1: y �= 0.

Let

�+ = {x ∈ � : y(x) > 0} and �+ = {x ∈ ∂� : y(x) > 0} .
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Of course, |�+|N > 0. Then, because of (4.9) we have

u+
n (x) → +∞ for a. a. x ∈ �+

and hence, due to (H)(ii),

F(x,u+
n (x))

u+
n (x)q

→ +∞ for a. a. x ∈ �+. (4.10)

Applying (4.10), hypothesis (H)(ii) and Fatou’s Lemma gives

∫
�+

F(x,u+
n )∥∥u+

n

∥∥q

1,H
dx → +∞. (4.11)

Furthermore, by (H)(i) and (ii) we have

F(x, s) ≥ −M4 for a. a. x ∈ �, for all s ∈R, (4.12)

and for some M4 > 0. From (4.12) it follows

∫
�

F(x,u+
n )∥∥u+

n

∥∥q

1,H
dx =

∫
�+

F(x,u+
n )∥∥u+

n

∥∥q

1,H
dx +

∫
�\�+

F(x,u+
n )∥∥u+

n

∥∥q

1,H
dx

≥
∫

�+

F(x,u+
n )∥∥u+

n

∥∥q

1,H
dx − M4∥∥u+

n

∥∥q

1,H
|�|N.

Therefore, due to (4.8) and (4.11), we have

∫
�

F(x,u+
n )∥∥u+

n

∥∥q

1,H
dx → +∞. (4.13)

If the Hausdorff surface measure of �+ is positive, we can prove in a similar way that

∫
∂�

G(x,u+
n )∥∥u+

n

∥∥q

1,H
dσ → +∞, (4.14)

or otherwise

∫
∂�

G(x,u+
n )∥∥u+

n

∥∥q

1,H
dσ = 0. (4.15)
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L. Gasiński and P. Winkert Journal of Differential Equations 274 (2021) 1037–1066
Thus, we obtain from (4.13), (4.14) and (4.15) that

∫
�

F(x,u+
n )∥∥u+

n

∥∥q

1,H
dx +

∫
∂�

G(x,u+
n )∥∥u+

n

∥∥q

1,H
dσ → +∞. (4.16)

On the other side we obtain from (4.1) and (4.4) that

∫
�

F(x,u+
n )∥∥u+

n

∥∥q

1,H
dx +

∫
∂�

G(x,u+
n )∥∥u+

n

∥∥q

1,H
dσ

≤ 1∥∥u+
n

∥∥q−p

1,H
‖∇yn‖p

p + 1

q
‖∇yn‖q

q,μ + 1∥∥u+
n

∥∥q−p

1,H
‖yn‖p

p + 1

q
‖yn‖q

q,μ + M5

for all n ∈N and for some M5 > 0. This shows, because of p < q , (4.8) and ‖yn‖1,H = 1 for all 
n ∈N , that

∫
�

F(x,u+
n )∥∥u+

n

∥∥q

1,H
dx +

∫
∂�

G(x,u+
n )∥∥u+

n

∥∥q

1,H
dσ ≤ M6 for all n ∈ N,

for some M6 > 0, which is a contradiction to (4.16).

Case 2: y ≡ 0.

Let k ≥ 1 and put

vn = (qk)
1
q yn for all n ∈ N.

By the definition of yn we have

vn ⇀ 0 in W 1,H(�) and vn → 0 in Lr1(�) and Lr2(∂�). (4.17)

From (4.17) it follows that

∫
�

F(x, vn) dx → 0 and
∫
∂�

G(x, vn) dσ → 0. (4.18)

Recall that the energy functional ϕ : W 1,H(�) → R of problem (1.1) is defined by

ϕ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q,μ + 1

p
‖u‖p

p + 1

q
‖u‖q

q,μ −
∫
�

F(x,u)dx −
∫
∂�

G(x,u)dσ.

We have

ϕ(u) ≤ ϕ+(u) for all u ∈ W 1,H(�) with u ≥ 0. (4.19)
1050
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We choose tn ∈ [0, 1] such that

ϕ
(
tnu

+
n

)= max
{
ϕ
(
tu+

n

) : 0 ≤ t ≤ 1
}
. (4.20)

Since 
∥∥u+

n

∥∥
1,H → +∞ there exists n0 ∈ N such that

0 <
(qk)

1
q∥∥u+

n

∥∥
1,H

≤ 1 for all n ≥ n0. (4.21)

Applying (4.20), (4.21), Proposition 2.4(ii) and (4.18) we obtain

ϕ
(
tnu

+
n

)≥ ϕ(vn)

= 1

p
q

p
q k

p
q ‖∇yn‖p

p + k‖∇yn‖q
q,μ + 1

p
q

p
q k

p
q ‖yn‖p

p + k‖yn‖q
q,μ

−
∫
�

F(x, vn) dx −
∫
∂�

G(x, vn) dσ

≥ min

{
1

p
q

p
q ,1

}
k

p
q
[‖∇yn‖p

p + ‖∇yn‖q
q,μ + ‖yn‖p

p + ‖yn‖q
q,μ

]
−
∫
�

F(x, vn) dx −
∫
∂�

G(x, vn) dσ

= min

{
1

p
q

p
q ,1

}
k

p
q ρ̂H(u) −

∫
�

F(x, vn) dx −
∫
∂�

G(x, vn) dσ

≥ min

{
1

p
q

p
q ,1

}
k

p
q − M7 for all n ≥ n1,

for some n1 ≥ n0. Since k ≥ 1 is arbitrary, we conclude that

ϕ
(
tnu

+
n

)→ +∞ as n → ∞. (4.22)

From (4.1), (4.4) and (4.19) we obtain

ϕ(0) = 0 and ϕ(u+
n ) ≤ M8 for all n ∈N, (4.23)

for some M8 > 0. Combining (4.22) and (4.23) gives

tn ∈ (0,1) for all n ≥ n2, (4.24)

for some n2 ≥ n1. By the chain rule, (4.24) and (4.20) imply that

0 = d

dt
ϕ
(
tu+

n

) ∣∣∣
t=tn

= 〈
ϕ′ (tnu+

n

)
, u+

n

〉
for all n ≥ n2.
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This means ∥∥∇ (
tnu

+
n

)∥∥p

p
+ ∥∥∇ (

tnu
+
n

)∥∥q

q,μ
+ ∥∥tnu+

n

∥∥p

p
+ ∥∥tnu+

n

∥∥q

q,μ

=
∫
�

f
(
x, tnu

+
n

)
tnu

+
n dx +

∫
∂�

g
(
x, tnu

+
n

)
tnu

+
n dσ

(4.25)

for all n ≥ n2. By hypothesis (H)(iv) and (4.7) we obtain

(
q

p
− 1

)∥∥∇ (
tnu

+
n

)∥∥p

p
+
(

q

p
− 1

)∥∥tnu+
n

∥∥p

p

+
∫
�

(
f
(
x, tnu

+
n

)
tnu

+
n − qF

(
x, tnu

+
n

))
dx +

∫
∂�

(
g
(
x, tnu

+
n

)
tnu

+
n − qG

(
x, tnu

+
n

))
dσ

≤
(

q

p
− 1

)∥∥∇ (
tnu

+
n

)∥∥p

p
+
(

q

p
− 1

)∥∥tnu+
n

∥∥p

p

+
∫
�

(
f
(
x,u+

n

)
u+

n − qF
(
x,u+

n

))
dx +

∫
∂�

(
g
(
x,u+

n

)
u+

n − qG
(
x,u+

n

))
dσ

≤
(

q

p
− 1

)∥∥∇u+
n

∥∥p

p
+
(

q

p
− 1

)∥∥u+
n

∥∥p

p

+
∫
�

(
f
(
x,u+

n

)
u+

n − qF
(
x,u+

n

))
dx +

∫
∂�

(
g
(
x,u+

n

)
u+

n − qG
(
x,u+

n

))
dσ

≤ M3

for all n ≥ n3. This gives

(
q

p
− 1

)∥∥∇ (
tnu

+
n

)∥∥p

p
+
(

q

p
− 1

)∥∥tnu+
n

∥∥p

p

+
∫
�

f
(
x, tnu

+
n

)
tnu

+
n dx +

∫
∂�

g
(
x, tnu

+
n

)
tnu

+
n dσ

≤
∫
�

qF
(
x, tnu

+
n

)
dx +

∫
∂�

qG
(
x, tnu

+
n

)
dσ + M3.

(4.26)

Combining (4.25) and (4.26) leads to

q

p

∥∥∇ (
tnu

+
n

)∥∥p

p
+ ∥∥∇ (

tnu
+
n

)∥∥q

q,μ
+ q

p

∥∥tnu+
n

∥∥p

p
+ ∥∥tnu+

n

∥∥q

q,μ

−
∫
�

qF
(
x, tnu

+
n

)
dx −

∫
∂�

qG
(
x, tnu

+
n

)
dσ

≤ M3,
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for all n ≥ n3, which implies

qϕ
(
tnu

+
n

)≤ M3 for all n ≥ n3.

This contradicts (4.22) and so the claim is proved.

From (4.4) and the Claim we know that the sequence {un}n≥1 ⊆ W 1,H(�) is bounded. There-
fore we may assume that

un ⇀ u in W 1,H(�) and un → u in Lr1(�) and Lr2(∂�). (4.27)

Due to (4.27) we have

∇un ⇀ ∇u in Lq
μ

(
�;RN

)
and ∇un ⇀ ∇u in Lp

(
�;RN

)
. (4.28)

Taking v = un −u ∈ W 1,H(�) in (4.3), passing to the limit as n → ∞ and using (4.27) we obtain

‖∇un‖q,μ → ‖∇u‖q,μ and ‖∇un‖p → ‖∇u‖p. (4.29)

Since the spaces Lq
μ

(
�;RN

)
and Lp

(
�;RN

)
are uniformly convex, we know that they satisfy 

the Kadec-Klee property, see Gasiński-Papageorgiou [19, p. 911]. Hence, from (4.28) and (4.29)
it follows that

∇un → ∇u in Lq
μ

(
�;RN

)
and ∇un → ∇u in Lp

(
�;RN

)
.

Hence, by Proposition 2.3(ii) we conclude that

‖un − u‖1,H → 0.

Thus, ϕ+ fulfills the Cerami condition. �
The following proposition will be useful for later considerations.

Proposition 4.2. Let hypotheses (2.3) and (H) be satisfied. Then for each ε > 0 there exist 
ĉ, c̃ε, ĉε > 0 such that

ϕ(u), ϕ±(u) ≥
{

ĉ‖u‖q

1,H − c̃ε‖u‖r1
1,H − ĉε‖u‖r2

1,H if ‖u‖1,H ≤ 1,

ĉ‖u‖p

1,H − c̃ε‖u‖r1
1,H − ĉε‖u‖r2

1,H if ‖u‖1,H > 1.

Proof. We will show the proof only for the functional ϕ, the proofs for the other functionals 
work in a similar way.

Taking hypotheses (H)(i), (iii) into account, for a given ε > 0, there exist ĉ1 = ĉ1(ε) > 0 and 
ĉ2 = ĉ2(ε) > 0 such that
1053
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F(x, s) ≤ ε

p
|s|p + ĉ1|s|r1 for a. a. x ∈ �,

G(x, s) ≤ ε

p
|s|p + ĉ2|s|r2 for a. a. x ∈ ∂�.

(4.30)

Let u ∈ W 1,H(�). Applying (4.30), the Sobolev and trace embeddings for W 1,p(�) along with 
Propositions 2.2(ii), (iii) and 2.3(c) we obtain

ϕ(u)

≥ 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q,μ + 1

p
‖u‖p

p + 1

q
‖u‖q

q,μ

− ε

p
‖u‖p

p − ĉ1‖u‖r1
r1

− ε

p
‖u‖p

p,∂� − ĉ2‖u‖r2
r2,∂�

≥ 1

p

[
1 − (

C
p
� + C

p
∂�

)
ε
]‖∇u‖p

p + 1

q
‖∇u‖q

q,μ

+ 1

p

[
1 − (C

p

� + C
p

∂�)ε
]‖u‖p

p + 1

q
‖u‖q

q,μ − ĉ1

(
CH

�

)r1 ‖u‖r1
1,H − ĉ2

(
CH

∂�

)r2 ‖u‖r2
1,H

≥ min

{
1

p

[
1 − (

C
p
� + C

p
∂�

)
ε
]
,

1

q

}
ρ̂H(u) − ĉ1

(
CH

�

)r1 ‖u‖r1
1,H − ĉ2

(
CH

∂�

)r2 ‖u‖r2
1,H,

where C� and C∂� are the embedding constants from the embeddings W 1,p(�) → Lp(�) and 
W 1,p(�) → Lp(∂�) respectively, while CH

� and CH
∂� are the embedding constants from the 

embeddings W 1,H(�) → Lr1(�) and W 1,H(�) → Lr2(∂�), respectively.

Choosing ε such that ε ∈
(

0, 1
C

p
�+C

p
∂�

)
and applying Proposition 2.4(iii), (iv) we get the 

assertion of the proposition with

ĉ = min

{
1

p

[
1 − (

C
p

� + C
p

∂�

)
ε
]
,

1

q

}
, c̃ε = ĉ1

(
CH

�

)r1
, ĉε = ĉ2

(
CH

∂�

)r2
. �

Now it is easy to show that u = 0 is a local minimizer of the functionals ϕ±.

Proposition 4.3. Let hypotheses (2.3) and (H) be satisfied. Then u = 0 is a local minimizer for 
both functionals ϕ±.

Proof. As before, we will show the proof only for the functional ϕ+, the proof for ϕ− is working 
in a similar way. Let u ∈ W 1,H(�) be such that ‖u‖1,H < 1. Applying Proposition 4.2 gives

ϕ+(u) ≥ ĉ‖u‖q

1,H − c̃ε‖u‖r1
1,H − ĉε‖u‖r2

1,H.

Since q < r1, r2 there exists η ∈ (0, 1) small enough such that

ϕ+(u) > 0 = ϕ+(0) for all u ∈ W 1,H(�) with 0 < ‖u‖1,H < η.

Hence, u = 0 is a (strict) local minimizer of ϕ+. �
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The following proposition is a direct consequence of hypothesis (H)(ii).

Proposition 4.4. Let hypotheses (2.3) and (H) be satisfied. Then, for u ∈ W 1,H(�) with u(x) > 0
for a. a. x ∈ �, it holds ϕ±(tu) → −∞ as t → ±∞.

Now we are ready to prove the existence of bounded constant sign solutions for problem (1.1).

Proposition 4.5. Let hypotheses (2.3) and (H) be satisfied. Then problem (1.1) has at least two 
nontrivial constant sign solutions u0, v0 ∈ W 1,H(�) ∩ L∞(�) such that

u0(x) ≥ 0 and v0(x) ≤ 0 for a. a. x ∈ �.

Proof. From Proposition 4.3 and Papageorgiou-Rădulescu-Repovš [38, Theorem 5.7.6] there 
exist η± ∈ (0, 1) small enough such that

ϕ±(0) = 0 < inf
{
ϕ±(0) : ‖u‖1,H = η±

}= m±. (4.31)

By (4.31) and the Propositions 4.1 and 4.4 we are able to use the mountain pass theorem (see 
Theorem 2.6) which implies the existence of u0, v0 ∈ W 1,H(�) such that u0 ∈ Kϕ+ , v0 ∈ Kϕ−
and

ϕ+(0) = 0 < m+ ≤ ϕ+(u0) as well as ϕ−(0) = 0 < m− ≤ ϕ−(v0).

This shows that u0 �= 0 and v0 �= 0. Moreover, we have ϕ′+(u0) = 0 which means that

∫
�

(
|∇u0|p−2∇u0 + μ(x)|∇u0|q−2∇u0

)
· ∇v dx +

∫
�

(
|u0|p−2u0 + μ(x)|u0|q−2u0

)
v dx

=
∫
�

f (x,u+
0 )v dx +

∫
∂�

g(x,u+
0 )v dσ

for all v ∈ W 1,H(�). Choosing v = −u−
0 ∈ W 1,H(�) we obtain

ρ̂H(u−
0 ) = 0

and so, by Proposition 2.4, we have

‖u−
0 ‖1,H = 0.

Therefore, u0 ≥ 0, u0 �= 0. In the same way we can show that v0 ≤ 0, v0 �= 0. Finally, by applying 
Theorem 3.1, we have that u0, v0 ∈ L∞(�). �
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5. Sign changing solution

In this section we are interested in the existence of a sign-changing solution of problem (1.1). 
Following the treatment of Liu-Wang-Wang [25] and Gasiński-Papageorgiou [17] we introduce 
the so-called Nehari manifold for the functional ϕ which is defined by

N =
{
u ∈ W 1,H(�) : 〈ϕ′(u),u〉 = 0, u �= 0

}
.

Since we are interested in sign-changing solutions, we also need the following set

N0 =
{
u ∈ W 1,H(�) : u+ ∈ N, −u− ∈ N

}
.

Proposition 5.1. Let hypotheses (2.3) and (H) be satisfied. Let u ∈ W 1,H(�), u �= 0, then there 
exists a unique t0 = t0(u) > 0 such that t0u ∈ N .

Proof. Let ζu : (0, +∞) → R be defined by

ζu(t) = 〈
ϕ′(tu), u

〉
= tp−1‖∇u‖p

p + tq−1‖∇u‖q
q,μ + tp−1‖u‖p

p + tq−1‖u‖q
q,μ

−
∫
�

f (x, tu)udx −
∫
∂�

g(x, tu)udσ.

(5.1)

By hypothesis (H)(v) we have for t ∈ (0, 1) and |u(x)| > 0

f (x, tu)(tu)

tq |u|q ≤ f (x,u)u

|u|q for a. a. x ∈ �,

g(x, tu)(tu)

tq |u|q ≤ g(x,u)u

|u|q for a. a. x ∈ ∂�,

which implies

f (x, tu)u ≤ tq−1f (x,u)u for a. a. x ∈ �,

g(x, tu)u ≤ tq−1g(x,u)u for a. a. x ∈ ∂�.
(5.2)

From (5.1) and (5.2) we obtain

ζu(t) ≥ tp−1‖∇u‖p
p + tp−1‖u‖p

p

− tq−1
∫
�

f (x,u)udx − tq−1
∫
∂�

g(x,u)udσ.

Therefore, since p < q ,

ζu(t) > 0 for small t ∈ (0,1). (5.3)
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On the other hand, we have for t > 0

ζu(t)

tq−1 = 1

tq−p
‖∇u‖p

p + ‖∇u‖q
q,μ + 1

tq−p
‖u‖p

p + ‖u‖q
q,μ

−
∫
�

f (x, tu)

tq−1 udx −
∫
∂�

g(x, tu)

tq−1 udσ.
(5.4)

Applying hypothesis (H)(ii) and passing to the limit in (5.4) as t → +∞ gives

lim
t→+∞

ζu(t)

tq−1 = −∞,

as p < q . Hence

ζu(t) < 0 for t > 0 large enough. (5.5)

Then, from (5.3), (5.5) and the intermediate value theorem there exists t0 = t0(u) > 0 such that

ζu(t0) = 0,

which implies

〈
ϕ′(t0u), t0u

〉= 0.

Hence

t0u ∈ N.

Note that equation ζu(t) = 0 can be equivalently written as

−‖∇u‖q
q,μ − ‖u‖q

q,μ = 1

tq−p
‖∇u‖p

p + 1

tq−p
‖u‖p

p

−
∫
�

f (x, tu)(tu)

tq
dx −

∫
∂�

g(x, tu)(tu)

tq
dσ.

The right-hand side of this inequality is strictly increasing in t > 0. Therefore, there exists a 
unique t0 = t0(u) such that

ζu(t0) = 0. �
Proposition 5.2. Let hypotheses (2.3) and (H) be satisfied. Let u ∈ N , then ϕ(tu) ≤ ϕ(u) for all 
t > 0 (with strict inequality when t �= 1).
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Proof. Let ku : (0, ∞) → R be defined by

ku(t) = ϕ(tu) for all t > 0.

Because u ∈ N , it holds

k′
u(1) = 0, (5.6)

which is, due to Proposition 5.1, the unique critical point of ku. From hypotheses (H)(i), (ii), 
there exists, for any given τ > 0, a constant cτ > 0 such that

F(x, s) ≥ τ

q
|s|q − cτ for a. a. x ∈ � and all s ∈R,

G(x, s) ≥ τ

q
|s|q − cτ for a. a. x ∈ ∂� and all s ∈ R.

(5.7)

Taking (5.7) into account, we have for t > 0

ku(t) = ϕ(tu)

≤ tp

p
‖∇u‖p

p + tq

q
‖∇u‖q

q,μ + tp

p
‖u‖p

p + tq

q
‖u‖q

q,μ

− τ tq

q
‖u‖q

q − τ tq

q
‖u‖q

q,∂� + cτ (|�|N + |∂�|N)

= tp

p

(‖∇u‖p
p + ‖u‖p

p

)+ tq

q

(
‖∇u‖q

q,μ + ‖u‖q
q,μ − τ

(
‖u‖q

q + ‖u‖q
q,∂�

))
+ cτ (|�|N + |∂�|N) .

Taking τ large enough we have

ϕ(tu) ≤ c3t
p − c4t

q

for some c3, c4 > 0. Since p < q we obtain

ku(t) = ϕ(tu) < 0 for t > 0 large enough. (5.8)

Applying Proposition 4.2, for t > 0 small enough we obtain

ku(t) = ϕ(tu)

≥ ĉ‖u‖q

1,H − c̃ε‖u‖r1
1,H − ĉε‖u‖r2

1,H
= c5t

q − c6t
r1 − c7t

r2

for some c5, c6, c7 > 0. Since q < r1, r2 we conclude that

ku(t) = ϕ(tu) > 0 for t > 0 small enough. (5.9)
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From (5.8) and (5.9) we know that there exists a local minimizer t0(u) > 0 of ku. Since t = 1 is 
the only critical point of ku, see (5.6), we have that t0(u) = 1 which is a global minimizer of ku. 
Hence, we have

ku(t) ≤ ku(1) for all t > 0

and so

ϕ(tu) ≤ ϕ(u) for all t > 0. �
Proposition 5.3. Let hypotheses (2.3) and (H) be satisfied. Then the functional ϕ

∣∣
N

is coercive.

Proof. It is enough to show that if {un}n≥1 ⊆ N and

ϕ(un) ≤ M9 for all n ∈ N (5.10)

for some M9 > 0, then the sequence {un}n≥1 ⊆ W 1,H(�) is bounded.
Supposing the opposite we can assume that ‖un‖1,H → +∞. Letting yn = un‖un‖1,H

we can 

assume that yn ⇀ y in W 1,H(�). Suppose that y = 0. Since un ∈ N and yn ⇀ 0 we have for 
each t > 0 that

ϕ(un) ≥ ϕ(tyn)

= 1

p
‖∇(tyn)‖p

p + 1

q
‖∇(tyn)‖q

q,μ + 1

p
‖tyn‖p

p + 1

q
‖tyn‖q

q,μ

−
∫
�

F(x, tyn) dx −
∫
∂�

G(x, tyn) dσ

≥ 1

q
‖tyn‖p

1,H −
∫
�

F(x, tyn) dx −
∫
∂�

G(x, tyn) dσ → 1

q
tp,

since ‖yn‖p

1,H = 1 where we have used Propositions 2.4 and 5.2. Taking t > 0 large enough we 
get a contradiction with (5.10). Hence, y �= 0. Applying Proposition 2.4 we have

ϕ(un) ≤ 1

p
‖∇un‖p

p + 1

q
‖∇un‖q

q,μ + 1

p
‖un‖p

p + 1

q
‖un‖q

q,μ

−
∫
�

F(x,‖un‖1,Hyn) dx −
∫
∂�

G(x,‖un‖1,Hyn) dσ

≤ 1

p
‖un‖q

1,H −
∫
�

F(x,‖un‖1,Hyn) dx −
∫
∂�

G(x,‖un‖1,Hyn) dσ.

(5.11)

Dividing (5.11) by ‖un‖q

1,H, passing to the limit as n → ∞ and applying (H)(ii), we obtain 
ϕ(un)

‖un‖q

1,H
→ −∞ which contradicts ϕ(un) ≥ 0, see Proposition 5.2. This proves the coercivity of 

ϕ
∣∣ . �

N

1059
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Let m = inf
N

ϕ and m0 = inf
N0

ϕ. First, we show that m > 0.

Proposition 5.4. Let hypotheses (2.3) and (H) be satisfied. Then m > 0.

Proof. Recall the statement of Proposition 4.2, namely,

ϕ(u) ≥
{

ĉ‖u‖q

1,H − c̃ε‖u‖r1
1,H − ĉε‖u‖r2

1,H if ‖u‖1,H ≤ 1,

ĉ‖u‖p

1,H − c̃ε‖u‖r1
1,H − ĉε‖u‖r2

1,H if ‖u‖1,H > 1.

Since p < q < r1, r2 it follows that for some η0 ∈ (0, 1) small enough

ϕ(u) ≥ γ̂ > 0 for all u ∈ W 1,H(�) with ‖u‖1,H = η0.

Now let u ∈ N and take su > 0 such that su‖u‖1,H = η0. From Proposition 5.2 we obtain

0 < γ̂ ≤ ϕ(suu) ≤ ϕ(u) for all u ∈ N,

so m > 0. �
As a direct consequence of Proposition 5.4 we obtain that m0 > 0.

Proposition 5.5. Let hypotheses (2.3) and (H) be satisfied. Then m0 > 0.

Proof. Applying Proposition 5.4 and recall that u+, −u− ∈ N , we have for each u ∈ N0

ϕ(u) = ϕ(u+) + ϕ(−u−) ≥ 2m > 0.

Hence, m0 > 0. �
Proposition 5.6. Let hypotheses (2.3) and (H) be satisfied. Then there exists y0 ∈ N0 such that 
ϕ(y0) = m0.

Proof. Let {yn}n≥1 ⊆ N0 be a minimizing sequence, that is,

ϕ(yn) ↘ m0.

Clearly,

ϕ(yn) = ϕ(y+
n ) + ϕ(−y−

n )

with y+
n , −y−

n ∈ N . Similar to the proof of Proposition 5.3 we can show that the sequences 
{y+

n }n≥1, {y−
n }n≥1 ⊆ W 1,H(�) are bounded. Therefore, we may assume that

y+
n ⇀ v1 in W 1,H(�), v1 ≥ 0,

y−
n ⇀ v2 in W 1,H(�), v2 ≥ 0.

(5.12)
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Suppose that v1 = 0. Then, since y+
n ∈ N , it holds

0 = 〈
ϕ′(y+

n ), y+
n

〉= ρ̂H(y+
n ) −

∫
�

f (x, y+
n )y+

n dx −
∫
∂�

g(x, y+
n )y+

n dσ

for all n ∈N . From (5.12) and Proposition 2.3 we conclude that

y+
n → 0 in W 1,H(�).

Hence

0 < m ≤ ϕ(y+
n ) → ϕ(0) = 0 as n → +∞,

which is a contradiction. Thus, v1 �= 0. In a similar way we can show that v2 �= 0. Taking Propo-
sition 5.1 into account there exists t1, t2 > 0 such that

t1v1 ∈ N and t2v2 ∈ N.

Setting y0 = t1v1 − t2v2 = y+
0 − y−

0 gives y0 ∈ N0. Applying the sequentially weakly lower 
semicontinuity of ϕ, Proposition 5.2 and the fact that y0 ∈ N0 we obtain

m0 = lim
n→+∞ϕ(yn)

= lim
n→+∞

(
ϕ(y+

n ) + ϕ(−y−
n )
)

≥ lim inf
n→+∞

(
ϕ(t1y

+
n ) + ϕ(−t2y

−
n )
)

≥ ϕ(t1v1) + ϕ(−t2v2)

≥ ϕ(y0)

≥ m0.

Therefore

ϕ(y0) = m0

with y0 ∈ N0. �
Proposition 5.7. Let hypotheses (2.3) and (H) be satisfied. Let y0 ∈ N0 be such that ϕ(y0) = m0. 
Then y0 ∈ Kϕ . In particular y0 ∈ W 1,H(�) ∩ L∞(�) is a solution of problem (1.1).

Proof. The proof of this proposition follows the idea of the proof of Theorem 1.4 in Liu-Dai 
[26] and exploits the quantitative deformation lemma of Willem, see Jabri [23, Theorem 4.2].

From hypothesis (H)(v), Proposition 5.2 and the definition of N0, for s, t > 0 such that at least 
one of s, t �= 1, we have
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ϕ
(
sy+

0 − ty−
0

)= ϕ
(
sy+

0

)+ ϕ
(−ty−

0

)
< ϕ

(
y+

0

)+ ϕ
(−y−

0

)= ϕ (y0) = m0. (5.13)

Now we proceed by contradiction. So suppose that ϕ′(y0) �= 0. Then there exist δ > 0 and 
ρ > 0 such that

∥∥ϕ′(v)
∥∥

1,H ≥ ρ for all v ∈ W 1,H(�) with ‖v − y0‖1,H ≤ 3δ.

Let

D =
[

1

2
,

3

2

]
×
[

1

2
,

3

2

]
.

From (5.13), we see that

ϕ
(
sy+

0 − ty−
0

)= m0 if and only if s = t = 1.

Thus

β = max
(s,t)∈∂D

ϕ
(
sy+

0 − ty−
0

)
< m0.

Let

ε = min

{
m0 − β

4
,
ρδ

8

}
.

By the quantitative deformation lemma of Willem, see Jabri [23, Theorem 4.2], there exists a 
continuous deformation η : [0, 1] × W 1,H(�) → W 1,H(�) such that

(i) η(1, v) = v if v /∈ ϕ−1([m0 − 2ε, m0 + 2ε]);
(ii) ϕ(η(1, v)) ≤ m0 − ε for all v ∈ W 1,H(�) with ‖v − y0‖1,H ≤ δ and ϕ(v) ≤ m0 + ε;

(iii) ϕ(η(1, v)) ≤ ϕ(v) for all v ∈ W 1,H(�).

It follows easily that

max
(s,t)∈D

ϕ
(
η(1, sy+

0 − ty−
0 )
)
< m0. (5.14)

Let us now define h : R+ ×R+ → W 1,H(�) by

h(s, t) = η
(
1, sy+

0 − ty−
0

)
and put

H0(s, t) =
(
〈ϕ′(sy+

0 ), y+
0 〉, 〈ϕ′(−ty−

0 ),−y−
0 〉
)
,

H1(s, t) =
(

1

s

〈
ϕ′(h+(s, t)), h+(s, t)

〉
,

1

t

〈
ϕ′(−h−(s, t)),−h−(s, t)

〉)
.
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Note that deg(H0, D, 0) = 1, as

〈
ϕ′(sy+

0 ), y+
0

〉
> 0 and

〈
ϕ′(−sy−

0 ),−y−
0

〉
> 0 for all s ∈ (0,1),〈

ϕ′(sy+
0 ), y+

0

〉
< 0 and

〈
ϕ′(−sy−

0 ),−y−
0

〉
< 0 for all s > 1.

By (5.14) and property (i) of η (see the choice of ε > 0), we have that

h(s, t) = sy+
0 − ty−

0 for all (s, t) ∈ ∂D.

Thus H0 = H1 on ∂D and hence

deg(H1,D,0) = deg(H0,D,0) = 1.

By the existence property of the Brouwer degree (see, for example, Gasiński-Papageorgiou [18, 
Theorem 4.11] or Papageorgiou-Winkert [39, Theorem 6.2.22]), we get

H1(s, t) = 0 for some (s, t) ∈ D.

This means that

η
(
1, sy+

0 − ty−
0

)= h(s, t) ∈ N0 for some (s, t) ∈ D.

But this contradicts (5.14) and the definition of m0.
So, we conclude that y0 ∈ Kϕ and thus y0 is a solution of problem (1.1). From Proposition 3.1

we have that y0 ∈ L∞(�). �
Proposition 5.8. Let hypotheses (2.3) and (H) be satisfied. If y0 ∈ N0, is as in Proposition 5.7, 
then y0 is a nodal solution of problem (1.1) which has exactly two nodal domains.

Proof. From the definition of N0 and Proposition 5.7 it is clear that y0 ∈ N0 is a sign changing 
solution. It remains to show that y0 has exactly two nodal domains. Arguing by contradiction, 
suppose that there exist disjoint open sets �1, �2 and �3 on which y0 has fixed sign. Without 
any loss of generality, we may assume that y0 has only three nodal domains. Let

yk(x) =
{

y0(x) if x ∈ �k,

0 if x ∈ � \ �k

for k = 1, 2, 3, x ∈ �. Without any loss of generality, we may assume that

y1
∣∣
�1

> 0, y2
∣∣
�2

< 0, y3
∣∣
�3

< 0.

Setting ŷ = y1 + y2, we have ŷ+ = y1 and ŷ− = −y2. Since y0 = y1 + y2 + y3 = ŷ + y3 and 
ϕ′(y0) = 0 because of Proposition 5.7 we have

0 = 〈
ϕ′(y0), ŷ

+〉= 〈
ϕ′(ŷ) + ϕ′(y3), ŷ

+〉= 〈
ϕ′(ŷ), ŷ+〉 .
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Therefore 
〈
ϕ′(ŷ), ŷ+〉 = 0. In the same way we can show that 

〈
ϕ′(ŷ), ŷ−〉 = 0. From this we see 

that ŷ+, −ŷ− ∈ N and so ŷ ∈ N0.
Applying Proposition 5.6 and hypothesis (H)(iv) gives

m0 = ϕ(y0) = ϕ(y0) − 1

q

〈
ϕ′(y0), y0

〉
= ϕ(ŷ) + ϕ(y3) − 1

q

(〈
ϕ′(ŷ), ŷ

〉+ 〈
ϕ′(y3), y3

〉)

= ϕ(ŷ) + ϕ(y3) − 1

q

〈
ϕ′(y3), y3

〉

= ϕ(ŷ) +
(

1

p
− 1

q

)
‖∇y3‖p

p +
(

1

p
− 1

q

)
‖y3‖p

p

+
∫
�

(
1

q
f (x, y3)y3 − F(x, y3)

)
dx +

∫
∂�

(
1

q
g(x, y3)y3 − G(x,y3)

)
dσ

≥ m0 +
(

1

p
− 1

q

)
‖∇y3‖p

p +
(

1

p
− 1

q

)
‖y3‖p

p.

Since p > q , we see that �3 = ∅. Thus we conclude that y0 has only two nodal domains. �
Finally we can state the following multiplicity theorem for problem (1.1) summarizing the 

results from Propositions 4.5 and 5.8.

Theorem 5.9. Let hypotheses (2.3) and (H) be satisfied. Then, problem (1.1) has at least three 
nontrivial solutions u0, v0, y0 ∈ W 1,H(�) ∩ L∞(�) such that

u0 ≥ 0, v0 ≤ 0, y0 is nodal with two nodal domains.
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