

Available online at www.sciencedirect.com

ScienceDirect

Journal of Differential Equations

J. Differential Equations 266 (2019) 1462-1487

www.elsevier.com/locate/jde

Singular *p*-Laplacian equations with superlinear perturbation

Nikolaos S. Papageorgiou a, Patrick Winkert b,*

^a National Technical University, Department of Mathematics, Zografou Campus, Athens 15780, Greece ^b Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany

> Received 30 April 2018 Available online 7 August 2018

Abstract

We consider a nonlinear Dirichlet problem driven by the p-Laplace operator and with a right-hand side which has a singular term and a parametric superlinear perturbation. We are interested in positive solutions and prove a bifurcation-type theorem describing the changes in the set of positive solutions as the parameter $\lambda > 0$ varies. In addition, we show that for every admissible parameter $\lambda > 0$ the problem has a smallest positive solution \overline{u}_{λ} and we establish the monotonicity and continuity properties of the map $\lambda \to \overline{u}_{\lambda}$.

© 2018 Elsevier Inc. All rights reserved.

MSC: 35J20; 35J25; 35J67

Keywords: Singular term; Superlinear term; Positive solution; Nonlinear regularity truncations; Comparison principles; Minimal positive solutions

1. Introduction

Let $\Omega \subseteq \mathbb{R}^N$ be a bounded domain with a C^2 -boundary $\partial \Omega$. In this paper, we deal with the following nonlinear parametric singular problem

E-mail addresses: npapg@math.ntua.gr (N.S. Papageorgiou), winkert@math.tu-berlin.de (P. Winkert).

^{*} Corresponding author.

$$-\Delta_p u = u^{-\gamma} + \lambda f(x, u) \quad \text{in } \Omega,$$

$$u > 0 \qquad \qquad \text{in } \Omega,$$

$$u = 0 \qquad \qquad \text{on } \partial\Omega,$$

$$(P_{\lambda})$$

where $1 , <math>0 < \gamma < 1$ and Δ_p denotes the p-Laplace differential operator defined by

$$\Delta_p u = \operatorname{div} \left(|\nabla u|^{p-2} \nabla u \right) \quad \text{for all } u \in W^{1,p}_0(\Omega).$$

In the right-hand side of (P_{λ}) , $u^{-\gamma}$ is the singular term while λf is the parametric term with $\lambda > 0$ and a Carathéodory function $f: \Omega \times \mathbb{R} \to \mathbb{R}$, that is, $x \to f(x,s)$ is measurable for all $s \in \mathbb{R}$ and $s \to f(x,s)$ is continuous for a.a. $x \in \Omega$. We assume that $f(x,\cdot)$ exhibits (p-1)-superlinear growth near $+\infty$ but without satisfying the usual Ambrosetti–Rabinowitz condition, AR-condition for short. We are interested in finding positive solutions and our goal is to determine how the set of positive solutions of (P_{λ}) changes as the parameter $\lambda > 0$ varies. We are going to prove a bifurcation-type result which produces a critical parameter value $\lambda^* > 0$ such that

- problem (P_{λ}) has at least two positive solutions for all $\lambda \in (0, \lambda^*)$;
- problem (P_{λ}) has at least one positive solution for $\lambda = \lambda^*$;
- problem (P_{λ}) has no positive solutions for all $\lambda > \lambda^*$.

This result was motivated by the work of Papageorgiou–Smyrlis [15] who proved such a theorem for problem (P_{λ}) under the hypotheses that the perturbation term $f(x, \cdot)$ is (p-1)-linear near 0^+ . This condition removes from consideration nonlinearities with a concave term near 0^+ . Our framework removes this restriction and incorporates perturbations which exhibit the competing effects of concave and convex terms. This changes the geometry of the problem. Moreover, our growth condition on $f(x, \cdot)$ is more general than that in Papageorgiou–Smyrlis [15].

Nonlinear singular Dirichlet problems were also investigated in the papers of Giacomoni–Schindler–Takáč [5], Papageorgiou–Rădulescu–Repovš [14] and Perera–Zhang [16] for different settings and conditions.

2. Preliminaries and hypotheses

Let X be a Banach space and let X^* be its topological dual. We denote by $\langle \cdot, \cdot \rangle$ the duality brackets to the pair (X^*, X) . Given $\varphi \in C^1(X, \mathbb{R})$ we say that φ satisfies the Cerami condition, C-condition for short, if every sequence $\{u_n\}_{n\geq 1}\subseteq X$ such that $\{\varphi(u_n)\}_{n\geq 1}\subseteq \mathbb{R}$ is bounded and such that $(1+\|u_n\|_X)\varphi'(u_n)\to 0$ in X^* as $n\to\infty$, admits a strongly convergent subsequence.

This is a compactness-type condition on the functional φ and leads to following minimax theorem known as the mountain pass theorem.

Theorem 2.1. Let $\varphi \in C^1(X, \mathbb{R})$ be a functional satisfying the C-condition and let $u_1, u_2 \in X$, $||u_2 - u_1||_X > \rho > 0$,

$$\max\{\varphi(u_1), \varphi(u_2)\} < \inf\{\varphi(u) : \|u - u_1\|_X = \rho\} =: \eta_\rho$$

and $c = \inf_{\gamma \in \Gamma} \max_{0 \le t \le 1} \varphi(\gamma(t))$ with $\Gamma = \{ \gamma \in C([0, 1], X) : \gamma(0) = u_1, \gamma(1) = u_2 \}$. Then $c \ge \eta_\rho$ with c being a critical value of φ , that is, there exists $\hat{u} \in X$ such that $\varphi'(\hat{u}) = 0$ and $\varphi(\hat{u}) = c$.

By $W_0^{1,p}(\Omega)$ we denote the usual Sobolev space with norm $\|\cdot\|$. Thanks to the Poincaré inequality we have

$$||u|| = ||\nabla u||_p$$
 for all $u \in W_0^{1,p}(\Omega)$,

where $\|\cdot\|_p$ denotes the norm of $L^p(\Omega)$ and $L^p(\Omega; \mathbb{R}^N)$, respectively. Furthermore, we need the ordered Banach space $C_0^1(\overline{\Omega}) = \{u \in C^1(\overline{\Omega}) : u|_{\partial\Omega} = 0\}$ and its positive cone

$$C_0^1(\overline{\Omega})_+ = \left\{ u \in C_0^1(\overline{\Omega}) : u(x) \ge 0 \text{ for all } x \in \overline{\Omega} \right\}.$$

This cone has a nonempty interior given by

$$\operatorname{int}\left(C_0^1(\overline{\Omega})_+\right) = \left\{u \in C_0^1(\overline{\Omega})_+ : u(x) > 0 \text{ for all } x \in \Omega \text{ and } \frac{\partial u}{\partial n}\bigg|_{\partial\Omega} < 0\right\},$$

where *n* is the outward unit normal on $\partial \Omega$.

The norm of \mathbb{R}^N is denoted by $|\cdot|$ and "·" stands for the inner product in \mathbb{R}^N . For $s \in \mathbb{R}$, we set $s^{\pm} = \max\{\pm s, 0\}$ and for $u \in W_0^{1,p}(\Omega)$ we define $u^{\pm}(\cdot) = u(\cdot)^{\pm}$. It is well known that

$$u^{\pm} \in W_0^{1,p}(\Omega), \quad |u| = u^+ + u^-, \quad u = u^+ - u^-.$$

For $u, v \in W_0^{1,p}(\Omega)$ with $u(x) \le v(x)$ for a.a. $x \in \Omega$ we define

$$\label{eq:bounds} \begin{split} [u,v] &= \big\{ y \in W_0^{1,p}(\Omega) : u(x) \leq y(x) \leq v(x) \text{ for a.a. } x \in \Omega \big\}, \\ &\inf_{C_0^1(\overline{\Omega})} [u,v] = \text{the interior in } C_0^1(\overline{\Omega}) \text{ of } [u,v] \cap C_0^1(\overline{\Omega}), \end{split}$$

$$[u] = \{ y \in W_0^{1,p}(\Omega) : u(x) \le y(x) \text{ for a.a. } x \in \Omega \}.$$

By $|\cdot|_N$ we denote the Lebesgue measure on \mathbb{R}^N . By $p^* > 1$ we denote the Sobolev critical exponent for p defined by

$$p^* = \begin{cases} \frac{Np}{N-p} & \text{if } p < N, \\ +\infty & \text{if } N \le p. \end{cases}$$

Finally, if $h_1, h_2 \in L^{\infty}(\Omega)$, then we write $h_1 \prec h_2$ if and only if for every compact $K \subseteq \Omega$ we have $0 < m_K < h_2(x) - h_1(x)$ for a.a. $x \in K$.

have
$$0 < m_K \le h_2(x) - h_1(x)$$
 for a.a. $x \in K$.
 Let $A: W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega) = W_0^{1,p}(\Omega)^*$ with $\frac{1}{p} + \frac{1}{p'} = 1$ be defined by

$$\langle A(u), \varphi \rangle = \int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi dx \quad \text{for all } u, \varphi \in W_0^{1,p}(\Omega).$$
 (2.1)

The next proposition states the main properties of this map and it can be found in Gasiński–Papageorgiou [4, Problem 2.192, p. 279].

Proposition 2.2. The map $A: W_0^{1,p}(\Omega) \to W^{-1,p'}(\Omega)$ defined in (2.1) is bounded, that is, it maps bounded sets to bounded sets, continuous, strictly monotone, hence maximal monotone and it is of type $(S)_+$, that is,

$$u_n \stackrel{\mathrm{w}}{\to} u \text{ in } W_0^{1,p}(\Omega) \quad and \quad \limsup_{n \to \infty} \langle A(u_n), u_n - u \rangle \leq 0,$$

imply $u_n \to u$ in $W_0^{1,p}(\Omega)$.

Moreover, we denote by $\hat{\lambda}_1$ the first eigenvalue of $(-\Delta_p, W_0^{1,p}(\Omega))$ and by $\hat{u}_1 \in W_0^{1,p}(\Omega)$ the corresponding positive, L^p -normalized, that is, $\|\hat{u}_1\|_p = 1$, eigenfunction. We know that $\hat{\lambda}_1 > 0$ and $\hat{u}_1 \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$, see Gasiński-Papageorgiou [3].

Also, for a given $\varphi \in C^1(X, \mathbb{R})$ we denote by K_{φ} the critical set of φ , that is, $K_{\varphi} = \{u \in X : \varphi'(u) = 0\}$.

Now we introduce the hypotheses on the nonlinearity $f: \Omega \times \mathbb{R} \to \mathbb{R}$.

H: $f: \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function such that f(x, 0) = 0 for a.a. $x \in \Omega$ and (i) if $a \in L^s(\Omega)$ with s > N, then

$$0 < f(x, s) \le a(x) \left(1 + s^{r-1}\right)$$

for a.a. $x \in \Omega$, for all s > 0 and for $p < r < p^*$;

(ii) if $F(x, s) = \int_0^s f(x, t) dt$, then

$$\lim_{s \to +\infty} \frac{F(x,s)}{s^p} = +\infty \quad \text{uniformly for a.a. } x \in \Omega;$$

(iii) if

$$\hat{\eta}_{\lambda}(x,s) = \left[1 - \frac{p}{1 - \gamma}\right] s^{1 - \gamma} + \lambda \left[f(x,s)s - pF(x,s)\right]$$

with $\lambda > 0$, then

$$\hat{\eta}_{\lambda}(x, s_1) \leq \hat{\eta}_{\lambda}(x, s_2) + \tau_{\lambda}(x)$$

for a.a. $x \in \Omega$, for all $0 \le s_1 \le s_2$ with $\tau_{\lambda} \in L^1(\Omega)$ and $\lambda \to \tau_{\lambda}$ is nondecreasing from $(0, +\infty)$ into $L^1(\Omega)$;

(iv) there exist $c_1 > 0$ and $q \le p$ such that

$$f(x,s) \le c_1 \left[s^{r-1} + s^{q-1} \right]$$

for a.a. $x \in \Omega$ and for all $s \ge 0$;

(v) for every $\eta > 0$ there exists $m_{\eta} > 0$ such that

$$f(x,s) \ge m_n$$

for a.a. $x \in \Omega$ and for all $s \ge \eta$;

(vi) for every $\rho > 0$ there exists $\hat{\xi}_{\rho} > 0$ such that the function

$$s \to f(x,s) + \hat{\xi}_{\rho} s^{p-1}$$

is nondecreasing on $[0, \rho]$ for a.a. $x \in \Omega$.

Remark 2.3. Since we are interested on positive solutions and the hypotheses above concern the positive semiaxis $\mathbb{R}_+ = [0, +\infty)$, without any loss of generality, we may assume that

$$f(x, s) = 0$$
 for a.a. $x \in \Omega$ and for all $s \le 0$. (2.2)

Hypotheses H(ii), H(iii) imply that

$$\lim_{s \to +\infty} \frac{f(x,s)}{s^{p-1}} = +\infty \quad \text{uniformly for a.a. } x \in \Omega.$$

Hence, the perturbation term in (P_{λ}) is (p-1)-superlinear in the second variable. However, we do not employ the usual AR-condition for superlinear problems. Recall that this condition says that there exist $\tau > p$ and M > 0 such that

$$0 < \tau F(x, s) < f(x, s)s \quad \text{for a.a. } x \in \Omega \text{ and for all } s > M, \tag{2.3}$$

$$0 < \operatorname{ess inf}_{\Omega} F(\cdot, M). \tag{2.4}$$

In fact this is a unilateral version of the AR-condition on account of (2.2). Integrating (2.3) and using (2.4) we obtain the weaker condition

$$c_2 s^{\tau} \leq F(x, s)$$
 for a.a. $x \in \Omega$, for all $s \geq M$ and for some $c_2 > 0$.

Hence, the AR-condition implies that $f(x, \cdot)$ exhibits at least $(\tau - 1)$ -polynomial growth. This excludes superlinear nonlinearities with slower growth near $+\infty$ from consideration. Instead we employ the quasimonotonicity condition on $\eta_{\lambda}(x, \cdot)$ in hypothesis H(iii). This condition is a slight generalization of a hypothesis introduced by Li–Yang [11]. This superlinearity hypothesis is different from the one used by Papageorgiou–Smyrlis [15]. There are easy ways to verify H(iii). For example, condition H(iii) holds if there exists M > 0 such that

$$s \to \frac{s^{-\gamma} + \lambda f(x, s)}{s^{p-1}}$$

is nondecreasing on $[M, +\infty)$ for a.a. $x \in \Omega$ or

$$s \to \hat{\eta}_{\lambda}(x,s)$$

is nondecreasing on $[M, +\infty)$, see Li–Yang [11].

Hypothesis H(iv) allows perturbations which have concave terms. This is excluded from the hypotheses of Papageorgiou–Smyrlis [15]. Hypothesis H(iv) is satisfied if, for example, $f(x, \cdot)$ is differentiable for a.a. $x \in \Omega$ and for every $\rho > 0$ there exists $c_{\rho} > 0$ such that

$$f_s'(x,s) \ge -c_{\varrho} s^{\varrho-1}$$

for a.a. $x \in \Omega$ and for all $0 \le s \le \rho$.

Example 2.4. For the sake of simplicity we drop the x-dependence. The following functions satisfy hypotheses H:

$$f_1(s) = s^{\tau - 1} \text{ with } p < \tau < p^*,$$

$$f_2(s) = \begin{cases} (s^+)^{\vartheta - 1} & \text{if } s \le 1, \\ s^{p - 1}[\ln s + 1] & \text{if } 1 < s \end{cases} \text{ with } 1 < \vartheta < p < \infty.$$

Note that f_2 fails to satisfy the AR-condition and it is outside the framework of Papageorgiou–Smyrlis [15].

3. Positive solutions

We introduce the following two sets

 $\mathcal{L} = \{\lambda > 0 : \text{problem } (P_{\lambda}) \text{ has a positive solution} \},$

 $S_{\lambda} = \{u : u \text{ is a positive solution of problem } (P_{\lambda})\}.$

Proposition 3.1. *If hypotheses H hold, then* $\mathcal{L} \neq \emptyset$.

Proof. We consider the following purely singular Dirichlet problem

$$-\Delta_p u = u^{-\gamma} \text{ in } \Omega, \quad u\big|_{\partial\Omega} = 0, \quad u > 0.$$
 (3.1)

From Papageorgiou–Smyrlis [15, Proposition 5] we know that problem (3.1) has a unique positive solution $\tilde{u} \in \text{int}(C_0^1(\overline{\Omega})_+)$. Moreover, we consider the following auxiliary Dirichlet problem

$$-\Delta_p u = 1 \text{ in } \Omega, \quad u\big|_{\partial\Omega} = 0. \tag{3.2}$$

Problem (3.2) has a unique solution $e \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ which can be shown easily. For $1 < \tau < +\infty$, we have $e^{\tau} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ and using Proposition 2.1 of Marano–Papageorgiou [12], see also Gasiński–Papageorgiou [4, Problem 4.180, p. 680], there exists $c_3 > 0$ such that $\hat{u}_1 \leq c_3 e^{\tau}$ and so

$$\hat{u}_1^{\frac{1}{\tau}} \le c_3^{\frac{1}{\tau}} e,$$

which implies

$$e^{-\gamma} \le c_4 \hat{\mu}_1^{-\frac{\gamma}{\tau}} \tag{3.3}$$

for some $c_4 > 0$. From the Lemma in Lazer–McKenna [9] we know that

$$\hat{u}_1^{-\frac{\gamma}{\tau}} \in L^{\tau}(\Omega).$$

This fact along with (3.3) gives

$$e^{-\gamma} \in L^{\tau}(\Omega)$$
 and $\|e^{-\gamma}\|_{\tau} \leq c_4 \|\hat{u}_1^{-\gamma}\|_{1}^{\frac{1}{\tau}}$.

Hence

$$\lim_{\tau \to +\infty} \sup_{\tau \to +\infty} \|e^{-\gamma}\|_{\tau} \le c_4. \tag{3.4}$$

On the other hand, from the Chebyshev inequality, we have

$$\eta^{\tau} \left| \left\{ e^{-\gamma} \ge \eta \right\} \right|_{N} \le \left\| e^{-\gamma} \right\|_{\tau}^{\tau}$$

with $\eta > 0$, or equivalently,

$$\eta \left| \left\{ e^{-\gamma} \ge \eta \right\} \right|_N^{\frac{1}{\tau}} \le \left\| e^{-\gamma} \right\|_{\tau}.$$

This fact yields

$$\eta \le \liminf_{\tau \to +\infty} \|e^{-\gamma}\|_{\tau} \quad \text{provided} \quad \left| \left\{ e^{-\gamma} \ge \eta \right\} \right|_{N} > 0.$$
(3.5)

From (3.4) and (3.5) it follows that

$$e^{-\gamma} \in L^{\infty}(\Omega)$$
 and $\|e^{-\gamma}\|_{\tau} \to \|e^{-\gamma}\|_{\infty}$ as $\tau \to +\infty$.

Now let $c_5 > \|e^{-\gamma}\|_{\infty}$ and $m_0 = \|e\|_{\infty}$. For t > 0 we consider the function

$$\vartheta(t) = \frac{t^{p-1} - c_5 t^{-\gamma}}{c_1 \left[m_0^{r-1} t^{r-1} + m_0^{q-1} t^{q-1} \right]}$$

$$= \frac{t^{p+\gamma-1} - c_5}{c_1 \left[m_0^{r-1} t^{r+\gamma-1} + m_0^{q-1} t^{q+\gamma-1} \right]}$$

$$= \frac{1}{c_1 \left[m_0^{r-1} t^{r-p} + m_0^{q-1} t^{q-p} \right]} - \frac{c_5}{c_1 \left[m_0^{r-1} t^{r+\gamma-1} + m_0^{q-1} t^{q+\gamma-1} \right]}$$

$$= \frac{t^{p-q}}{c_1 \left[m_0^{r-1} t^{r-q} + m_0^{q-1} \right]} - \frac{c_5}{c_1 \left[m_0^{r-1} t^{r+\gamma-1} + m_0^{q-1} t^{q+\gamma-1} \right]}.$$

Since $q \le p < r$ we see that

$$\vartheta(t) \to -\infty \text{ as } t \to 0^+ \text{ and } \vartheta(t) \to 0^+ \text{ as } t \to +\infty.$$

Therefore, there exists $t_0 > 0$ such that

$$\lambda_0 = \vartheta(t_0) = \max \left[\vartheta(t) : t > 0 \right] > 0.$$

Let $\lambda \in (0, \lambda_0)$. We can find t > 0 such that $\vartheta(t) > \lambda$. Hence

$$t^{p-1} \ge c_5 t^{-\gamma} + \lambda c_1 \left[m_0^{r-1} t^{r-1} + m_0^{q-1} t^{q-1} \right]. \tag{3.6}$$

We set $\overline{u} = te \in \text{int}(C_0^1(\overline{\Omega})_+)$. Then, because of (3.6), hypothesis H(iv) and the choice of c_5 , m_0 , we obtain

$$-\Delta_{p}\overline{u} = t^{p-1} \left[-\Delta_{p}e \right]$$

$$= t^{p-1}$$

$$\geq c_{5}t^{-\gamma} + \lambda c_{1} \left[m_{0}^{r-1}t^{r-1} + m_{0}^{q-1}t^{q-1} \right]$$

$$\geq \overline{u}^{-\gamma} + \lambda c_{1} \left[\overline{u}^{r-1} + \overline{u}^{q-1} \right]$$

$$\geq \overline{u}^{-\gamma} + \lambda f(x, \overline{u}) \quad \text{for a.a. } x \in \Omega.$$

$$(3.7)$$

Since $\overline{u} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$, as before, there exists $\vartheta \in (0,1)$ small enough such that $\vartheta \widetilde{u} \leq \overline{u}$. If $\widetilde{u}_0 = \vartheta \widetilde{u} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$, then

$$-\Delta_{p}\tilde{u}_{0} = -\Delta_{p}\left(\vartheta\tilde{u}\right) = \vartheta^{p-1}\left(-\Delta_{p}\tilde{u}\right) = \vartheta^{p-1}\tilde{u}^{-\gamma} \le \left(\vartheta\tilde{u}\right)^{-\gamma} = \tilde{u}_{0}^{-\gamma} \tag{3.8}$$

since $\vartheta \in (0, 1)$. Using the functions $\tilde{u}_0, \overline{u} \in \operatorname{int} \left(C_0^1(\overline{\Omega})_+\right)$, we introduce the following truncation of the reaction of problem (P_{λ})

$$g_{\lambda}(x,s) = \begin{cases} \tilde{u}_{0}(x)^{-\gamma} + \lambda f(x, \tilde{u}_{0}(x)) & \text{if } s < \tilde{u}_{0}(x), \\ s^{-\gamma} + \lambda f(x,s) & \text{if } \tilde{u}_{0}(x) \le s \le \overline{u}(x), \\ \overline{u}(x)^{-\gamma} + \lambda f(x, \overline{u}(x)) & \text{if } \overline{u}(x) < s, \end{cases}$$
(3.9)

with $\lambda \in (0, \lambda_0)$. Evidently, $g_{\lambda} : \Omega \times \mathbb{R} \to \mathbb{R}$ is a Carathéodory function. We set $G_{\lambda}(x, s) = \int_0^s g_{\lambda}(x, t) dt$ and consider the functional $\psi_{\lambda} : W_0^{1, p}(\Omega) \to \mathbb{R}$ defined by

$$\psi_{\lambda}(u) = \frac{1}{p} \|\nabla u\|_p^p - \int_{\Omega} G_{\lambda}(x, u) dx.$$

On account of Proposition 3 of Papageorgiou–Smyrlis [15] we have that $\psi_{\lambda} \in C^1(W_0^{1,p}(\Omega))$. Moreover, from (3.9) it is clear that ψ_{λ} is coercive. The Sobolev embedding theorem implies that ψ_{λ} is sequentially weakly lower semicontinuous. So, by the Weierstraß–Tonelli theorem, there exists $u_{\lambda} \in W_0^{1,p}(\Omega)$ such that

$$\psi_{\lambda}(u_{\lambda}) = \inf \left[\psi_{\lambda}(u) : u \in W_0^{1,p}(\Omega) \right].$$

Since u_{λ} is a global minimizer, it fulfills $\psi'_{\lambda}(u_{\lambda}) = 0$, which is equivalent to

$$\langle A(u_{\lambda}), h \rangle = \int_{\Omega} g_{\lambda}(x, u_{\lambda}) h dx \quad \text{for all } h \in W_0^{1, p}(\Omega).$$
 (3.10)

Taking $h = (\tilde{u}_0 - u_\lambda)^+ \in W_0^{1,p}(\Omega)$ in (3.10) gives, thanks to (3.9), (3.8) and the fact that $f \ge 0$,

$$\langle A(u_{\lambda}), (\tilde{u}_{0} - u_{\lambda})^{+} \rangle = \int_{\Omega} \left[\tilde{u}_{0}^{-\gamma} + \lambda f(x, \tilde{u}_{0}) \right] (\tilde{u}_{0} - u_{\lambda})^{+} dx$$

$$\geq \int_{\Omega} \tilde{u}_{0}^{-\gamma} (\tilde{u}_{0} - u_{\lambda})^{+} dx$$

$$\geq \langle A(\tilde{u}_{0}), (\tilde{u}_{0} - u_{\lambda})^{+} \rangle.$$

Because of the monotonicity of A, see Proposition 2.2, we obtain that $\tilde{u}_0 \le u_\lambda$. Next, we choose $h = (u_\lambda - \overline{u})^+ \in W_0^{1,p}(\Omega)$ in (3.10). This gives, by applying (3.9) and (3.7), that

$$\langle A(u_{\lambda}), (u_{\lambda} - \overline{u})^{+} \rangle = \int_{\Omega} \left[\overline{u}^{-\gamma} + \lambda f(x, \overline{u}) \right] (u_{\lambda} - \overline{u})^{+} dx \leq \langle A(\overline{u}), (u_{\lambda} - \overline{u})^{+} \rangle.$$

As before, by applying Proposition 2.2, it follows that $u_{\lambda} \leq \overline{u}$. So, we have proved that

$$u_{\lambda} \in \left[\tilde{u}_0, \overline{u}\right]. \tag{3.11}$$

From (3.9), (3.10), (3.11), it follows that

$$\langle A(u_{\lambda}), h \rangle = \int_{\Omega} \left[u_{\lambda}^{-\gamma} + \lambda f(x, u_{\lambda}) \right] h dx \quad \text{for all } h \in W_0^{1, p}(\Omega).$$
 (3.12)

Since $\tilde{u}_0 \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$, as before, we have that $\tilde{u}_0^{-\gamma} \in L^s(\Omega)$ for s > N and since $0 \le u_{\lambda}^{-\gamma} \le \tilde{u}_0^{-\gamma}$, see (3.11), one has that $u_{\lambda}^{-\gamma} \in L^s(\Omega)$. From (3.12) it follows that

$$-\Delta_p u_{\lambda}(x) = u_{\lambda}(x)^{-\gamma} + \lambda f(x, u_{\lambda}(x)) \quad \text{for a.a. } x \in \Omega, \quad u_{\lambda} \Big|_{\partial \Omega} = 0.$$
 (3.13)

From (3.13) and Proposition 1.3 of Guedda–Véron [7] we have that $u_{\lambda} \in L^{\infty}(\Omega)$. Let $\xi_{\lambda}(x) = u_{\lambda}(x)^{-\gamma} + \lambda f(x, u_{\lambda}(x))$. Then $\xi_{\lambda} \in L^{s}(\Omega)$, see hypothesis H(i). We consider now the following linear Dirichlet problem

$$-\Delta v = \xi_{\lambda} \quad \text{in } \Omega, \quad v\big|_{\partial\Omega}.$$

This problem has a unique solution v_{λ} which by the linear regularity theory belongs to $W^{2,s}(\Omega)$, see Gilbarg–Trudinger [6, Theorem 9.15, p. 241]. Then, since s > N, the Sobolev embedding theorem implies that

$$v_{\lambda} \in C_0^{1,\alpha}(\overline{\Omega}) \quad \text{with} \quad \alpha = 1 - \frac{N}{s}.$$
 (3.14)

We set $k_{\lambda}(x) = \nabla v_{\lambda}(x)$. Then $k_{\lambda} \in C^{0,\alpha}(\overline{\Omega}, \mathbb{R}^N)$, see (3.14). From (3.13) we obtain

$$-\operatorname{div}\left(\left|\nabla u_{\lambda}(x)\right|^{p-2}\nabla u_{\lambda}(x)-k_{\lambda}(x)\right)=0\quad\text{for a.a. }x\in\Omega,\quad \left.u_{\lambda}\right|_{\partial\Omega}=0.$$

Invoking Theorem 1 of Lieberman [10], we infer that $u_{\lambda} \in C_0^1(\overline{\Omega})_+ \setminus \{0\}$. Finally from (3.13) and the nonlinear maximum principle, see for example, Gasiński–Papageorgiou [3, Theorem 6.2.8, p. 738] and Pucci–Serrin [17, p. 120], we conclude that $u_{\lambda} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$. It follows that $(0, \lambda_0) \subseteq \mathcal{L}$ and so $\mathcal{L} \neq \emptyset$. \square

From the proof above we infer the following corollary.

Corollary 3.2. If hypotheses H hold and $\lambda \in \mathcal{L}$, then $S_{\lambda} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$.

In the next proposition we show that \mathcal{L} is in fact an interval.

Proposition 3.3. *If hypotheses H hold,* $\lambda \in \mathcal{L}$ *and* $0 < \mu < \lambda$ *, then* $\mu \in \mathcal{L}$.

Proof. Since $\lambda \in \mathcal{L}$ there exists $u_{\lambda} \in \mathcal{S}_{\lambda} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$, see Corollary 3.2. Since $\mu < \lambda$ and $f \ge 0$, we have

$$-\Delta_p u_{\lambda}(x) = u_{\lambda}(x)^{-\gamma} + \lambda f(x, u_{\lambda}(x)) \ge u_{\lambda}(x)^{-\gamma} + \mu f(x, u_{\lambda}(x))$$

for a.a. $x \in \Omega$. Recall that $\tilde{u} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ is the unique solution of (3.1). Since $u_{\lambda} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ there exists $t \in (0,1)$ small enough such that $t\tilde{u} \leq u_{\lambda}$. We set $\tilde{u}_* = t\tilde{u} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ and introduce the following truncation nonlinearity

$$\hat{g}_{\mu}(x,s) = \begin{cases} \tilde{u}_{*}(x)^{-\gamma} + \mu f(x, \tilde{u}_{*}(x)) & \text{if } s < \tilde{u}_{*}(x), \\ s^{-\gamma} + \mu f(x,s) & \text{if } \tilde{u}_{*}(x) \le s \le u_{\lambda}(x), \\ u_{\lambda}(x)^{-\gamma} + \mu f(x, u_{\lambda}(x)) & \text{if } u_{\lambda}(x) < s, \end{cases}$$
(3.15)

which is a Carathéodory function. We set $\hat{G}_{\mu}(x,s) = \int_0^s \hat{g}_{\mu}(x,t)dt$ and consider the functional $\hat{\psi}_{\mu}: W_0^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$\hat{\psi}_{\mu}(u) = \frac{1}{p} \|\nabla u\|_p^p - \int_{\Omega} \hat{G}_{\mu}(x, u) dx.$$

As before, we have $\hat{\psi}_{\mu} \in C^1(W_0^{1,p}(\Omega))$, see Papageorgiou–Smyrlis [15, Proposition 3]. From (3.15) it is clear that $\hat{\psi}_{\lambda}$ is coercive. Also, it is sequentially weakly lower semicontinuous. So, by the Weierstraß–Tonelli theorem there exists $u_{\mu} \in W_0^{1,p}(\Omega)$ such that

$$\hat{\psi}_{\mu}(u_{\mu}) = \inf \left[\hat{\psi}_{\mu}(u) : u \in W_0^{1,p}(\Omega)\right].$$

Hence, $\hat{\psi}'_{\mu}(u_{\mu}) = 0$ which is equivalent to

$$\langle A(u_{\mu}), h \rangle = \int_{\Omega} \hat{g}_{\mu}(x, u_{\mu}) h dx \quad \text{for all } h \in W_0^{1, p}(\Omega).$$
 (3.16)

We choose $h = (\tilde{u}_* - u_\mu)^+ \in W_0^{1,p}(\Omega)$ in (3.16). Then, using (3.15), $f \ge 0$, (3.1) and $\tilde{u}_* = t\tilde{u}$ for 0 < t < 1, we obtain

$$\langle A(u_{\mu}), \left(\tilde{u}_{*} - u_{\mu}\right)^{+} \rangle = \int_{\Omega} \left[\tilde{u}_{*}^{-\gamma} + \mu f\left(x, \tilde{u}_{*}\right)\right] \left(\tilde{u}_{*} - u_{\mu}\right)^{+} dx$$

$$\geq \int_{\Omega} \tilde{u}_{*}^{-\gamma} \left(\tilde{u}_{*} - u_{\mu}\right)^{+} dx$$

$$\geq \left\langle A\left(\tilde{u}_{*}\right), \left(\tilde{u}_{*} - u_{\mu}\right)^{+} \right\rangle.$$

Hence, by Proposition 2.2, $\tilde{u}_* \leq u_\mu$. Next, we choose $h = (u_\mu - u_\lambda)^+ \in W_0^{1,p}(\Omega)$ in (3.16). Then, as before, by applying (3.15) and since $f \geq 0$, $\mu < \lambda$ and $u_\lambda \in \mathcal{S}_\lambda$ we obtain

$$\langle A(u_{\mu}), (u_{\mu} - u_{\lambda})^{+} \rangle = \int_{\Omega} \left[u_{\lambda}^{-\gamma} + \mu f(x, u_{\mu}) \right] (u_{\mu} - u_{\lambda})^{+} dx$$

$$\leq \left[u_{\lambda}^{-\gamma} + \lambda f(x, u_{\lambda}) \right] (u_{\mu} - u_{\lambda})^{+} dx$$

$$= \langle A(u_{\lambda}), (u_{\mu} - u_{\lambda})^{+} \rangle.$$

Using Proposition 2.2 we see that $u_{\mu} \leq u_{\lambda}$.

So, we have proved that

$$u_{\mu} \in \left[\tilde{u}_*, u_{\lambda}\right]. \tag{3.17}$$

From (3.15), (3.16) and (3.17) we infer that $u_{\mu} \in \mathcal{S}_{\mu} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$ and so $\mu \in \mathcal{L}$. \square

A useful byproduct of the proof above is the following corollary.

Corollary 3.4. If hypotheses H hold, $0 < \mu < \lambda \in \mathcal{L}$ and $u_{\lambda} \in \mathcal{S}_{\lambda} \subseteq \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$, then $\mu \in \mathcal{L}$ and there exists $u_{\mu} \in \mathcal{S}_{\mu} \subseteq \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ such that $u_{\lambda} - u_{\mu} \in C_0^1(\overline{\Omega})_+ \setminus \{0\}$.

In fact using hypotheses H(v), (vi) we can improve the conclusion of the corollary above.

Proposition 3.5. If hypotheses H hold, $0 < \mu < \lambda \in \mathcal{L}$ and if $u_{\lambda} \in \mathcal{S}_{\lambda} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$, then $\mu \in \mathcal{L}$ and there exists $u_{\mu} \in \mathcal{S}_{\mu} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$ such that $u_{\lambda} - u_{\mu} \in \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$.

Proof. From Corollary 3.4 we already know that $\mu \in \mathcal{L}$ and we can find $u_{\lambda} \in \mathcal{S}_{\mu} \subseteq \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ such that $u_{\lambda} - u_{\mu} \in C_0^1(\overline{\Omega})_+ \setminus \{0\}$. Let $\rho = \|u_{\lambda}\|_{\infty}$ and let $\hat{\xi}_{\rho} > 0$ be as postulated by hypothesis H(vi). Since $u_{\mu} \in \mathcal{S}_{\mu} \subseteq \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$, $u_{\lambda} \in \mathcal{S}_{\lambda} \subseteq \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$, $u_{\mu} \leq u_{\lambda}$ and because of hypotheses H(v), (vi) we derive

$$- \Delta_{p} u_{\mu}(x) + \lambda \hat{\xi}_{\rho} u_{\mu}(x)^{p-1} - u_{\mu}(x)^{-\gamma}$$

$$= \mu f(x, u_{\mu}(x)) + \lambda \hat{\xi}_{\rho} u_{\mu}(x)^{p-1}$$

$$= \lambda f(x, u_{\mu}(x)) + \lambda \hat{\xi}_{\rho} u_{\mu}(x)^{p-1} - (\lambda - \mu) f(x, u_{\mu}(x))$$

$$< \lambda f(x, u_{\lambda}(x)) + \lambda \hat{\xi}_{\rho} u_{\lambda}(x)^{p-1}$$

$$= -\Delta_{p} u_{\lambda}(x) + \lambda \hat{\xi}_{\rho} u_{\lambda}^{p-1} - u_{\lambda}(x)^{-\gamma}$$
(3.18)

for a.a. $x \in \Omega$. Let $\hat{h}_0(x) = (\lambda - \mu) f(x, u_\mu(x))$. Since $u_\mu \in \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$ and using hypothesis H(v), we see that $0 < \hat{h}_0$. Therefore, from (3.18) and the singular strong comparison principle, see Papageorgiou–Smyrlis [15, Proposition 4], we conclude that $u_\lambda - u_\mu \in \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$. \square

We set $\lambda^* = \sup \mathcal{L}$.

Proposition 3.6. *If hypotheses H hold, then* $\lambda^* < \infty$.

Proof. Recall that

$$\lim_{s \to +\infty} \frac{f(x,s)}{s^{p-1}} = +\infty \quad \text{uniformly for a.a. } x \in \Omega,$$

see hypotheses H(ii), (iii). Therefore, for a given $k > \hat{\lambda}_1$, there exists M > 0 such that

$$f(x, s) \ge ks^{p-1}$$
 for a.a. $x \in \Omega$ and for all $s \ge M$. (3.19)

On the other hand, we have

$$s^{-\gamma} + \lambda f(x, s) \ge M^{-\gamma} + \lambda f(x, s) \tag{3.20}$$

for a.a. $x \in \Omega$, for all $0 \le s \le M$ and for all $\lambda > 0$. Note that, since $f \ge 0$,

$$\lim_{s \to 0^+} \frac{M^{-\gamma} + \lambda f(x, s)}{s^{p-1}} = +\infty \quad \text{uniformly for a.a. } x \in \Omega,$$

which implies that there exists $\delta_{\lambda} > 0$ such that

$$M^{-\gamma} + \lambda f(x, s) \ge \hat{\lambda}_1 s^{p-1}$$
 for a.a. $x \in \Omega$ and for all $0 \le s \le \delta_{\lambda}$.

Combining this with (3.20) we see that

$$s^{-\gamma} + \lambda f(x, s) \ge \hat{\lambda}_1 s^{p-1}$$
 for a.a. $x \in \Omega$ and for all $0 \le s \le \delta_{\lambda}$. (3.21)

Finally, note that on account of hypothesis H(v), there exists $\tilde{\lambda} \ge 1$ large enough such that

$$s^{-\gamma} + \tilde{\lambda} f(x, s) \ge M^{-\gamma} + \tilde{\lambda} m_{\delta_{\tilde{i}}} \ge \hat{\lambda}_1 M^{p-1} \ge \hat{\lambda}_1 s^{p-1}$$
(3.22)

for a.a. $x \in \Omega$ and for all $\delta_{\tilde{\lambda}} \leq s \leq M$. Combining (3.19), (3.21), and (3.22) we conclude that

$$s^{-\gamma} + \tilde{\lambda} f(x, s) \ge \hat{\lambda}_1 s^{p-1}$$
 for a.a. $x \in \Omega$ and for all $s \ge 0$. (3.23)

Let $\lambda > \tilde{\lambda}$ and suppose that $\lambda \in \mathcal{L}$. There exists $u_{\lambda} \in \mathcal{S}_{\lambda} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$. Let t > 0 be such that

$$t\hat{u}_1 \le u_{\lambda}. \tag{3.24}$$

Assume that t > 0 is the largest positive real number for which (3.24) holds. Let $\rho = ||u_{\lambda}||_{\infty}$ and let $\hat{\xi}_{\rho} > 0$ be as postulated by hypothesis H(vi). Applying (3.24), hypothesis H(vi) and (3.23) gives

$$-\Delta_{p}u_{\lambda}(x) + \lambda \hat{\xi}_{\rho}u_{\lambda}(x)^{p-1} - u_{\lambda}(x)^{-\gamma}$$

$$= \lambda f(x, u_{\lambda}(x)) + \lambda \hat{\xi}_{\rho}u_{\lambda}(x)^{p-1}$$

$$\geq \lambda f(x, t\hat{u}_{1}(x)) + \lambda \hat{\xi}_{\rho}(t\hat{u}_{1}(x))^{p-1}$$

$$= \tilde{\lambda} f(x, t\hat{u}_{1}(x)) + \lambda \hat{\xi}_{\rho}(t\hat{u}_{1}(x))^{p-1} + (\lambda - \tilde{\lambda}) f(x, t\hat{u}_{1}(x))$$

$$\geq \hat{\lambda}_{1}(t\hat{u}_{1}(x))^{p-1} + \lambda \hat{\xi}_{\rho}(t\hat{u}_{1}(x))^{p-1}$$

$$\geq -\Delta_{p}(t\hat{u}_{1}(x)) + \lambda \hat{\xi}_{\rho}(t\hat{u}_{1}(x))^{p-1} - (t\hat{u}_{1}(x))^{-\gamma} \quad \text{for a.a. } x \in \Omega.$$

$$(3.25)$$

We set $\tilde{h}_0(x) = \left(\lambda - \tilde{\lambda}\right) f\left(x, t\hat{u}_1(x)\right)$. We see that since $\hat{u}_1 \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ and because of hypothesis H(v), we have $0 < \tilde{h}_0$. Therefore, from (3.25) and Papageorgiou–Smyrlis [15, Proposition 4] we infer that $u_{\lambda} - t\hat{u}_1 \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ which contradicts the maximality of t > 0, see (3.24). This shows that $\lambda \notin \mathcal{L}$ and so $\lambda^* \leq \tilde{\lambda} < +\infty$. \square

Next we show that the critical parameter $\lambda^* > 0$ is admissible.

Proposition 3.7. *If hypotheses H hold, then* $\lambda^* \in \mathcal{L}$.

Proof. Consider a sequence $\{\lambda_n\}_{n\geq 1}\subseteq (0,\lambda^*)\subseteq \mathcal{L}$ such that $\lambda_n\to (\lambda^*)^-$ as $n\to\infty$. From the proof of Proposition 3.3 we know that there exists $u_n\in \mathcal{S}_{\lambda_n}\subseteq \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ for each $n\in\mathbb{N}$ such that

$$\{u_n\}_{n\geq 1}$$
 is increasing and $\tilde{u}_* = t\tilde{u} \leq u_n$ for all $n \in \mathbb{N}$. (3.26)

Let $\hat{\psi}_{\lambda_n} \in C^1(W_0^{1,p}(\Omega))$ be as in the proof of Proposition 3.3 resulting from the truncation of the reaction of (P_{λ}) with λ replaced by λ_n at $\{\tilde{u}_*(x), u_{n+1}(x)\} = \{t\tilde{u}(x), u_{n+1}(x)\}$, see (3.15). We know that $u_n \in [\tilde{u}_*, u_{n+1}]$ is the minimizer of $\hat{\psi}_{\lambda_n}$. Therefore, because of (3.15) with $u_{\lambda} = u_{n+1}$ and hypothesis H(v), we have

$$\hat{\psi}_{\lambda_n}(u_n) \leq \hat{\psi}_{\lambda_n}(\tilde{u}_*) = \frac{1}{p} \|\nabla \tilde{u}_*\|_p^p - \int_{\Omega} \left[\tilde{u}^{1-\gamma} + \lambda_n f(x, \tilde{u}_*) \tilde{u}_* \right] dx$$

$$= \frac{t^p}{p} \|\nabla \tilde{u}\|_p^p - t^{1-\gamma} \int_{\Omega} \tilde{u}^{1-\gamma} dx - \lambda_n \int_{\Omega} f(x, \tilde{u}_*) \tilde{u}_* dx$$

$$< \frac{t^p}{p} \|\nabla \tilde{u}\|_p^p - t^{1-\gamma} \int_{\Omega} \tilde{u}^{1-\gamma} dx.$$
(3.27)

We know that

$$\|\nabla \tilde{u}\|_p^p = \int\limits_{\Omega} \tilde{u}^{1-\gamma} dx,$$

see (3.27). Hence, since $t \in (0, 1)$,

$$t^p \|\nabla \tilde{u}\|_p^p \le t^{1-\gamma} \int_{\Omega} \tilde{u}^{1-\gamma} dx.$$

This finally gives

$$\hat{\psi}_{\lambda_n}(u_n) < 0 \quad \text{for all } n \in \mathbb{N}, \tag{3.28}$$

see (3.27).

Consider now the Carathéodory function $\tilde{g}_{\lambda_n}: \Omega \times \mathbb{R} \to \mathbb{R}$ defined by

$$\tilde{g}_{\lambda_n}(x,s) = \begin{cases} \tilde{u}_*(x)^{-\gamma} + \lambda_n f(x, \tilde{u}_*(x)) & \text{if } s \le \tilde{u}_*(x), \\ s^{-\gamma} + \lambda_n f(x,s) & \text{if } \tilde{u}_*(x) < s. \end{cases}$$
(3.29)

We set $\tilde{G}_{\lambda_n}(x,s) = \int_0^s \tilde{g}_{\lambda_n}(x,t)dt$ and consider the C^1 -functional $\tilde{\varphi}_{\lambda_n}: W_0^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$\tilde{\varphi}_{\lambda_n}(u) = \frac{1}{p} \|\nabla u\|_p^p - \int\limits_{\Omega} \tilde{G}_{\lambda_n}(x, u) dx.$$

Note that

$$\tilde{\varphi}_{\lambda_n}|_{\tilde{u}_*,u_{n+1}} = \hat{\psi}_{\lambda_n}|_{\tilde{u}_*,u_{n+1}}$$

Then, see (3.28), we have $\tilde{\varphi}_{\lambda_n}(u_n) < 0$ for all $n \in \mathbb{N}$ and so

$$\|\nabla u_n\|_p^p - \int_{\Omega} p\tilde{G}_{\lambda_n}(x,u_n)dx < 0.$$

Applying (3.29) and the fact that $u_n \in [\tilde{u}_*, u_{n+1}]$ leads to

$$\|\nabla u_{n}\|_{p}^{p} - \int_{\Omega} p \left[\tilde{u}_{*}^{1-\gamma} + \lambda_{n} f(x, \tilde{u}_{*})\right] \tilde{u}_{*} dx - \frac{p}{1-\gamma} \int_{\Omega} \left[u_{n}^{1-\gamma} - u_{*}^{1-\gamma}\right] - \lambda_{n} p \int_{\Omega} \left[F(x, u_{n}) - F(x, \tilde{u}_{*})\right] dx < 0.$$
(3.30)

Moreover, we know that

$$\langle A(u_n), h \rangle = \int_{\Omega} \tilde{g}_{\lambda_n}(x, u_n) h dx \quad \text{for all } h \in W_0^{1, p}(\Omega) \text{ and for all } n \in \mathbb{N}.$$
 (3.31)

Choosing $h = u_n \in W_0^{1,p}(\Omega)$ in (3.31) and applying (3.29) and the fact that $u_n \in [\tilde{u}_*, u_{n+1}]$ yields

$$-\|\nabla u_n\|_p^p + \int_{\Omega} \left[u_n^{1-\gamma} + \lambda_n f(x, u_n) u_n \right] dx = 0 \quad \text{for all } n \in \mathbb{N}.$$
 (3.32)

Adding (3.30) and (3.32) we obtain

$$\int_{\Omega} \hat{\eta}_{\lambda_n}(x, u_n) dx \le M_1 \quad \text{for some } M_1 > 0 \text{ and for all } n \in \mathbb{N}.$$
 (3.33)

Suppose that $\{u_n\}_{n\geq 1}\subseteq W_0^{1,p}(\Omega)$ is not bounded. By passing to a subsequence if necessary, we may assume that $\|u_n\|\to +\infty$. We set $y_n=\frac{u_n}{\|u_n\|}$ for $n\in\mathbb{N}$. Then we have $\|y_n\|=1$ and $y_n\geq 0$ for all $n\in\mathbb{N}$. So, we may assume that

$$y_n \xrightarrow{w} y$$
 in $W_0^{1,p}(\Omega)$ and $y_n \to y$ in $L^r(\Omega)$, with $y \ge 0$. (3.34)

First assume that $y \neq 0$ and set $\Omega^* = \{x \in \Omega : y(x) > 0\}$. We have $|\Omega^*|_N > 0$ and $u_n(x) \to +\infty$ for all $x \in \Omega^*$. We have

$$\frac{F(x, u_n(x))}{\|u_n\|^p} = \frac{F(x, u_n(x))}{u_n(x)^p} y_n(x)^p \to +\infty \quad \text{for a.a. } x \in \Omega^*$$

and so, by Fatou's Lemma,

$$\int_{\Omega^*} \frac{F(x, u_n)}{\|u_n\|^p} dx \to +\infty. \tag{3.35}$$

Since $F \ge 0$, we have

$$\int_{\Omega^*} \frac{F(x, u_n)}{\|u_n\|^p} dx \le \int_{\Omega} \frac{F(x, u_n)}{\|u_n\|^p} dx$$

and so, by (3.35),

$$\int \frac{F(x, u_n)}{\|u_n\|^p} dx \to +\infty. \tag{3.36}$$

Hypothesis H(iii) implies that

$$0 \le \hat{\eta}_{\lambda_n}(x, u_n(x)) + \tau_{\lambda^*}(x)$$
 for a.a. $x \in \Omega$ and for all $n \in \mathbb{N}$.

Then

$$\frac{p}{1-\nu}u_n(x)^{1-\gamma} + pF(x, u_n(x)) \le u_n(x)^{1-\gamma} + \lambda_n f(x, u_n(x))u_n(x) + \tau_{\lambda^*}(x)$$
 (3.37)

for a.a. $x \in \Omega$ and for all $n \in \mathbb{N}$. From (3.31) with $h = u_n \in W_0^{1,p}(\Omega)$ we obtain by using (3.29) and (3.26)

$$\|\nabla u_n\|_p^p = \int_{\Omega} \left[u_n^{1-\gamma} + \lambda_n f(x, u_n) u_n \right] dx \quad \text{for all } n \in \mathbb{N}.$$
 (3.38)

Applying (3.38) in (3.37) gives

$$p\lambda_n \int_{\Omega} F(x, u_n) dx \leq \|\nabla u_n\|_p^p + \|\tau_{\lambda^*}\|_1.$$

Hence

$$p\lambda_n \int_{\Omega} \frac{F(x, u_n)}{\|u_n\|^p} dx \le \|\nabla y_n\|_p^p + \frac{\|\tau_{\lambda^*}\|_1}{\|u_n\|^p} \quad \text{for all } n \in \mathbb{N}.$$
 (3.39)

Comparing (3.36) and (3.39) we have a contradiction.

Next suppose that y = 0. For $\mu > 0$ we set $v_n = (p\mu)^{\frac{1}{p}} y_n$ for all $n \in \mathbb{N}$. Then $v_n \in$ int $(C_0^1(\overline{\Omega})_+)$ and $v_n \to 0$ in $L^r(\Omega)$, see (3.34) and recall that y = 0. Then, by (3.29), we get

$$\int_{\Omega} \tilde{G}_{\lambda_n}(x, v_n) dx \to 0 \quad \text{as } n \to \infty.$$
 (3.40)

Since $||u_n|| \to +\infty$, there exists a number $n_0 \in \mathbb{N}$ such that

$$(p\mu)^{\frac{1}{p}} \frac{1}{\|u_n\|} \le 1 \quad \text{for all } n \ge n_0.$$
 (3.41)

Moreover, let $t_n \in [0, 1]$ be such that

$$\tilde{\varphi}_{\lambda_n}(t_n u_n) = \max_{0 \le t \le 1} \tilde{\varphi}_{\lambda_n}(t u_n), \quad n \in \mathbb{N}.$$

Applying (3.41), the representation $||y_n|| = 1$ for all $n \in \mathbb{N}$ and (3.40) leads to

$$\tilde{\varphi}_{\lambda_n}(t_n u_n) \ge \tilde{\varphi}_{\lambda_n}(v_n) \quad \text{for all } n \ge n_0$$

$$= \mu \|\nabla y_n\|_p^p - \int_{\Omega} \tilde{G}_{\lambda_n}(x, v_n) dx$$

$$= \mu - \int_{\Omega} \tilde{G}(x, v_n) dx \ge \frac{\mu}{2} \quad \text{for all } n \ge n_1 \ge n_0.$$
(3.42)

But recall that $\mu > 0$ is arbitrary. So, from (3.42) we infer that

$$\tilde{\varphi}_{\lambda_n}(t_n u_n) \to +\infty \quad \text{as } n \to \infty.$$
 (3.43)

We have

$$\tilde{\varphi}_{\lambda_n}(0) = 0$$
 and $\tilde{\varphi}_{\lambda_n}(u_n) < 0$ for all $n \in \mathbb{N}$.

From this and (3.43) it follows that $t_n \in (0, 1)$ for all $n \ge n_2$. Therefore, we obtain

$$\frac{d}{dt}\tilde{\varphi}_{\lambda_n}(tu_n)\big|_{t=t_0} = 0$$
 for all $n \ge n_2$

which means

$$\|\nabla(t_n u_n)\|_p^p = \int_{\Omega} \tilde{g}_{\lambda_n}(x, t_n u_n) u_n dx$$

and so

$$p\tilde{\varphi}_{\lambda_n}(t_nu_n) + p\int\limits_{\Omega} \tilde{G}_{\lambda_n}(x,t_nu_n)dx = \int\limits_{\Omega} \tilde{g}_{\lambda_n}(x,t_nu_n)(t_nu_n)dx.$$

Then we use hypothesis H(iii), (3.29) and recall that $t_n \in (0, 1)$ for all $n \ge n_2$ to get

$$p\tilde{\varphi}_{\lambda_n}(t_nu_n) \le \int\limits_{\Omega} \hat{\eta}_{\lambda_n}(x,u_n)dx + M_2$$

for some $M_2 > 0$ and for all $n \ge n_2$. Taking (3.43) into account gives

$$\int\limits_{\Omega} \hat{\eta}_{\lambda_n}(x, u_n) dx \to +\infty \quad \text{as } n \to \infty.$$

But this last convergence contradicts (3.33).

It follows that $\{u_n\}_{n\geq 1}\subseteq W_0^{1,p}(\Omega)$ is bounded and so we may assume that

$$u_n \stackrel{\text{w}}{\to} u^* \quad \text{in } W_0^{1,p}(\Omega) \quad \text{and} \quad u_n \to u^* \quad \text{in } L^r(\Omega) \quad \text{with } u^* \ge \tilde{u}_*.$$
 (3.44)

Choosing $h = u_n - u^* \in W_0^{1,p}(\Omega)$ in (3.31), recalling that $u_n^{-\gamma} \in L^{r'}(\Omega)$ with $\frac{1}{r} + \frac{1}{r'} = 1$, passing to the limit as $n \to \infty$ and applying (3.44) results in

$$\lim_{n\to\infty} \langle A(u_n), u_n - u^* \rangle = 0.$$

Since A has the $(S)_+$ -property, see Proposition 2.2, we infer that

$$u_n \to u^* \quad \text{in } W_0^{1,p}(\Omega).$$
 (3.45)

So, if we pass to the limit in (3.31) and apply (3.45), then we obtain

$$\langle A(u^*), h \rangle = \int_{\Omega} \tilde{g}_{\lambda^*}(x, u^*) h dx$$
 for all $h \in W_0^{1, p}(\Omega)$ with $u^* \ge \tilde{u}_*$.

Therefore, we have

$$\langle A(u^*), h \rangle = \int_{\Omega} \left[(u^*)^{-\gamma} + \lambda^* f(x, u^*) \right] h dx \quad \text{for all } h \in W_0^{1, p}(\Omega).$$

Hence, $u^* \in \mathcal{S}_{\lambda^*} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$ and $\lambda^* \in \mathcal{L}$. \square

In summary, we have proved that

$$\mathcal{L} = (0, \lambda^*].$$

Next we show that we have two solutions for all $\lambda \in (0, \lambda^*)$.

Proposition 3.8. If hypotheses H hold and $0 < \lambda < \lambda^*$, then problem (P_{λ}) has two positive solutions $u_0, \hat{u} \in \text{int}\left(C_0^1(\overline{\Omega})_+\right)$.

Proof. From Proposition 3.7 we know that $\lambda^* \in \mathcal{L}$. So, there exists $u^* \in \mathcal{S}_{\lambda^*} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$, see Corollary 3.2. According to Proposition 3.5 we can find $u_0 \in \mathcal{S}_{\lambda} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$ such that

$$u^* - u_0 \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right). \tag{3.46}$$

Moreover, let $\vartheta \in (0, \lambda) \subseteq \mathcal{L}$ and $u_{\vartheta} \in \mathcal{S}_{\vartheta} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$ be such that

$$u_0 - u_\vartheta \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right),$$
 (3.47)

again by Proposition 3.5. From (3.46) and (3.47) it follows that

$$u_0 \in \inf_{C_0^1(\overline{\Omega})} \left[u_{\vartheta}, u^* \right]. \tag{3.48}$$

We consider the Carathéodory functions k_{λ} , \hat{k}_{λ} : $\Omega \times \mathbb{R} \to \mathbb{R}$ defined by

$$k_{\lambda}(x,s) = \begin{cases} u_{\vartheta}(x)^{-\gamma} + \lambda f(x, u_{\vartheta}(x)) & \text{if } s \le u_{\vartheta}(x), \\ s^{-\gamma} + \lambda f(x,s) & \text{if } u_{\vartheta}(x) < s \end{cases}$$
(3.49)

and

$$\hat{k}_{\lambda}(x,s) = \begin{cases} u_{\vartheta}(x)^{-\gamma} + \lambda f(x, u_{\vartheta}(x)) & \text{if } s < u_{\vartheta}(x), \\ s^{-\gamma} + \lambda f(x,s) & \text{if } u_{\vartheta}(x) \le s \le u^{*}(x), \\ u^{*}(x)^{-\gamma} + \lambda f(x, u^{*}(x)) & \text{if } u^{*}(x) < s. \end{cases}$$
(3.50)

We set $K_{\lambda}(x,s) = \int_0^s k_{\lambda}(x,t)dt$, $\hat{K}_{\lambda}(x,s) = \int_0^s \hat{k}_{\lambda}(x,t)dt$ and consider the C^1 -functionals $\sigma_{\lambda}, \hat{\sigma}_{\lambda}: W_0^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$\sigma_{\lambda}(u) = \frac{1}{p} \|\nabla u\|_p^p - \int\limits_{\Omega} K_{\lambda}(x, u) dx,$$

$$\hat{\sigma}_{\lambda}(u) = \frac{1}{p} \|\nabla u\|_{p}^{p} - \int_{\Omega} \hat{K}_{\lambda}(x, u) dx.$$

From (3.49) and (3.50) it is clear that

$$\sigma_{\lambda}\big|_{[u_{\vartheta},u^*]} = \hat{\sigma}_{\lambda}\big|_{[u_{\vartheta},u^*]}.\tag{3.51}$$

Moreover, as in the proof of Proposition 3.1, using (3.49) and (3.50), we show that

$$K_{\sigma_{\lambda}} \subseteq [u_{\vartheta}) \cap \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right) \quad \text{and} \quad K_{\hat{\sigma}_{\lambda}} \subseteq [u_{\vartheta}, u_{\lambda}] \cap \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right).$$
 (3.52)

From (3.52) we see that we may assume that $K_{\hat{\sigma}_{\lambda}} = \{u_0\}$, otherwise we already have a second

positive solution for problem (P_{λ}) , see (3.50) and (3.52). From (3.50) and since $u_{\vartheta}^{-\gamma} \in L^{p'}(\Omega)$ we infer that $\hat{\sigma}_{\lambda}$ is coercive and from the Sobolev embedding theorem, we know that $\hat{\sigma}_{\lambda}$ is sequentially weakly lower semicontinuous. Therefore, we can find $u_0^* \in W_0^{1,p}(\Omega)$ such that

$$\hat{\sigma}_{\lambda}\left(u_{0}^{*}\right) = \inf\left[\hat{\sigma}_{\lambda}(u) : u \in W_{0}^{1,p}(\Omega)\right]. \tag{3.53}$$

That means $u_0^* \in K_{\hat{\sigma}_{\lambda}}$ and so $u_0^* = u_0$. From (3.48), (3.51) and (3.53) it follows that u_0 is a local $C_0^1(\overline{\Omega})$ -minimizer of σ_{λ} and from [5] and [13] we know that

$$u_0$$
 is a local $W_0^{1,p}(\Omega)$ -minimizer of σ_{λ} . (3.54)

We assume that $K_{\sigma_{\lambda}}$ is finite or otherwise, on account of (3.49) and (3.52), we already have an infinity of positive smooth solutions for problem (P_{λ}) and so we are done. From (3.54) we infer that there exists $\rho \in (0, 1)$ small enough such that

$$\sigma_{\lambda}(u_0) < \inf \left[\sigma_{\lambda}(u) : \|u - u_0\| = \rho \right] = m_{\lambda}, \tag{3.55}$$

see Aizicovici-Papageorgiou-Staicu [1, Proof of Proposition 29].

Hypothesis H(ii) implies that if $u \in \text{int} (C_0^1(\Omega)_+)$, then

$$\sigma_{\lambda}(tu) \to -\infty \quad \text{as } t \to +\infty.$$
 (3.56)

Claim: σ_{λ} satisfies the C-condition.

Consider a sequence $\{u_n\}_{n\geq 1}\subseteq W_0^{1,p}(\Omega)$ such that

$$|\sigma_{\lambda}(u_n)| \le M_3$$
 for some $M_3 > 0$ and for all $n \in \mathbb{N}$, (3.57)

$$(1 + ||u_n||) \sigma_{\lambda}'(u_n) \to 0 \quad \text{in } W^{-1,p'}(\Omega) \text{ as } n \to \infty.$$
 (3.58)

From (3.58) we have

$$\left| \langle A(u_n), h \rangle - \int_{\Omega} k_{\lambda}(x, u_n) h dx \right| \le \frac{\varepsilon_n \|h\|}{1 + \|u_n\|}$$
 (3.59)

for all $h \in W_0^{1,p}(\Omega)$ with $\varepsilon_n \to 0^+$. We choose $h = -u_n^- \in W_0^{1,p}(\Omega)$ in (3.59) and use (3.49) to obtain

$$\|\nabla u_n^-\|_p^p \le c_6 \|u_n^-\|$$
 for some $c_6 > 0$ and for all $n \in \mathbb{N}$.

Hence

$$\{u_n\}_{n\geq 1} \subseteq W_0^{1,p}(\Omega) \text{ is bounded.}$$
(3.60)

Then from (3.57) and (3.60) it follows that

$$\|\nabla u_n^+\|_p^p - \int_{\Omega} p\hat{K}_{\lambda}(x, u_n^+) dx \le M_4$$
 for some $M_4 > 0$ and for all $n \in \mathbb{N}$.

This implies

$$\|\nabla u_n^+\|_p^p - \int_{\{u_n^+ \le u_\theta\}} p\left[u_\vartheta^{-\gamma} + \lambda f(x, u_\vartheta)\right] u_n^+ dx$$

$$- \frac{p}{1 - \gamma} \int_{\{u_\vartheta < u_n^+\}} \left[\left(u_n^+\right)^{1 - \gamma} - u_\vartheta^{1 - \gamma} \right] dx$$

$$- p\lambda \int_{\{u_\vartheta < u_n^+\}} \left[F(x, u_n^+) - F(x, u_\vartheta) \right] \le M_4$$

for all $n \in \mathbb{N}$ and so

$$\|\nabla u_n^+\|_p^p - \frac{p}{1-\gamma} \int_{\Omega} (u_n^+)^{1-\gamma} dx - p\lambda \int_{\Omega} F(x, u_n^+) dx \le M_5$$
 (3.61)

for some $M_5 > 0$ and for all $n \in \mathbb{N}$. Moreover, we choose $h = u_n^+ \in W_0^{1,p}(\Omega)$ in (3.59) which gives

$$- \|\nabla u_n^+\|_p^p + \int_{\{u_n^+ \le u_\vartheta\}} \left[u_\vartheta^{-\gamma} + \lambda f(x, u_\vartheta) \right] u_n^+ dx$$

$$+ \int_{\{u_\vartheta < u_n^+\}} \left[\left(u_n^+ \right)^{-\gamma} + \lambda f(x, u_n^+) \right] u_n^+ dx \le \varepsilon_n$$

for all $n \in \mathbb{N}$. This leads to

$$-\|\nabla u_n^+\|_p^p + \int_{\Omega} (u_n^+)^{1-\gamma} dx + \lambda \int_{\Omega} f(x, u_n^+) u_n^+ dx \le M_6$$
 (3.62)

for some $M_6 > 0$ and for all $n \in \mathbb{N}$. Adding (3.61) and (3.62) yields

$$\int_{\Omega} \hat{\eta}_{\lambda}(x, u_n^+) dx \le M_7 \quad \text{for some } M_7 > 0 \text{ and for all } n \in \mathbb{N}.$$
 (3.63)

Applying (3.63) and reasoning as in the proof of Proposition 3.7 (see the part of the proof after (3.33)), we show that $\{u_n^+\}_{n\geq 1}\subseteq W_0^{1,p}(\Omega)$ is bounded and so, due to (3.60), $\{u_n\}_{n\geq 1}\subseteq W_0^{1,p}(\Omega)$ is bounded as well.

So, we may assume that

$$u_n \stackrel{\text{w}}{\to} u \quad \text{in } W_0^{1,p}(\Omega) \quad \text{and} \quad u_n \to u \quad \text{in } L^r(\Omega).$$
 (3.64)

Choosing $h = u_n - u \in W_0^{1,p}(\Omega)$, passing to the limit as $n \to \infty$ and applying (3.64), we obtain

$$\lim_{n\to\infty}\langle A(u_n), u_n-u\rangle=0,$$

which by the (S)₊-property of A, see Proposition 2.2, results in $u_n \to u$ in $W_0^{1,p}(\Omega)$. Therefore, σ_{λ} satisfies the C-condition and this proves the Claim.

On account of (3.55), (3.56) and the Claim, we are able to apply the mountain pass theorem stated as Theorem 2.1 and find $\hat{u} \in W_0^{1,p}(\Omega)$ such that

$$\hat{u} \in K_{\sigma_{\lambda}} \subseteq [u_{\vartheta}) \cap \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right) \quad \text{and} \quad m_{\lambda} \le \sigma_{\lambda}\left(\hat{u}\right),$$
 (3.65)

see (3.52). From (3.49), (3.55) and (3.65) we conclude that $\hat{u} \in \mathcal{S}_{\lambda} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$ and $\hat{u} \neq u_0$. This finishes the proof. \square

Summarizing the situation for the positive solution of problem (P_{λ}) as the parameter $\lambda > 0$ varies, we can state the following bifurcation-type theorem.

Theorem 3.9. If hypotheses H hold, then there exist $\lambda^* > 0$ such that the following is satisfied:

- (a) problem (P_{λ}) has at least two positive solutions $u_0, \hat{u} \in \operatorname{int} \left(C_0^1(\overline{\Omega})_+\right)$ for all $\lambda \in (0, \lambda^*)$;
- (b) problem (P_{λ}) has at least one positive solution $u^* \in \text{int} \left(C_0^1(\overline{\Omega})_+\right)$ for $\lambda = \lambda^*$;
- (c) problem (P_{λ}) has no positive solution for all $\lambda > \lambda^*$.

4. Minimal positive solutions

In this section we show that problem (P_{λ}) has a smallest positive solution $\overline{u} \in \operatorname{int} \left(C_0^1(\overline{\Omega})_+ \right)$ for every $\lambda \in \mathcal{L} = (0, \lambda^*]$ and we prove the monotonicity and continuity properties of the map $\lambda \to \overline{u}_{\lambda}$.

From Filippakis–Papageorgiou [2] we know that the solution set S_{λ} is downward directed for every $\lambda \in \mathcal{L} = (0, \lambda^*]$, that is, if $u_1, u_2 \in S_{\lambda}$, then there exists $u \in S_{\lambda}$ such that $u \leq u_1$ and $u \leq u_2$.

Proposition 4.1. If hypotheses H hold and $\lambda \in \mathcal{L} = (0, \lambda^*]$, then problem (P_{λ}) has a smallest positive solution $\overline{u}_{\lambda} \in \mathcal{S}_{\lambda} \subseteq \operatorname{int} \left(C_0^1(\overline{\Omega})_+\right)$, that is, $\overline{u}_{\lambda} \leq u$ for all $u \in \mathcal{S}_{\lambda}$.

Proof. Invoking Lemma 3.10 of Hu–Papageorgiou [8, p. 178] we know that there exists a decreasing sequence $\{u_n\}_{n\geq 1}\subseteq \mathcal{S}_{\lambda}$ such that $\inf \mathcal{S}_{\lambda}=\inf_{n\geq 1}u_n$. Recall that \mathcal{S}_{λ} is downward directed.

Claim: $\tilde{u} \leq u_n$ for all $n \in \mathbb{N}$ (see the proof of Proposition 3.1).

Fix $n \in \mathbb{N}$ and let $\vartheta \in (0, \lambda) \subseteq \mathcal{L}$. According to Proposition 3.5 there exists $u_{\vartheta} \in \mathcal{S}_{\vartheta} \subseteq \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ such that $u_n - u_{\vartheta} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$. We introduce the Carathéodory function $e_n : \Omega \times \mathbb{R} \to \mathbb{R}$ defined by

$$e_n(x,s) = \begin{cases} u_{\vartheta}(x)^{-\gamma} & \text{if } s < u_{\vartheta}(x), \\ s^{-\gamma} & \text{if } u_{\vartheta}(x) \le s \le u_n(x), \\ u_n(x)^{-\gamma} & \text{if } u_n(x) < s. \end{cases}$$
(4.1)

We set $E_n(x,s) = \int_0^s e_n(x,t)dt$ and consider the C^1 -functional $\gamma_n: W_0^{1,p}(\Omega) \to \mathbb{R}$ defined by

$$\gamma_n(u) = \frac{1}{p} \|\nabla u_n\|_p^p - \int_{\Omega} E_n(x, u) dx.$$

From (4.1) it is clear that γ_n is coercive and the Sobolev embedding theorem implies that γ_n is sequentially weakly lower semicontinuous. Therefore, we find $\tilde{u}_0 \in W_0^{1,p}(\Omega)$ such that

$$\gamma_n(\tilde{u}_0) = \inf \left[\gamma_n(u) : u \in W_0^{1,p}(\Omega) \right].$$

In particular, we have $\gamma'_n(\tilde{u}_0) = 0$ which says that

$$\langle A(\tilde{u}_0), h \rangle = \int_{\Omega} e_n(x, \tilde{u}_0) h dx \quad \text{for all } h \in W_0^{1, p}(\Omega).$$
 (4.2)

We choose $h = (u_{\vartheta} - \tilde{u}_0)^+ \in W_0^{1,p}(\Omega)$ in (4.2). Then, applying (4.1), the nonnegativity of f and the fact that $u_{\vartheta} \in \mathcal{S}_{\vartheta}$ gives

$$\begin{aligned} \left\langle A\left(\tilde{u}_{0}\right),\left(u_{\vartheta}-\tilde{u}_{0}\right)^{+}\right\rangle &=\int\limits_{\Omega}u_{\vartheta}^{-\gamma}\left(u_{\vartheta}-\tilde{u}_{0}\right)^{+}dx\\ &\leq\int\limits_{\Omega}\left[u_{\vartheta}^{-\gamma}+\vartheta f\left(x,u_{\vartheta}\right)\right]\left(u_{\vartheta}-\tilde{u}_{0}\right)^{+}dx\\ &=\left\langle A\left(u_{\vartheta}\right),\left(u_{\vartheta}-\tilde{u}_{0}\right)^{+}\right\rangle. \end{aligned}$$

Proposition 2.2 then implies $u_{\vartheta} \leq \tilde{u}_0$. In the same way, choosing $h = (\tilde{u}_0 - u_n)^+ \in W_0^{1,p}(\Omega)$ in (4.2) and applying again (4.1), $f \geq 0$ and $u_n \in S_{\lambda}$ results in

$$\langle A(\tilde{u}_0), (\tilde{u}_0 - u_n)^+ \rangle = \int_{\Omega} u_n^{-\gamma} (\tilde{u}_0 - u_n)^+ dx$$

$$\leq \int_{\Omega} \left[u_n^{-\gamma} + \lambda f(x, u_n) \right] (\tilde{u}_0 - u_n)^+ dx$$

$$= \langle A(u_n), (\tilde{u}_0 - u_n)^+ \rangle.$$

As before, by Proposition 2.2, we obtain $\tilde{u}_0 \leq u_n$. So, we have proved that

$$\tilde{u}_0 \in [u_\vartheta, u_\eta]. \tag{4.3}$$

From (4.1) and (4.3) it follows that \tilde{u}_0 is a positive solution of the auxiliary problem (3.1). Therefore, $\tilde{u}_0 = \tilde{u}$ which implies $\tilde{u} \leq u_n$ for all $n \in \mathbb{N}$. This proves the Claim. We have

$$\langle A(u_n), h \rangle = \int_{\Omega} \left[u_n^{-\gamma} + \lambda f(x, u_n) \right] h dx \tag{4.4}$$

for all $h \in W_0^{1,p}(\Omega)$ and for all $n \in \mathbb{N}$. Since $0 \le u_n \le u_1$ for all $n \ge 1$, from (4.4) with $h = u_n \in W_0^{1,p}(\Omega)$ and using hypothesis H(iv), we infer that

$$\{u_n\}_{n\geq 1}\subseteq W_0^{1,p}(\Omega)$$
 is bounded.

So, we may assume that

$$u_n \stackrel{\text{w}}{\to} \overline{u}_{\lambda} \quad \text{in } W_0^{1,p}(\Omega) \quad \text{and} \quad u_n \to \overline{u}_{\lambda} \quad \text{in } L^p(\Omega).$$
 (4.5)

Moreover, we can say that

$$u_n(x)^{-\gamma} \to \overline{u}_{\lambda}(x)^{-\gamma}$$
 for a.a. $x \in \Omega$.

From the Claim we know that

$$0 \le u_n(x)^{-\gamma} \le \tilde{u}(x)^{-\gamma}$$
 for a.a. $x \in \Omega$.

Since $\tilde{u}(\cdot)^{-\gamma} \in L^{p'}(\Omega)$, see the proof of Proposition 3.1, from Gasiński–Papageorgiou [4, Problem 1.19, p. 38], we have

$$u_n^{-\gamma} \stackrel{\text{W}}{\to} \overline{u}_{\lambda}^{-\gamma} \quad \text{in } L^{p'}(\Omega).$$
 (4.6)

Therefore, if we choose $h = u_n - \overline{u}_{\lambda} \in W_0^{1,p}(\Omega)$ in (4.4), pass to the limit as $n \to \infty$ and use (4.5) as well as (4.6), then

$$\lim_{n\to\infty} \langle A(u_n), u_n - \overline{u}_{\lambda} \rangle = 0,$$

which again by Proposition 2.2 leads to

$$u_n \to \overline{u}_{\lambda} \quad \text{in } W_0^{1,p}(\Omega).$$
 (4.7)

So, if we pass to the limit in (4.4) as $n \to \infty$ and use (4.5), (4.6), (4.7), we obtain

$$\langle A(\overline{u}_{\lambda}), h \rangle = \int_{\Omega} \left[\overline{u}_{\lambda}^{-\gamma} + \lambda f(x, \overline{u}_{\lambda}) \right] h dx \quad \text{for all } h \in W_0^{1,p}(\Omega).$$

From the Claim it follows that $\tilde{u} \leq \overline{u}_{\lambda}$. Therefore we conclude that

$$\overline{u}_{\lambda} \in \mathcal{S}_{\lambda} \subseteq \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right) \quad \text{and} \quad \overline{u}_{\lambda} = \operatorname{inf} \mathcal{S}_{\lambda}. \quad \Box$$

In the next proposition we examine the map $\lambda \to \overline{u}_{\lambda}$ from $\mathcal{L} = (0, \lambda^*]$ into $C_0^1(\overline{\Omega})$ and determine the monotonicity and continuity properties of this map.

Proposition 4.2. If hypotheses H hold, then the map $\lambda \to \overline{u}_{\lambda}$ from $\mathcal{L} = (0, \lambda^*]$ into $C_0^1(\overline{\Omega})$ is

(a) strictly increasing, that is,

$$0 < \vartheta < \lambda \le \lambda^* \quad implies \quad \overline{u}_{\lambda} - \overline{u}_{\vartheta} \in int\left(C_0^1(\overline{\Omega})_+\right);$$

(b) left continuous.

Proof. (a) From Proposition 3.5 we know that there exists $u_{\vartheta} \in \mathcal{S}_{\vartheta} \subseteq \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ such that $\overline{u}_{\lambda} - u_{\vartheta} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ and so, since $\overline{u}_{\vartheta} \leq u_{\vartheta}$, it follows $\overline{u}_{\lambda} - \overline{u}_{\vartheta} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$. So, the map $\lambda \to \overline{u}_{\lambda}$ is strictly increasing.

(b) Suppose that $\{\lambda_n, \lambda\}_{n\geq 1} \subseteq \mathcal{L} = (0, \lambda^*]$ and assume that $\lambda_n \to \lambda^-$. We set $\overline{u}_n = \overline{u}_{\lambda_n} \in \mathcal{S}_{\lambda_n} \subseteq \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ for all $n \in \mathbb{N}$. We have

$$\langle A(\overline{u}_n), h \rangle = \int_{\Omega} \left[\overline{u}_n^{-\gamma} + \lambda_n f(x, \overline{u}_n) \right] h dx \tag{4.8}$$

for all $h \in W_0^{1,p}(\Omega)$ and for all $n \in \mathbb{N}$. Moreover, by Proposition 4.1,

$$0 \le \overline{u}_1 \le \overline{u}_n \le \overline{u}_{\lambda^*}. \tag{4.9}$$

On account of (4.9) and by the choice $h = \overline{u}_n \in W_0^{1,p}(\Omega)$ in (4.8), we infer that $\{\overline{u}_n\}_{n\geq 1} \subseteq W_0^{1,p}(\Omega)$ is bounded. We have

$$-\Delta_p \overline{u}_n = \overline{u}_n^{-\gamma} + \lambda_n f(x, u_n) \quad \text{in } \Omega,$$
$$\overline{u}_n = 0 \qquad \text{on } \partial \Omega,$$

for all $n \in \mathbb{N}$. From (4.9) we see that

$$0 \le \overline{u}_n^{-\gamma} \le \overline{u}_1^{-\gamma} \in L^s(\Omega)$$
 with $s > N$ and for all $n \in \mathbb{N}$,

see also H(i). Similarly, (4.9) and hypothesis H(i) imply that

$$\{f(\cdot, \overline{u}_n(\cdot))\}_{n\geq 1} \subseteq L^s(\Omega)$$
 is bounded.

Then Proposition 1.3 of Guedda-Véron [7] implies that

$$\|\overline{u}_n\|_{\infty} \le M_8$$
 for some $M_8 > 0$ and for all $n \in \mathbb{N}$.

From this as in the proof of Proposition 3.1 and using Theorem 2.1 of Lieberman [10], there exist $\alpha \in (0, 1)$ and $M_9 > 0$ such that

$$\overline{u}_n \in C_0^{1,\alpha}(\overline{\Omega}) \quad \text{and} \quad \|\overline{u}_n\|_{C_0^{1,\alpha}(\overline{\Omega})} \le M_9 \quad \text{for all } n \in \mathbb{N}.$$
 (4.10)

Then, (4.10), the compact embedding of $C_0^{1,\alpha}(\overline{\Omega})$ into $C_0^1(\overline{\Omega})$ and the monotonicity of the sequence $\{\overline{u}_n\}_{n\geq 1}$ imply that

$$\overline{u}_n \to \widetilde{u}_\lambda \quad \text{in } C_0^1(\overline{\Omega}).$$

We claim that $\tilde{u}_{\lambda} = \overline{u}_{\lambda}$. If this is not the case, we can find $z_0 \in \Omega$ such that $\overline{u}_{\lambda}(z_0) < \tilde{u}_{\lambda}(z_0)$ which implies $\overline{u}_{\lambda}(z_0) < \overline{u}_n(z_0)$ for all $n \ge n_0$. But this contradicts (a). Therefore, $\tilde{u}_{\lambda} = \overline{u}_{\lambda}$ and so $\lambda \to \overline{u}_{\lambda}$ is left continuous. \square

Summarizing the situation concerning the minimal positive solution of problem (P_{λ}) , we can state the following theorem.

Theorem 4.3. If hypotheses H hold and $\lambda \in \mathcal{L} = (0, \lambda^*]$, then problem (P_{λ}) has a smallest positive solution $\overline{u}_{\lambda} \in \operatorname{int}\left(C_0^1(\overline{\Omega})_+\right)$ and the map $\lambda \to \overline{u}_{\lambda}$ from $\mathcal{L} = (0, \lambda^*]$ into $C_0^1(\overline{\Omega})$ is

- strictly increasing, that is, $0 < \vartheta < \lambda \le \lambda^*$ implies $\overline{u}_{\lambda} \overline{u}_{\vartheta} \in \text{int}(C_0^1(\overline{\Omega})_+)$;
- left continuous.

References

- [1] S. Aizicovici, N.S. Papageorgiou, V. Staicu, Degree theory for operators of monotone type and nonlinear elliptic equations with inequality constraints, Mem. Amer. Math. Soc. 196 (915) (2008).
- [2] M.E. Filippakis, N.S. Papageorgiou, Multiple constant sign and nodal solutions for nonlinear elliptic equations with the *p*-Laplacian, J. Differential Equations 245 (7) (2008) 1883–1922.
- [3] L. Gasiński, N.S. Papageorgiou, Nonlinear Analysis, Chapman & Hall/CRC, Boca Raton, 2006.
- [4] L. Gasiński, N.S. Papageorgiou, Exercises in Analysis, Part 2: Nonlinear Analysis, Springer, Heidelberg, 2016.
- [5] J. Giacomoni, I. Schindler, P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (1) (2007) 117–158.
- [6] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1998.
- [7] M. Guedda, L. Véron, Quasilinear elliptic equations involving critical Sobolev exponents, Nonlinear Anal. 13 (8) (1989) 879–902.
- [8] S. Hu, N.S. Papageorgiou, Handbook of Multivalued Analysis. Vol. I: Theory, Kluwer Academic Publishers, Dordrecht. 1997.
- [9] A.C. Lazer, P.J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc. 111 (3) (1991) 721–730.
- [10] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (11) (1988) 1203–1219.
- [11] G. Li, C. Yang, The existence of a nontrivial solution to a nonlinear elliptic boundary value problem of *p*-Laplacian type without the Ambrosetti–Rabinowitz condition, Nonlinear Anal. 72 (12) (2010) 4602–4613.
- [12] S.A. Marano, N.S. Papageorgiou, Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter, Commun. Pure Appl. Anal. 12 (2) (2013) 815–829.
- [13] D. Motreanu, V.V. Motreanu, N.S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, New York, 2014.
- [14] N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Pairs of positive solutions for resonant singular equations with the *p*-Laplacian, Electron. J. Differential Equations 2017 (2017), Paper No. 249, pp. 13.
- [15] N.S. Papageorgiou, G. Smyrlis, A bifurcation-type theorem for singular nonlinear elliptic equations, Methods Appl. Anal. 22 (2) (2015) 147–170.
- [16] K. Perera, Z. Zhang, Multiple positive solutions of singular p-Laplacian problems by variational methods, Bound. Value Probl. 2005 (3) (2005) 377–382.
- [17] P. Pucci, J. Serrin, The Maximum Principle, Birkhäuser Verlag, Basel, 2007.