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Abstract: The aim of this paper is to investigate T-symmetrical tensor differ-
ential forms with logarithmic poles on the projective space P and on complete
intersections Y C PV. Let H ¢ PN, N > 2, be a nonsingular irreducible alge-
braic hypersurface which implies that D = H is a prime divisor in PV. The
main goal of this paper is the study of the locally free sheaves Q%N (log D) and
the calculation of their cohomology groups. In addition, for complete intersec-
tions Y C PV we give some vanishing theorems and recursion formulas.
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1. Introduction

The symmetry properties of tensors are important in physics and certain areas
of mathematics. In the following, let £ be the ground field which is assumed to
be algebraically closed satisfying char(k) = 0. We denote by H C PV, N > 2, a
nonsingular, irreducible, algebraic hypersurface defined by the equation F' = 0,
where deg ' = m. Then D = H gives a prime divisor of degree m in ]P’fcv .
The aim of this paper is the calculation of the dimension of the cohomology
groups HI(PN , Uy (log D)(t)) with general twist ¢ € Z, where T is a Young
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tableau specified later. Q%N (log D) denotes the so-called sheaf of germs of T-
symmetrical tensor differential forms with logarithmic poles along the prime
divisor D (cf. [4], [7], [3]). In addition, we consider the associated cohomology
groups of nonsingular, irreducible, n-dimensional complete intersections ¥ C
PN, n > 2. In this case, let the prime divisor D = Y N H be the intersection
of Y and hypersurface H. As special cases, we investigate the alternating and
the symmetric differential forms on PV and on Y, respectively.

2. Notations and Preliminaries

Let Q% be the sheaf of germs of regular algebraic differential forms on a n-

dimensional nonsingular, projective variety X C PV and let 0% = ;\Qk and
Srﬁk be the sheaves of alternating and symmetric differential forms on X,
alternatively. We denote by (Q)®" the r-th tensor power of QL. The coherent

sheaves L, Q% S"QL and (Q4)®" are locally free on X with the rank n, (TT‘),
(n+r71
T

) and n”, respectively.

The irreducible representations of the symmetric group S, correspond to
the conjugacy classes of S,.. These are given by partitions (1) :r =11 +... 4+ g
with [; € Z, Iy > Iy > ... > lg > 1. Partition (I) can be described by a
so-called Young diagram 7' with r boxes and the row lengths [1,...,l;. The
column lengths of T" will be denoted by di,...,d; and we set d = d; = depth T’
and [ = [} = length T, respectively. Clearly, d; > do > ... > d; > 1 and the
equations 2321 dj = Zle l; = r are fulfilled. Moreover, we put I; =0 for i > d
and dj = 0 for j > [. The “hook-length” of the box inside the i-th row and the
j-th column of the Young diagram is defined by h; ; = 1; —i+4+d; —j + 1 and
the degree of the associated irreducible representation is equal to

d

al al 7! li — lj
O MThey, ~ d H(li—i—d—z‘)! 11 ( ;T )

; Lt Jj—i
=1 1<i<j<d

! )

=r!.det
reede ((F(li +1—i+7) ij=1,....d

(cf. [5]).

A numbering of the r boxes of a given Young diagram by the integers
1,2,...,r in any order is said to be a Young tableau which for simplicity again
will be denoted by 7. Now, one has an idempotent er in the group algebra
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k- S, defined by

Y
Tz%- > sen(g) g o Yop|,
’ 9€EQT pEPT

where the subgroups Pr and Qr of S, are given as follows: Pr = {p € S, :
p preserves each row of T'}, Qr = {q € S, : q preserves each column of T'}.

The idempotent er is called Young symmetrizer (cf. [5]). If the numbering
of the boxes of the Young tableau generates inside every row and every column
monotone increasing sequences, we speak of a standard tableau. The number
of all standard tableaux to a given Young diagram is equal to the degree v/(;.
We denote by D(r) the set of all standard tableaux to all Young diagrams with
r boxes.

For a variety X the notation QY = (Q%)®" stands for the sheaf of germs
of regular algebraic tensor differential forms. This implies that the symmetric
group S, and the related group algebra k- .S, act on Q}e}r defined by p(a1 ®...®
ay) = ap-1(1) @ ... @ ay-1(,) for all p € S,. That means, mapping p permutates
the spots inside the tensor product. Furthermore, it holds

oY= P ok
TeD(r)
with Q% = ep(QY"), where Q% is called the sheaf of germs of T-symmetrical

tensor differential forms or simply the T-power of Qﬁ( If two Young tableaux

T and T possess the same Young diagram, we have Q§ = Q;

Under the assumption depthT < dim X with a smooth n-dimensional va-
riety X the belonging sheaf Q§ is locally free of rank

11 <li_lj +1) = (ﬁi‘)l Al — 1,0y —2,... 1, —n)
— = : Al = Ll =200, — 1),
1<idj<n NI T i=1

where A(t1,t2,...,tn) = [[1<icj<n(ti — t;) denotes the Vandermonde deter-
minant. If depthT > dim X then we have Q;F( = 0. In the special cases
Q% = A"QL and S"QL the Young tableau has only one column and one row,
respectively. In the same way the T-power F' of an arbitrary coherent algebraic
sheaf F is defined. One has for instance Q% (log D) = (Q% (log D))7.

Furthermore, we describe the T-power of an algebraic complex (cf. [3]): Let
R be a commutative ring which contains the algebraically closed ground field
k fulfilling char (k) = 0. We consider an algebraic complex K of R-modules

given by K : Ky - K -5 Ky -4 ... with d2 = 0.
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Then the r-th tensor power P = K®" of K is defined by P = K®" : P, 2,

P with P =@, s Ko ®. 0K, and 6(b1 ©...0b,) =
Z;,:l(—l)ler"'Jrsi*l 1 ®...0bj_1® d(bz) &® bi+1 ®...®b., where bj S KS]. for
all j. Again the symmetric group S, acts on this tensor power by permutation
of the spots inside the tensor product. In order to obtain such an action of .S,
on P = K®" which commutates with §, we introduce additionally a sign as
follows:

1.o(pisi,...,s) =2, i<i s;-s; forallpes,.

p(i)>p(5)

2. p(bl R...QR br) = (_1)0(p 815e087) bp—1(1) R...Q bp—l(r)> where bj €
K, forallje{l,...,r}.

Then one has

@ K(T K — @ KD, H*(K®) = @ H (KM)

TeD(r TeD(r TeD(r)

with K = eT(PS) and KT = eT(K®’") 16 RN SN g Ch N

This complex KT) is said to be the T-power of K. If two Young tableaux
T and T possess the same Young diagram, one has KT =~ K(T)_ For an exact
sequence K the T-power KT of K is also an exact sequence.

Now, let X C PV be a projective variety satisfying wx = Ox (nx) for some
nx € Z, where wy stands for the canonical line bundle. This implies under the
assumptions d = depth T = dimX =nandl= lengthT > 1 the isomorphism
where T" arises from T by deleting the first column of T. In the case d =
depthT = dim X = n and | = length7 = 1 (i.e. T has only one column) we
have the isomorphism Q§ =% Zwy = O0x(ny).

An important tool in our considerations will be the Serre duality: Suppose
the Young tableau T has the column lengths di,...,d; satisfying dy = d =
depthT < dim X = n. We get an associated Young tableau 7™ by the column

lengths d7 = n —dj4;—; for all j = 1,....1. One verifies readily that in case
depthT < n holds (T™)* =T.

The next lemma delivers some duality relations about the dimensions of
cohomology groups.

Lemma 2.1. LetY = HiN...N Hy_, C PV be a n-dimensional, non-
singular, irreducible, complete intersection defined by algebraic hypersurfaces
H; c PN satisfying F; = 0 with deg F; = m;. The dimension of Y is n. In this
case, let the prime divisor D = Y N H be the intersection of Y and hypersurface
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H : F =0 of degree m. Assume that D also becomes a nonsingular irreducible
complete intersection of dimension n — 1. Then one has:

(i) dim H1(PY, Qr \ (log D)(t)) = dim HN=4(PN Q" (log D)(—t — m)).

(ii) dim HY(Y, Q% (log D)(t)) = dim H"~9(Y, Q}""(log D)(—t — m)).

(iii) dim HI(PY, QL (log D)(t)) = dim HN 4PN, QL (log D) (=t — 1 - m +
(1 —1)(N +1))).

(iv) dim HY(Y, Q¥ (log D)(t)) = dim H"4(Y, Q% (log D) (=t — 1 -m — (I —

N—-n
DS mi— N —1))).
i=1

(v) dim H(PV, S™Qpn (log D)(t)) = dim HN=4(PN, Q%;, (log D)(—t—7-m+
(r—1)(N +1))), where T* denotes a rectangle with N — 1 rows and r columns.
(vi) dim HY(Y, S"Q3-(log D)(t)) = dim H" (Y, QL (log D)(—t —r-m — (r—

N—n

1)(2 m; — N — 1))), where T* denotes a rectangle with n — 1 rows and r
i=1

columns.

Proof. We consider the following exact sequence (cf. [4])
0 — Qpy(log D)(—m) — Qpy — Qp — 0.

For r = N we have QF = 0, i.e. Q2 (log D) = QY (m) = Opn(m — N — 1).
This implies a pairing Qpy (log D)(t) x Q]gN_r(log D)(-t—-m+N+1) —
Opn, which means that the vector space HY(PY , Qpn (log D)(t)) is dual to
HN=9(PN (QX " (log D)(—t —m + N + 1)) @ Qb}).

Setting Q]{,YN = Opn (—N —1) yields (i). The statement (ii) can be shown in
a similar way. Note that QY (log D) = Qf.(m) = Oy (m + ZZ]\;" m; — N —1).
Now, let T' be a Young tableau with r boxes, given by the row lengths {1,...,l4

and the column lengths dy,...,d; where d = di = depthT and | = [} =
lengthT". The Young tableau T™ has the column lengths d7 = n — di41—; for
all 5 € {1,...,l} and we have again QfPYN(logD) = Opn(m — N —1). From
the pairing Oy (log D)(t) X Q%;, (logD)(—=t —1-(m —N —1)) — Opn follows
Hom(Q1L (log D)(t), Opn) = Q%;, (logD)(—=t —1-(m — N — 1)), which shows
assertion (iii). In order to show the formula for complete intersections Y instead
of PV, we replace —N — 1 by ZZ]\;" m; — N — 1. Choosing | = r (depthT = 1)
in (iii) and (iv) proves (v) and (vi), respectively. O

For a projective variety X C PV and a coherent sheaf F on X the di-
mensions dimy H9(X,F) are finite and we have the so-called Euler-Poincaré
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characteristic given by x(X,F) = Zﬁi’%x(—l)q -dim H4(X, F). From a short
exact sequence 0 — F — G — H — 0 with coherent sheaves F,G,’H on X we
obtain the equation x(X,G) = x(X,F) + x(X,H). Under the above assump-
tions we also know, that for a short exact sequence of coherent sheaves on X
there exists a long exact sequence for the associated cohomology groups. For
every coherent sheaf F on the projective variety X C PV there exists a polyno-
mial P(X,F)(t) € Q[t] of degree dim X which fulfills x (X, F(t)) = P(X, F)(t)
for all t € Z.P(X,F)(t) is said to be the Hilbert polynomial of F (cf. [8],
[6], [7]). For example, the structure sheaf on PV has the following Hilbert
polynomial
(t+N)-...-(t+1)

PPN, Opn)(t) = x(PY, Opn (1)) = N . (2.1)

3. The Projective Space PN

In the following, we change the meaning of the binomial coefficient setting
(g) = 0 for all @ € Z,0 € N satisfying o < (, in particular: (g) = 0 if
a < 0. For instance: dim H(PV,Opn(t)) = (t';VN) dim HY (P, Opn (1)) =
(%), HIPN,Opn(t) =0 for 0 < g < N.

Let H ¢ PNV (N > 2) be a nonsingular, irreducible, algebraic hypersurface

defined by the equation F' = 0, that means, D = H is a prime divisor in P,
Both F' and D are of degree m and D = H has dimension N — 1.

3.1. Alternating Differential Forms

We denote by Qpy the local free sheaf of germs of alternating differential forms
on the projective space PV and consider the following sequence (t € Z)

0 — Qpn(t) — Qpy(log D)(t) — Q5 () — 0, (3.1)
which is known to be exact (cf. [4]). The dimensions of the cohomology groups
HY(PN, 0 (t)) and HY(D, QY (t)) are calculated in [1], where we also find
the following exact sequences

0 — Qpx (t —m) — Qv (t) = Op(t) ®o,y Vv — 0, (3.2)
0 — QL (t —m) — Op(t) ®o,y Lpn 2> Ap(t) — 0. (3.3)

The mapping ¢* := Boa means the restriction of the differential forms on PV to
the hypersurface D = H. In the case 7 = 1, one has to replace the sheaf Q}’)—l by
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the structure sheaf Op. For 0 < ¢ < N we have dim H9(PV, Qpn () = 0gr 610
(Kronecker-6) and we know by [1, Lemma 4] a base element of H"(PY,Qr )
which is given by the cohomology class of the cocycle w") e C7 (4, Qpy) defined
by

Tiy

WM o g Pa gz, g e (3.4)

iO ir . . . .
” L, Lig Liy Lip_q

i stands for the affine open covering of PV by the affine spaces U; = {x; # 0}.

m % -d % is a logarithmic differential. We may

For r = 1, in particular, w; -

represent (3.4) by
w(r) = w(l) A wm VANIRVAN wm

10,0 10,01 11,02 Tp—1,0p
which is an outer product of logarithmic differential forms. In the case ¢ =r =
N, t = 0 the cochain w®) creates a base of HY (PV, QI]PYN) (cf. [1, Lemma 2]).

Finally, we set w(©® = 1.

Lemma 3.1. Let 0 < r < N. Then the homomorphism d : H'~'(D,Q; ")
— HT(]P’N,QITP,N) in the long homology sequence with respect to the exact
sequence

0 — Qpy — Qpn(log D) — QTD_I —0
is epimorphic. If in addition 2(r —1) # N —1 is valid, then d is an isomorphism.

Proof. We calculate the image of the cohomology class of w1 at the
composition

H (PN, 0pt) 5 B (D, ) =

— H"(PY, Q)

and denote go*(w(’”*l)) again by w1V, Let Y be the affine, open covering
of PV given by the affine spaces U; = {z; # 0}. We consider the following
commutative diagram

0— CY,ny) — C YU QylogD) — C YU Qp"h) —0
! ! !
0— Cr(y,Qny) —  C"(U, Q5 (log D)) — O -0

where the cocycle w1 € C"71(U, Q7; 1) possesses in C"1(4l, Qpw (log D)) the
preimage o defined by g, . ;. _, = ) A N . (cf. [4]).

105y ir—1 P z;g

Elementary calculations show that dw 1) = (=1)" - m - w() € C"(4, Qpn)-
Therefore, the cocycle dw™1 € C7 (4, Qpy) is nonzero and the associated
cohomology class is a base of H"(PY ,Qpy ). Thus, the homomorphism d :
H=YD, Q5 ") — H"(PN,Qr,) is epimorphic. In the case 2(r — 1) # N — 1,
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we obtain dim H™~1(D, Q') = 1 by [1, Satz 2 and Lemma 5], which implies
that d is an isomorphism. O

Theorem 3.2. Let D C PV be a smooth algebraic hypersurface of degree
m (N > 2).
(a) For each r € {1,...,N — 1} one has:

dim HO(BN Q1 (log D)(1)) Zi(—l)i' <N+1> . <t+N—z‘.]\([m— 1) —r>'

. r—1
=0

(b) For all v € {1,...,N —1} it holds: H*(PY,Qf (log D)(t)) #0 <t > 7.
t+m—1

V)

(d) If D ¢ PV is a hyperplane (m = 1), then it holds: dim H°(PY,

Qpw (log D)(t)) = ({:7) . <t+]]\\7[_r>'

Proof. The formula (a) follows directly from the long exact cohomology
sequence related to the exact sequence in (3.1) by applying Lemma 3.1. For
r = N we obtain Q]{,YN (log D) = Q]{,YN (m) = Opn(m — N — 1) which yields (c).
(a) obviously implies (b) and (d). O

Theorem 3.3. (a) Let 0 < g < N, g+ r # N and r > 1. Then we obtain
H(PN, 0\ (log D)(t)) = 0 for all t € Z.

(b) For 1 <r < N —1 it follows:

dimHY (PN, pn (log D)(1))

:]jizl(_l)i'(N;k1>.<t—|—(N—r).m]_V(i_1).(m_1)>

:Jg(—ni- (N;H) . <—t+(r—1).m]:[(i_1).(m_1)>

That means: If D is a hyperplane (m = 1), then we have HVN~"(PV,
Qpn(log D)(t)) =0 for all t € Z.

(c) For 1 <r < N —1 one has:
dim HY(PY, Q% (log D)(t))

:%;(_1)1'. <Nf\i4;ii>_<—t—m—ij-v(m_1)+r>

7

(c) In the case r = N one has: dim HO(PV, QIJPYN (log D)(t)) = <
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If D is a hyperplane (m = 1), then we get: dim HN(]P’N,QEN (log D)(t)) =
N —t—1+r
r N '
—t— N
(d) dim HN (PN, O, (log D) (1)) = ( ;Z;* >

Proof. We consider the following exact sequence
L HITH (D, Q57 (1) < HIPY, O (1)) —
— HYPN, Qpy (log D)(t)) — HI(D, Q557 (1)) -2 (3.5)
L PN Qr () — .

and assume 0 < ¢ 0 <r and ¢+ < N. By Lemma 3.1 the mappings d; and
dy are epimorphic for all t € Z and from (3.5) we get the exact sequence

0 — HUPN, Q% (log D)(t)) — HI(D, Q5 (1)) 2 HITHPN, Q5 (1)) — 0.

Under these assumptions holds H9(D, Q7 (t)) = 0if g # r — 1 or t # 0 (cf.
[1]). In case ¢ =7 — 1,t = 0 we know that da is an isomorphism by Lemma 3.1
since 2(r — 1) < N — 1. Therefore, one has

HYPY Qpy(log D) () =0 for0<q 0<randg+r < N.

For ¢ < N,r < N,q+ r > N we use the Serre duality to show statement (a).
The case r = N is trivial since QfPYN (log D) = Opn(m — N —1).

If » > 2 and ¢ + 7 = N then the mappings d; and ds are epimorphic, i.e.
dim HY =" (PV, pn (log D)(2))
= dim HN (D, Q1 (1)) — dim HY PN Qpy (1))
In the case r = 1 and ¢ = N — 1 one has dimHNfl(]P’N,Q]%,,N(log D)(t)) =
dim HY YD, 0p (1)) — dim HY (PN, Qbx (1)) + HY (PN, Qpx (log D)(1)).

Applying Theorem 3.2, Lemma 2.1 and the results in [1] delivers (b) and
(c). O

3.2. T-Symmetric Tensor Differential Forms

Let T be a Young tableau with 7 boxes. We study the sheaf Q7 (log D) =
(2 (log D))T on PV and begin with a free resolution of the sheaf Q' (log D).

Lemma 3.4. Let D C PV be a nonsingular, irreducible, algebraic hyper-
surface of degree m > 2 defined by the equation F = 0.
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Then there exists a short exact sequence
N+1
0 — Opn(—m) — @ Opn(—1) — Qpn (log D) — 0. (3.6)
N
If D is a hyperplane, i.e. m = 1, we have Qg (log D) = & Opn(—1).

Proof. Let U; = {x; # 0} € PV and let U C PV be an arbitrary open affine
subset. We are going to show that there is an exact sequence

o N+1 Jé] 1
0— I'(U,Opn(—m)) = @ I'(U,Opn(—1)) = I'(U, Qpn (log D)) — 0.
For sections fo, ..., fnv € T(U,O(-1)) we put g := —L . Zﬁ;o zufu € T(U,0).

m

Let I} = gTFj denotes the partial derivatives of F'. The mapping 3 is defined
by (fo,--.,fn)— w, where the differential form w on U N U; is given by

N F, T,
w:wi:zz f,,—l—g-F J:de—
2

v=0
v#i

One easily verifies that w is a section of Qgy(log D) on U and it holds, in
particular, w; = w; for any i,j € {0,1,...,N}. For a section § € I'(U, O(—m))
let f, =0-F, forall v =0,1,..., N which implies that f, € T'(U,O(—1)) and
g = —0 - F. Finally, we have ker § = {(§ - Fo,...,0 - Fn)} = I'(U, Op~ (—m)),
which yields the claim for m > 2.

In the last part we have to show the statement of Lemma 3.4 in case m = 1.
Let D C PV be the hyperplane satisfying the equation zny = 0, and let U C PV
be an open subset. For given sections fy,..., fnv—1 € I'(U,O(—1)) let w be the
differential form, which has on UNU; 1 =0,..., N — 1, the representation

N-1
wzwi:qu’Q:z d__ Zf,u Ly -z

TN ®

V;i
respectively on U N Uy,

w—wN—Zfl, TN - d—N.

Then w is a section of Q%N(log D) on U, and the mapping (fo,..., fn_1) — w
N
becomes an isomorphism of I'(U, & Opx (—1)) onto (U, Qg (log D)). O

Lemma 3.5. Let T be a Young tableau with r boxes and the row lengths
li,lay . lg, set t; == r+1; —i for alli > 1 (I; = 0 if i > d) and assume
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d=depthT < N. Then the following sequence is exact for m > 2:
0— & Opw(d- (1—m)—1) %b@ Opn((d—1) - (1 —m) —r) 3
d

d—1
Y@ Opn([d—2)-(1—m)—1) 2 2% @ Op (1 —m —1) 25
ba—2 by
L @ Opn (—1) 2% QL (log D) — 0
bo
(3.7)

with the integers

N —1
bs:<Hi!> C Y Altiteoty =Lt — Lty tvga), (3.8)

i=1 1<i1<...<is<d
where A denotes the Vandermonde determinant.

N -1
In the case s = 0 we have by = (Hz') . H LG=l+j—1) =

i=1 1<i<j<N+1

N -1
(Hz') - A(ty,te,...,tn,tn41). For m =1 (D is a hyperplane) holds
i=1

wk(0Ty)
P
Qpn(logD) = @ p (—T)
with
I —1 d
T N\ _ 1t Yy _ i
rk(Qfy) = H (j_i +1> _Z(_l) -b;
1<i<j<N 1=0
N-1 \ !
:<Hi!> At ta, .. tN).
=1

Proof. The T-Power of (3.6) yields the claim for m > 2 (cf. [3]) and Lemma
3.4 shows the case m = 1. O

Theorem 3.6. Let T be a Young tableau with r boxes and with d =
depth T rows.
d ‘ N
() X(BY, 0 (l0g D) (1)) = 7 - SO(=1) by [J(6 =i m = 1) 4 j = ).
i=0 j=1
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(b) For depthT" < N one has:

d

dim HO(PN, Qfy (log D)(t)) = > _(=1)" - b; - <

=0
and therefore: H°(PV, Qfy(log D)(t)) #0 <t > 7.

(c) Let d = depthT = N and let Iy be the number of columns of T' with
the length N. We denote by T" the Young tableau which is given by T without
these columns of length N. Then depthT’ < N and it holds QL (log D)(t) =
Qly(log D)(t+ Iy - (m— N —1)).

If T is a rectangle with N rows and | columns, then we have Qi (log D)(t)

(d) For 1 < q < N —d we get Hq(]P’N,QEj;N(log D)(t)) =0 for all t € Z.

(e) Let d; be the length of the last column of T. Then it holds: H?(PV,
QL (log D)(t)) =0 for N —d; < ¢ < N and Vit € Z.

t—i-(m—N1)+N—r>

Proof. The short exact sequences of (3.7) yields
0 —®Opn(d-(1-m)—r) — & Opn((d—1) - 1-m)—7) —
d

d—1
— Imay_ 1 — 0,

0 —Imag1— @& Opn((d—2)-(1—m)—7r) —Imag_o —0,
ba—_2
0 —Imay — ®Opn(1—m —7r) — Ima; — 0,
b1
0 — Ima; — ®O0pn(—1) — QETDN(log D) — 0,
bo
where HY(PN, Opn(t)) =0 for 1 < ¢ < N — 1 and for all ¢+ € Z. This implies

HY(PYN Ima;(t)) = 0 for 1 < ¢ < N —1+4i— d and hence, we have in case
d<N

dim H(PY, QL (log D)(t))

= by - dim HO(PY, Opn (t — 7)) — dim H° (PN, Im a4 (1)),

dim H(PY, Im o (t))

= by - dim HO(PY, Opn (t +1 —m — 7)) — dim HO(PY, Tm s (t))

dim H°(PY  Im a1 (t)) = bg_y - dim HO(PY, Opn (t + (d — 1) - (1 —m) — 1))
— by - dim HY (PN, Opn (t +d - (1 —m) —1)).
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This shows (b). For d = N we already know that
Ol (log)(t) = QN (log D) ® ... @ Qb (log D) @ QL (log D)(t)
=~ O (log D)(t +Ix - (m — N — 1)),
which proves assertion (c). In order to prove (d), we consider again the short
exact sequences of (3.7) and obtain

HIPY, Qly(log D)(t)) =0 if
HYPYN, Opn(t—7)) =0 and H(PY Imay(t) =0,
HY PN Imay(t) =0 if
HPY PN Opn(t+1—m—7))=0 and H?(PY Imay(t)) =0,

H Y PN Imag_(t) =0 if
HE PN Opn(t+ (d—1) - (1—m) —7)) =0,
and HIPY Opn(t+d-(1—m)—1)) = 0.
This implies H1(PY, Q% (log D)(t)) =0 for 1 < ¢ < N —d —1 and Vt € Z.
The last statement can be proven by Serre duality which means
dim H9(PY, QL (log D)(t))
= dim HVY(PY, QL (log D)(~t —m — (1= 1) - (m = N — 1))),
where depthT* = N — d; < N. Note if we use (b) with 7™ instead of T', we
obtain a formula for dim H™ (PN, QL (log D)(t)). O

3.3. Symmetric Differential Forms

Let T be a Young tableau with r boxes and only one row, i.e. depthl = 1.
We will specify the dimensions of HY(PYN, S"Q!(log D)(t)) and consider the
following exact sequence (cf. Lemma 3.5)

0— §9 Opn(—m+1—71) — 16)9 Opn (—7) — S"Qpn(log D) — 0 (3.9)
1 0

N+r—1>

. . N+r
with the integers by = < N ) and b; = < N

Theorem 3.7. Let N > 2. Then one has:

N
(a) x(PY, S"Qpx (log D)(t)) = %(N; T)-H(t—r—l—j)—%(]\[ +Nr — 1)
7=1
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TIN (= m+1—r+14).
(b) dim HO(PN, S™QL (log D)(t )'(t—’]‘v“v )= (M) ()

="y
(c) For 1 < ¢ < N — 2 it holds: H‘?(IP> pn(log D)(t)) = 0 for all t € Z.
(d) dim HN 1PN, S™Qzx (log D) (1))

:]jz_é(_l)i'gi’ <—t—r(m—2)]:7i-(m—1)—1>

N4r\ [—ttr—1 N+r—1\ [~t+m+r—2
_ : 4 :
dirng]YV(IP?N ,grQé,]j\(floglz)(t)S : ) < : )

N-1

A —2)—i-(m—-1)—1
= (=1)" - b; - < t=r(m )Nz (m—1) ) with the integers
i=0

~ 1 N+7r N +r r+i—1
bi_N+r'<N—1—z‘>'< N )( i ) (3.10)

Proof. (a) follows directly from (3.9) and the additivity of the Euler char-
acteristic. We consider (3.9) together with the corresponding cohomology se-
quence and know that HI(PN, Opn(t)) = 0 for any ¢ € {1,..., N — 1} and for
all t € Z, which implies (b) and (c¢). Using the Serre Duality yields

dim HY (PY, 57O (log D)(t))
= dim HO(PY, QT (log D)(—t + (r — 1) - (N + 1) — 7 - m)),
where T is a rectangle with depth7* = N — 1 rows and length T* = r columns

and with the associated integers b; in (3.10) (cf. Lemma 3.5). Theorem 3.6(b)
delivers the formula for dim HO(PY, Q7" (log D)(~t + (r — 1) - (N +1) —r-m)).

Finally, one gets easily the dimension dim H" ~*(PY, S"Q1y (log D)(t)) from
the long cohomology sequence. O

Corollary 3.8. For N > 2 we obtain:

(a) HO(PY, S™0%y (log D)(t)) #0 <t > 7.

(b) dim HO(PN, 57Q1 5 (log D)(t)) = x(PY, S"Q%y (log D)(t)) if t > m 41 —
N —1.

(c) HN(PY, Sy (log D)(t)) =0 <t > —r(m —2) — N.

(d) HN7H(PN, 5™l (log D)(t)) = 0 if t > m +7r — N — 1.

Proof. Obviously, the proof follows from Theorem 3.7. U
Theorem 3.9. Let N > 2 and let D be a hyperplane, that is, m = 1.
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Then one has
N+r—1 t—r+N
. 0/mN grol — .
(a) dim H" (P, S"Qpy (log D)(t)) = ( N1 > ( N )
(b) For 1 < q < N — 1 it holds: H1(PN,57Ql (log D)(t)) =0 Vt € Z.
N+r—-1 —t+r—1
: N(pN qQr —
(c) dim H™ (PV, S Q%N(logD)(t)) = < N1 ) . < N )
Proof. S"Qly(logD)= @&  Opn(—r). O

Qv

4. Complete Intersections Y C PN

Let Y =H;N...NHy_p, CPN be a nonsingular, irreducible, complete inter-
section of algebraic hypersurfaces H; C PV, where H; is given by the equation
F; = 0 with deg F; = m;. We denote by n the dimension of Y. Let D be a
prime divisor on Y, which is defined by the equation D =Y N H with a hy-
persurface H : F = 0. The degree of H is m. In the following, we abbreviating
denote c = N —n = codimY and assume n > 2. Let X be a further complete
intersection which is described by X = H1N...N H._;. Here dm X =n+1
and Y = X N H.. There exists also a divisor D* = X N H on X. Assume that
the hypersurfaces Hy,..., Hy_,, and H lie in general position, i.e. for instance
X =H;N...NH,_; €PN and the prime divisors D on Y and D* on X are
nonsingular, irreducible, complete intersections, too.

4.1. Alternating Differential Forms

In case r = n we obtain Qf = wy = Oy (3_;_; m; — N — 1) which implies
C
0% (log D) = Q3 (m) = Oy () _m; — N —14m),
i=1

where D =Y N H with deg H = m. The dimensions of H4(Y, Q% (log D)(t)) =
HYY,Oy (> ;_;m; — N —1+m+t)) are well known:

If 1<qg<n-—1then HI(Y,Oy(t)) =0Vt € Z.

am v 0v) = ()
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31y 3 (t—l—N—mil—]:]niQ—...—mij)

j=1 1<iy<ip<...<i;<c
dim H™(Y, Oy (t)) = dim H(Y, Oy (=t +m1 +ma + ... + me — N — 1)),
(cf. e.g. [1] or the proof of Lemma (4.4) in the present paper).
We study the cohomology groups H¢(Y, Q5. (log D)(t)) with r < dimY = n:

Lemma 4.1. The following sequences are exact.

(@) 0— Ox(—m.) — Ox ﬁ@y—>0. (4.1)

(1) 0— Q% (log D) (—me) = Q% (log D*) 2 Oy @0, Wy (log D*) — 0.
(4.2)

() 0— Q7 (log D)(—me) > Oy ®o, Vy(log D*) > Q- (log D) — 0.
(4.3)

Proof. Notice, for 7 = 1 we have to substitute Q}- ' (log D) by the structure
sheaf Oy. The composition § o § is the restriction of the differential forms
on X to the subvariety Y C X. Obviously, the sequence (4.1) is exact and
(4.2) results by multiplication of (4.1) with the locally free sheaf Q% (log D*).
We will show that (4.3) is also an exact sequence. Let U C X be an open
subset of X and let V=Y NU be an open, nonempty subset of Y. Without
loss of generality we assume U C U; = {z; # 0}. Moreover, we suppose the

existence of local parameters uy, ..., U,_1, U, = %, Upt1 = fTCC of X on U such
i (3
that their restriction to Y are also local parameters v; = ¢*(u1),..., 01 =

©*(Un—1),vn = ¢*(up) = 2= of Y on V. Then I'(V,Oy ®0, Q% (log D*)) is

a free I'(V, Oy )-module whose rank is equal to (”jl) Let w € I'(V, Oy ®0y
V' (log D*)) be a section of the form

n—1
W= Z fivinduiy Ao Adu,

ip=1

du,

n—1
+ ) fiirmdu A A A

u
iv=1 n

n—1

+ Z fil,---,ir—17n+1 duil AN d’LLZ'T_1 A\ dun+1
iy=1

du,

n—1
+ Z fil,...,ir_g,n,nJrl d’u,i1 FANAAN d’LLZ'T_2 A\

ip=1

A dupg
Unp,
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where f;, ;. € I'(V,Oy). The homomorphism ¢ is defined as follows:

n—1 n—1 dv
= Z fil,...,ir d’UZ‘1 A.. ./\dvir + Z fi1,---,ir71,n d’UZ‘1 A.. ./\dUiT71 /\v_n7
iy=1 i,=1 n

which means that 6(w) € I'(V, Qf (log D)). The kernel of § is given by

n—1
ker§ = {Z fil,...,ir,l,n-I—l dui1 VANAAN duiT71 A\ dun+1

ip=1

du
+ Z fi1,...,i,«_2,n,n+1 duil A A d’LLZ'T_2 A\ n A dun+1} R
=1 Un

where ker § C I'(V, Oy ®o, Q' (log D*)). In order to show that the kernel of ¢
is isomorphic to I'(V, Q5 (log D)(—m.)), we consider the following homomor-
phisms

ker 5 —2 T(V, Oy (—me) @0, Qi (log D*)) -5 T(V, Q5 (log D) (—m.)).
Let £ € ker § be any element The mappings & and B are illustrated by

a( = mp E fll, Hir—1,m+1 duu A duir—l
=1
n—1
1 duy,
+ e E firsir—ommrrduy Ao oA Adug,_, A o
iog,=1 n
respectively,

ﬂ(&(f = mC Zfll, ol — 1,n+1dvl1 '/\dvir—l

=1

1 dv
+ P Z Jitrir—zmmr1 dvig Ao A dvg,_y A —.

4 v
tg,=1 n

Since z** - dupy1 = x;* - d gf;“c is a global section of the sheaf Oy (m.) ®o,

(2%( the functions & and B are independent of the index ¢ with U C U; and
independent of the choice of the local parameters uy,...,u,—1. One can easily
see that o and ﬁ are monomorphic. The mapping ﬁ is the restriction from X
to Y which obviously is epimorphic. While & is generally not epimorphic, any
element of I'(V, Q5! (log D)(—m,)) has a preimage in ker . We can represent an
element of I'(V, Q5! (log D)(—m.)) by the form 3(a(¢)) with functions f;, _;, €
I'(V,Oy). In order to find a preimage in kerd, we use the same functions
fir....ir,» and in place of v; we take the local parameters u; on X and multiply



128 P. Briickmann, P. Winkert

with "¢ - dup41. This proves that the composition ﬁ o a is isomorphic, the
sequence (4.3) is exact. O

By means of these exact sequences we are going to prove recursion formulas
about the dimensions of the cohomology groups H?(Y, Q3 (log D)(t)). As above
mentioned, for » = n these dimensions are known.

Theorem 4.2.  (a) x(Y, 2§ (log D)(t)) = x(X, % (log D*)(8)) — x(X,
Q% (log D*)(t — m,)) — x(Y, Q5 *(log D)(t — m,)) forr>1

In the case r = 1 one has to substitute Q- '(log D) by the structure sheaf
Oy.

(b) Let 0 < ¢ < n, g+r # nandr > 0. Then one has H4(Y, Q5 (log D)(t)) =
0 for any t € Z.

(c) dim H*(Y, Q% (log D)(t)) = dim H°(X, Q% (log D*)(t)) — dim H°(X,
0% (log D*)(t — m,)) — dim H(Y, Q5 (log D)(t — m,)) for 0 < r < n.

(d) dim H"(Y,Q%(logD)(t)) = dim H(X,Q% "(log D*)(—t — m))
—dim HO(X, Q% "(log D*)(—t —m.—m)) —dim H(Y, Q%" ! (log D)(—t —m.—
m)).

(e) dim H (Y, Q% (log D)(t)) = dim H°(Y, Q% *(log D)(t)) + dim H(Y,
QO (log D)(t + m,)) + dim H(X, Q% (log D*)(t)) — dim H°(X, Q% (log D*)(t +
me)) — dim H' (X, Q% (log D*)(t)) + dim H (X, Q% (log D*)(t 4+ m.)).

() dim H""(Y, Q5 (log D)()) = dim H""~(v, Q5+ (log D)(t + m.)) —
dim H" " (X, Q% (log D*)(1)) + dim H""(X, Q' (log D*)(t + m,)) for2 <
r<n.

Proof. Under the additional condition g + r < n the proof of (b) will be
shown by complete induction with respect to ¢ = codimY and r. Then the
case ¢ + r > n follows directly from the Serre duality. If ¢ = 0, i.e. Y =PV,
Theorem 3.3 implies H9(Y, Q5 (log D)(t)) =0 for 0 < ¢ < N and ¢+ r # N.

If r = 0 then we get HY(Y, Oy (t)) = 0 for 0 < ¢ < n (cf. e.g. [2, Lemma
1]).

In particular, we have the following induction assumption (c—1 = codim X):

(i) From ¢,r e N, 0< ¢, 0 <rand g +r <n+ 1 it follows

HY(X,Q%(log D*)(t)) =0 for all te€ Z.
Now assume 0 < ¢, 0 < r and ¢ + 7 < n. From (4.2) we get the exact

sequence
. — HY(X, Qi (log D*)(t) — H(Y, Oy (t) @0y Uy (log D)) —
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— HY X, Q% (log D) (t — mg)) — ... .
Since 0 < ¢ ¢+ 1+ 7 <n+1 we have by induction assumption (i):
HY(X, Q% (log D*)(t)) =0 and HY™(X, Q% (log D*)(t —m,)) = 0.

Hence, H1(Y, Oy (t) ®0, QX (log D*)) =0 for 0 < ¢ ¢+ r <n and any t € Z.

Now, let » > 0 be a fixed integer. We use the following induction assump-
tion:

(i) If 0 < g and g+ 7 — 1 < n then HI(Y,Q} '(log D)(t)) = 0 for all t € Z.

To prove: If 0 < ¢ and ¢ +r < n then HY(Y, Q5 (log D)(t)) = 0 for all
teZ. Let 0 < q g+ r <n. We consider the exact sequence which is given by
(4.3)

- — HI(Y, Oy (t) @0y Qx(log D)) — H(Y, 2y (log D)(t) —
— HTY(Y, Q7 (log D) (t —me)) — ... .

By (ii) one has H9+1(Y, Q5! (log D)(t—m,)) = 0 for all t € Z since g+1+7r—1 =
g+7r <n(and ¢+ 1 < n). Furthermore, we know that HY(Y, Oy (t) ®o,
' (log D*)) = 0 for any t € Z because of 0 < ¢ ¢+ 17 < n.

This implies HY(Y, Q3 (log D)(t) = 0 for 0 < ¢ < n and ¢ + r < n for any
teZ.

For the proof of (c) we first consider the exact sequence from (4.2)

0 — H(X, % (log D*)(t — m.)) — H°(X, Q% (log D*)(t)) —
s HO(Y, Oy (1) @y O (log D*) — HY(X, Q% (log D7)t — m,) — ...

(4.4)
and apply (i) which yields HY(X, Q% (log D*)(t —m.)) =0as 1+7r<n+1=
dim X. Because of (4.3) one gets the exact sequence

0 — HO(Y, 0y (log D)(t — me)) — H(Y, Oy (t) @0y Ok (log D*)) —
HOY, 0% (log D)(t) — H(Y, 95 (log D)(t — me)) — ...,

(4.5)
and due to 1 +7 — 1 = r < n one has H(Y,Q} ! (log D)(t — m.)) = 0. State-
ment (c) can be read from (4.4) and (4.5). Assertion (d) can easily be shown
by Serre duality. The Euler-Poincare characteristic can be calculated by the
exact sequences (4.1)—(4.3). This allows us to specify finally the dimension of

H" (Y, Q% (log D)(t)). (e) and (f) also can be shown using the exact cohomol-
0gy sequences. ]
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4.2. T-Symmetric Differential Forms

Let Y C PV be the n-dimensional complete intersection of multidegree (m) =
(mq, ma,...,m.).c = N —n denotes the codimension of Y.
We consider a Young tableau 7' with r boxes, the row lengths I} > o >

. > lg > 0 and the column lengths dy > dy > ... > d; > 0. We denote
Il =1 =lengthT and d = d; = depthT. Let M(T') be the set of all integer
matrices A = ((d;;)) € N1 with ¢+1 rows, [ columns and with the following
properties:

(1) dl,j = dj Vi e {1, e ,l},

(2) dig>diy1,>0 Vie{l,... c},
(3) diJ > diJrLj > di,jJrl Vi € {1, . ,C} Vj € {1, B 1}

Let g;(A) = 2221 d;j be the i-th row sum of A and we put o(A4) = 0.+1(A).
We denote by

p=> d (4.6)
j=1

the number of boxes in the first ¢ columns of T, where d; = 0 for j > [. One
can easily see that r — u < p(A) < r for all A € M(T). Finally, we define
the subset M (T) of M(T) by Ms(T) :== {A € M(T) : o(A) = r — s} for all

s€{0,1,...,u}. For simplification we set furthermore:
/ * / * "(A *
0Ly (log D*) = Oy ©o,, Wllog D), Ep= @ QL (log D7) (t(4))
AeM,(T)

with t(A) = Y7 (0i+1(A) — 0i(A)) - m;. Here T"(A) denotes a Young tableau
with o(A) boxes and the column lengths dey11,...,de+1,, that is, 7"(A) de-
pends only on the last row of A. If o(A) = 0 we need to replace the sheaf

QETDJI\,(S,) (log D*) by the structure sheaf Oy.

Lemma 4.3. There exists following exact sequence:

0— g Oe gt et

2, g} 0Ly (log DY) 2 0F (log D) — 0. (4.7)

Proof. (4.7) is the T-Power of the following short exact sequence (cf. [3]):
4 o 1 x P o1
0 — P Oy (—mi) = Oy @0,y Qpn(log D*) == Q- (log D) — 0. (4.8)
i=1
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We need to show that (4.8) is an exact sequence. Let U C PV be an open
subset. Without loss of generality we put U C U; = {z; # 0}. Assume that

there exist local parameters fwll,...,;;%,ul,...,un,l, % of PN on U such
1 1
that the restrictions v1 = *(u1),..., -1 = ©*(Un—1), v, = @™ (xim) are local
K2

parameters of Y on U NY. We know that I'(U NY, Oy ®o, Qg (log D*)) is
a free T'(U N'Y, Oy )-module defined by the span

F F, " F
T,...,dﬁ,dlﬂ,.. dun 17F dﬁ

L(UNY,Q% (log D)) is a free I'(UNY, Oy )-module with the span dvy, ..., dv,.
Let w e (U NY, Oy ®o_y Qg (log D*)) be any element given by

d

< J am F
B . i /
W_ij-xi d -dW—Fng-duk—l—h-%-dﬁ.
j=1 i k=1 i
The homomorphism 3 maps w to f(w) = ZZ;% gr -dvg + h- %, where the
d ifj } We obtain
x

i

kernel of this mapping is given by ker 3 = {Z§:1 fi-x?

the following homomorphism

v:@rWnY,0y(-my)) — ker g with (f1,..., fo) — Zf] i aL m]
j=1 j=1
which is isomorphic and independent of the index ¢ with U C U;. ]

Lemma 4.4. For an arbitrary Young tableau T' there exists the following
exact sequence

O—>Q (log D) Zml e, @Q (log D*) —imj—kmi)ac—_ln..

1<i<c
. & @ pr(logD*)(—mil — mi2) & @ Q%JI\T(IOgD*)(_mi) &
1<i1<i2<c 1<i<c
2, Q%J/V (log D*) 2% Oy ®0,n Q%]/V (log D*) — 0.
(4.9)

Proof. We consider the following exact sequence which is called the Koszul
complex:

c
0—>OI[J>N Zmz Ozp @ OPN ijﬁ—mz)oﬂ
j=1

1<i<c
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Q QU (03 Q
= @ Opn (—my, —my,) —> GB Opn (—m;) — Opy —> Oy — 0.
1<i1<iz<c 1<i<c

Multiplying this exact sequence with the local free sheaf Q " (log D*) yields the
assertion. O

Theorem 4.5. Under the assumption 1 < g < n — depthT — p one gets
HY(Y, QL (log D)(t)) = 0 for all st € Z.

Proof. We write instead of (4.9) short exact sequences and obtain
C
0—>QPN (log D*)( Zmz @ Q (log D*) —ij—l—mi)—>
1<i<e j
— Ima..1 — 0,
c
0—Imacs — P  Qn(logD*)(=Y my+mi +mi,) —
1<iy <ip<c j=1

— Ima._ 9 — 0,

0 — Imay — @ Q%J/V(log D*)(—m;) — Ima; — 0,
1<i<e

0 — Ima; — ng/\, (log D*) — Oy ®o_y ng/\, (log D*) — 0.
Using the long exact cohomology sequences yields a vanishing criterion for
HU(Y, Oy ®0, QT (log D*)(t)). We have

HY(Y, Oy ®0,, Qn(log D*)(t)) =0if HU(PY, Qf} (log D*)(¢)) =0,
and H (PN, Imoy(t) =0,

HPY PN Imaq () =0 if  HITHEN, @ Qf(log D*)(t —m;)) =0,
1<i<c
and HI2(PN, Imay(t) =0,

HI YN Tmae_y(t) = 0

it HTY(PN, P Qfy(log DY) t—ZmJ—FmZ))—O
1<i<c Jj=1

and H(PN, QL (log D) t—zml -
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Applying Theorem 3.6 (d) yields H9(Y, Oy (t) ®o,_, by (log D*)) = 0 for 1 <
q < n—depthT’. Now we study HY(Y,QL (log D)(t)) with the aid of (4.7).
Decomposing (4.7) in short exact sequences delivers

0— EV —>E§L:1 — ImpB,_1 — 0,

0—Impg, 1 — Erf,f_2 — Imp, 2 —0,

0 — Im G, —>E% — ImpB; — 0,
0 —Imp — Q%N‘Y(log D*) — QL (log D) — 0.
With E3(t) = @D 94y (log D*)(t + £(A)) one has
AeM(T)
H(Y,Qy (log D)(t)) = 0if  HY(Y,Qpny (log D*)(8)) = 0,
and HH(Y,Im By (t) =0,

HO PN (Y, Im B, (1) = 04 HTH (Y, BTN (1) = 0,
and HITM(Y, E/\(t)) = 0.
This implies H4(Y, Q% (log D)(¢)) =0 for 1 < g < n — depthT — p. O
Now assume for instance u < n — depthT. Then for each ¢t € Z it follows
from our exact sequences:
HIPY Imoy(t) =0if 1 <g<p+1,
HU(Y, Oy (t) ®0,, Qin(log D*) =0if 1 <g<p+tec,
HUY,En(t)=0if1<q<j, HUY,ImpB;(t))=0if1<q<j
In particular, the cohomology groups H'(...) of all these sheaves van-
ish. Therefore, we have the opportunity to calculate the dimensions of their
cohomology groups H°(...): Let h'(t) abbreviating denotes the dimension

dim HO (PN, QI (log D*)(t)) as an integer function of t. Remember that (m) =
(mq,ma,...,m.) is the multidegree of the complete intersection Y. We set

C
By (t) =BT () + ) (=1)° > Wt —mi, —mi, — ... —mj,).
s=1 1<i1<i2<...<1s<c

Because of (4.9) we have dim H°(Y, Oy ROpn Q%}v (log D*)(t)) = hT’

(m) (t) and

using (4.7) we get the following formula:
Theorem 4.6. If i < dimY — depthT then dim H°(Y, QL (log D)(t)) =
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ST (1N BT ¢ a(A)) with H(A) = T (001(A) — 0i(4)) -
AEM(T)

In particular for t = 0: HO(Y, QL (log D)) =0 if 4 < dimY — depth T".

Remark 4.7. For regular T-symmetrical tensor differential forms one has
HY (Y, QL) =0if p < dimY.

4.3. Symmetric Differential Forms

We consider symmetrical differential forms with logarithmic poles as a spe-
cial case, that means, 7" is a Young tableau with r boxes and only one row
(depthT =1 | = lengthT = r).

Let D* = H be the prime divisor on projective space PV and let D be the
prime divisor on the n-dimensional complete intersection Y as above (n > 2).
Distinguishing the cases » < ¢ and ¢ < r we obtain two exact sequences as
symmetrical power of (4.8): Assume at first r < ¢

0— @ Oy(—mil — My, —...—mir)—>
1<i1<i9<...<ir< ¢
1 *
— @ Oy(—mil — My — -+ —mir71)®opN Q]P,N(logD )— ...

1<i<..<ir—1< ¢

o @ Orlom) o, 510 ox D) —

1<i<c
— Oy @0,y S" U (log D*)—S5"Q5(log D)— 0.

In the case ¢ < r the following sequence is exact:

0— Oy(— ij) ®0,y Qpy (log D*)—
j=1

— @ Oy (— Z mj +m;) ®o,n QITPEC—H(lOg D*)— ...

1<i<c j=1
o @ Ov(-m) @0, 50k (l0g D) —
1<i<c

— Oy @0,y S" U (log D*)—S5"Q5-(log D)— 0.
Furthermore, we have Lemma 4.4 with the sheaf S"Qpy (log D*) instead of
QETDJ/\, (log D*). With the corresponding cohomology sequences we get:

Theorem 4.8. Assumen =dimY > 2.
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(a) If 1 < g <n—2 then HY(Y, Oy (t) ®0,, S" Uy (log D*)) =0Vt € Z.

(b)
dim H(Y, Oy (t) @0, 5" (log D*)) = dim HO(PY, S"Qpy (log D*)(t))

c
+Y (=17 Y dimHO(PY, S Qpy (log D¥)(t = miy — ... —my)).
j=1 1<i1<...<ij<c
(c) H(Y, Oy (t) R0, Sy (log D*)) #0 &t > 7.
(d) In case t = 0: HO(Y,Oy R0,y 5™ (log D*)) = 0 for all r > 0.
Theorem 4.9.
(a) Ifr <cand 1 < g <n—r then H{(Y,S"Q (log D)(t)) = 0 Vt € Z.
(b) Ifc<rand1<gq<n-—c—1then HI(Y,S Q) (log D)(t)) = 0 Vt € Z.
Proof. By Theorem 4.5 we know H4(Y, Q% (log D)(t)) = 0 for all t € Z if
1 < g <n—depthT — p. For symmetric differential forms we have depthl" =1
and p = Y 7, d; = min{c,r}, where d; = 1 for i < r and d; = 0 for i > r.
This proves (b). Under condition r < ¢ one gets the stronger result (a) since
H1(Y,Oy(t)) =0 for 1 < g <mn and for all t € Z. O
Theorem 4.10.
(c) If r < ¢ and r < n then
HO(Y, 575 (log D)(t)) = dim H(Y, Oy (t) ®0,, 5" (log D*))

k=1 1< <...<ip<c j=1

r—1 k
+Y (=DF > dimHYY, Oy (t— Y mi) ®o,y 8" Qg (log DY)
+(=1)"-

Z dim H°(Y, Oy (t —my, — ... —my,).
1<i<..<ir<c

(d) If c <r and ¢ < n —1 then
HO(Y, 5"y (log D)(t)) = dim H'(Y, Oy (t) ®0,, S"Qp (log D¥))

c k
+Y (=DF > dmHAY, Oy (t— Y mi) @0,y Sy (log D).
k=1

1< <. <, <c 7j=1

Proof. Statements (c) and (d) follow from the related exact sequences since
under these premises by Theorem 4.8 the cohomology groups H'(...) of all
these sheaves vanish (cf. Theorem 4.8 and Theorem 3.7). O

Finally, it is easy to see:
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Theorem 4.11. (e) Ift < r < min(c,n—1) then H°(Y, S"Q% (log D)(t)) =

(f) If t < r and ¢ < min(r,n — 1) then H°(Y, S"Q3-(log D)(t)) = 0.

(g) If c <m — 1 then H*(Y, S™Q (log D)) = 0 for all r > 0.

(h) If 0 < 7 < n then H°(Y, S"Q},(log D)) = 0.

Remark 4.12. On the other hand, for regular symmetrical differential

forms on complete intersections it is well known:

1]

2]

[4]

[5]

[6]

If ¢ < n then HO(Y,S"Q3,) = 0 for all r > 0.
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