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Abstract: The aim of this paper is to investigate T -symmetrical tensor differ-
ential forms with logarithmic poles on the projective space PN and on complete
intersections Y ⊂ PN . Let H ⊂ PN , N ≥ 2, be a nonsingular irreducible alge-
braic hypersurface which implies that D = H is a prime divisor in PN . The
main goal of this paper is the study of the locally free sheaves ΩT

PN (log D) and
the calculation of their cohomology groups. In addition, for complete intersec-
tions Y ⊂ PN we give some vanishing theorems and recursion formulas.
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1. Introduction

The symmetry properties of tensors are important in physics and certain areas
of mathematics. In the following, let k be the ground field which is assumed to
be algebraically closed satisfying char(k) = 0. We denote by H ⊂ PN

k , N ≥ 2, a
nonsingular, irreducible, algebraic hypersurface defined by the equation F = 0,
where deg F = m. Then D = H gives a prime divisor of degree m in PN

k .
The aim of this paper is the calculation of the dimension of the cohomology
groups Hq(PN ,ΩT

PN (log D)(t)) with general twist t ∈ Z, where T is a Young
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tableau specified later. ΩT
PN (log D) denotes the so-called sheaf of germs of T -

symmetrical tensor differential forms with logarithmic poles along the prime
divisor D (cf. [4], [7], [3]). In addition, we consider the associated cohomology
groups of nonsingular, irreducible, n-dimensional complete intersections Y ⊂
PN , n ≥ 2. In this case, let the prime divisor D = Y ∩ H be the intersection
of Y and hypersurface H. As special cases, we investigate the alternating and
the symmetric differential forms on PN and on Y , respectively.

2. Notations and Preliminaries

Let Ω1
X be the sheaf of germs of regular algebraic differential forms on a n-

dimensional nonsingular, projective variety X ⊆ PN and let Ωr
X =

r
∧Ω1

X and
SrΩ1

X be the sheaves of alternating and symmetric differential forms on X,
alternatively. We denote by (Ω1

X)⊗r the r-th tensor power of Ω1
X . The coherent

sheaves Ω1
X , Ωr

X , SrΩ1
X and (Ω1

X)⊗r are locally free on X with the rank n,
(
n
r

)
,(

n+r−1
r

)
and nr, respectively.

The irreducible representations of the symmetric group Sr correspond to
the conjugacy classes of Sr. These are given by partitions (l) : r = l1 + . . . + ld
with li ∈ Z, l1 ≥ l2 ≥ . . . ≥ ld ≥ 1. Partition (l) can be described by a
so-called Young diagram T with r boxes and the row lengths l1, . . . , ld. The
column lengths of T will be denoted by d1, . . . , dl and we set d = d1 = depth T

and l = l1 = length T , respectively. Clearly, d1 ≥ d2 ≥ . . . ≥ dl ≥ 1 and the
equations

∑l
j=1 dj =

∑d
i=1 li = r are fulfilled. Moreover, we put li = 0 for i > d

and dj = 0 for j > l. The “hook-length” of the box inside the i-th row and the
j-th column of the Young diagram is defined by hi,j = li − i + dj − j + 1 and
the degree of the associated irreducible representation is equal to

ν(l) =
r!∏
hi,j

=
r!

d!
·

d∏

i=1

i!

(li + d − i)!
·
∏

1≤i<j≤d

(
li − lj

j − i
+ 1

)

= r! · det((
1

Γ(li + 1 − i + j)
))

i,j=1,...,d

(cf. [5]).

A numbering of the r boxes of a given Young diagram by the integers
1, 2, . . . , r in any order is said to be a Young tableau which for simplicity again
will be denoted by T . Now, one has an idempotent eT in the group algebra
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k · Sr defined by

eT =
ν(l)

r!
·



∑

q∈QT

sgn(q) · q


 ◦



∑

p∈PT

p


 ,

where the subgroups PT and QT of Sr are given as follows: PT = {p ∈ Sr :
p preserves each row of T}, QT = {q ∈ Sr : q preserves each column of T}.

The idempotent eT is called Young symmetrizer (cf. [5]). If the numbering
of the boxes of the Young tableau generates inside every row and every column
monotone increasing sequences, we speak of a standard tableau. The number
of all standard tableaux to a given Young diagram is equal to the degree ν(l).
We denote by D(r) the set of all standard tableaux to all Young diagrams with
r boxes.

For a variety X the notation Ω⊗r
X = (Ω1

X)⊗r stands for the sheaf of germs
of regular algebraic tensor differential forms. This implies that the symmetric
group Sr and the related group algebra k ·Sr act on Ω⊗r

X defined by p(a1⊗ . . .⊗
ar) = ap−1(1) ⊗ . . . ⊗ ap−1(r) for all p ∈ Sr. That means, mapping p permutates
the spots inside the tensor product. Furthermore, it holds

Ω⊗r
X =

⊕

T∈D(r)

ΩT
X

with ΩT
X = eT (Ω⊗r

X ), where ΩT
X is called the sheaf of germs of T -symmetrical

tensor differential forms or simply the T -power of Ω1
X . If two Young tableaux

T and T̃ possess the same Young diagram, we have ΩT
X

∼= Ω
eT
X .

Under the assumption depth T ≤ dim X with a smooth n-dimensional va-
riety X the belonging sheaf ΩT

X is locally free of rank

∏

1≤i<j≤n

(
li − lj

j − i
+ 1

)
=

(
n−1∏

i=1

i!

)−1

· ∆(l1 − 1, l2 − 2, . . . , ln − n),

where ∆(t1, t2, . . . , tn) =
∏

1≤i<j≤n(ti − tj) denotes the Vandermonde deter-

minant. If depth T > dimX then we have ΩT
X = 0. In the special cases

Ωr
X = ∧rΩ1

X and SrΩ1
X the Young tableau has only one column and one row,

respectively. In the same way the T -power FT of an arbitrary coherent algebraic
sheaf F is defined. One has for instance ΩT

X(log D) = (Ω1
X(log D))T .

Furthermore, we describe the T -power of an algebraic complex (cf. [3]): Let
R be a commutative ring which contains the algebraically closed ground field
k fulfilling char (k) = 0. We consider an algebraic complex K of R-modules

given by K : K0
d

−→ K1
d

−→ K2
d

−→ . . . with d2 = 0.
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Then the r-th tensor power P = K⊗r of K is defined by P = K⊗r : P0
δ

−→

P1
δ

−→ P2
δ

−→ . . . with Ps =
⊕

s1+...+sr=s Ks1 ⊗ . . .⊗Ksr and δ(b1 ⊗ . . .⊗ br) =∑r
i=1(−1)s1+...+si−1 · b1 ⊗ . . .⊗ bi−1 ⊗ d(bi)⊗ bi+1 ⊗ . . .⊗ br, where bj ∈ Ksj

for
all j. Again the symmetric group Sr acts on this tensor power by permutation
of the spots inside the tensor product. In order to obtain such an action of Sr

on P = K⊗r, which commutates with δ, we introduce additionally a sign as
follows:

1. σ(p ; s1, . . . , sr) :=
∑

i<j
p(i)>p(j)

si · sj for all p ∈ Sr.

2. p(b1 ⊗ . . . ⊗ br) := (−1)σ(p ;s1,...,sr) · bp−1(1) ⊗ . . . ⊗ bp−1(r), where bj ∈
Ksj

for all j ∈ {1, . . . , r}.

Then one has

Ps =
⊕

T∈D(r)

K(T )
s , K⊗r =

⊕

T∈D(r)

K(T ), H∗(K⊗r) =
⊕

T∈D(r)

H∗(K(T ))

with K
(T )
s = eT (Ps) and K(T ) = eT (K⊗r) : K

(T )
0

δ
−→ K

(T )
1

δ
−→ K

(T )
2

δ
−→ . . ..

This complex K(T ) is said to be the T -power of K. If two Young tableaux

T and T̃ possess the same Young diagram, one has K(T ) ∼= K( eT ). For an exact
sequence K the T -power K(T ) of K is also an exact sequence.

Now, let X ⊆ PN be a projective variety satisfying ωX
∼= OX(nX) for some

nX ∈ Z, where ωX stands for the canonical line bundle. This implies under the
assumptions d = depthT = dim X = n and l = length T > 1 the isomorphism

ΩT
X

∼= ΩT ′

X ⊗ ωX
∼= ΩT ′

X (nX),

where T ′ arises from T by deleting the first column of T . In the case d =
depth T = dimX = n and l = length T = 1 (i.e. T has only one column) we
have the isomorphism ΩT

X
∼= Ωn

X
∼= ωX

∼= OX(nX).

An important tool in our considerations will be the Serre duality: Suppose
the Young tableau T has the column lengths d1, . . . , dl satisfying d1 = d =
depth T ≤ dim X = n. We get an associated Young tableau T ∗ by the column
lengths d∗j = n − dl+1−j for all j = 1, . . . , l. One verifies readily that in case
depth T < n holds (T ∗)∗ = T .

The next lemma delivers some duality relations about the dimensions of
cohomology groups.

Lemma 2.1. Let Y = H1 ∩ . . . ∩ HN−n ⊆ PN be a n-dimensional, non-
singular, irreducible, complete intersection defined by algebraic hypersurfaces
Hi ⊂ PN satisfying Fi = 0 with deg Fi = mi. The dimension of Y is n. In this
case, let the prime divisor D = Y ∩H be the intersection of Y and hypersurface
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H : F = 0 of degree m. Assume that D also becomes a nonsingular irreducible
complete intersection of dimension n − 1. Then one has:

(i) dim Hq(PN ,Ωr
PN (log D)(t)) = dimHN−q(PN ,ΩN−r

PN (log D)(−t − m)).

(ii) dimHq(Y,Ωr
Y (log D)(t)) = dim Hn−q(Y,Ωn−r

Y (log D)(−t − m)).

(iii) dim Hq(PN ,ΩT
PN (log D)(t)) = dim HN−q(PN ,ΩT ∗

PN (log D)(−t − l · m +
(l − 1)(N + 1))).

(iv) dimHq(Y,ΩT
Y (log D)(t)) = dim Hn−q(Y,ΩT ∗

Y (log D)(−t − l · m − (l −

1)(

N−n∑

i=1

mi − N − 1))).

(v) dimHq(PN , SrΩ1
PN (log D)(t)) = dim HN−q(PN ,ΩT ∗

PN (log D)(−t−r ·m+
(r− 1)(N +1))), where T ∗ denotes a rectangle with N − 1 rows and r columns.

(vi) dimHq(Y, SrΩ1
Y (log D)(t)) = dim Hn−q(Y,ΩT ∗

Y (log D)(−t−r ·m− (r−

1)(

N−n∑

i=1

mi − N − 1))), where T ∗ denotes a rectangle with n − 1 rows and r

columns.

Proof. We consider the following exact sequence (cf. [4])

0 −→ Ωr
PN (log D)(−m) −→ Ωr

PN −→ Ωr
D −→ 0.

For r = N we have ΩN
D = 0, i.e. ΩN

PN (log D) ∼= ΩN
PN (m) ∼= OPN (m − N − 1).

This implies a pairing Ωr
PN (log D)(t) × ΩN−r

PN (log D)(−t − m + N + 1) −→

OPN , which means that the vector space Hq(PN ,Ωr
PN (log D)(t)) is dual to

HN−q(PN , (ΩN−r
PN (log D)(−t − m + N + 1)) ⊗ ΩN

PN ).

Setting ΩN
PN

∼= OPN (−N − 1) yields (i). The statement (ii) can be shown in

a similar way. Note that Ωn
Y (log D) ∼= Ωn

Y (m) ∼= OY (m +
∑N−n

i=1 mi − N − 1).
Now, let T be a Young tableau with r boxes, given by the row lengths l1, . . . , ld
and the column lengths d1, . . . , dl where d = d1 = depth T and l = l1 =
length T . The Young tableau T ∗ has the column lengths d∗j = n − dl+1−j for

all j ∈ {1, . . . , l} and we have again ΩN
PN (log D) ∼= OPN (m − N − 1). From

the pairing ΩT
PN (log D)(t) ×ΩT ∗

PN (log D)(−t − l · (m − N − 1)) −→ OPN follows

Hom(ΩT
PN (log D)(t),OPN ) ∼= ΩT ∗

PN (log D)(−t − l · (m − N − 1)), which shows
assertion (iii). In order to show the formula for complete intersections Y instead
of PN , we replace −N − 1 by

∑N−n
i=1 mi −N − 1. Choosing l = r (depth T = 1)

in (iii) and (iv) proves (v) and (vi), respectively.

For a projective variety X ⊆ PN and a coherent sheaf F on X the di-
mensions dimk Hq(X,F) are finite and we have the so-called Euler-Poincaré



116 P. Brückmann, P. Winkert

characteristic given by χ(X,F) =
∑dim X

q=0 (−1)q · dimHq(X,F). From a short
exact sequence 0 → F → G → H → 0 with coherent sheaves F ,G,H on X we
obtain the equation χ(X,G) = χ(X,F) + χ(X,H). Under the above assump-
tions we also know, that for a short exact sequence of coherent sheaves on X

there exists a long exact sequence for the associated cohomology groups. For
every coherent sheaf F on the projective variety X ⊂ PN there exists a polyno-
mial P (X,F)(t) ∈ Q[t] of degree dim X which fulfills χ(X,F(t)) = P (X,F)(t)
for all t ∈ Z .P (X,F)(t) is said to be the Hilbert polynomial of F (cf. [8],
[6], [7]). For example, the structure sheaf on PN has the following Hilbert
polynomial

P (PN ,OPN )(t) = χ(PN ,OPN (t)) =
(t + N) · . . . · (t + 1)

N !
. (2.1)

3. The Projective Space PN

In the following, we change the meaning of the binomial coefficient setting(
α
β

)
= 0 for all α ∈ Z, β ∈ N satisfying α < β, in particular:

(
α
β

)
= 0 if

α < 0. For instance: dimH0(PN ,OPN (t)) =
(
t+N
N

)
dim HN (PN ,OPN (t)) =(−t−1

N

)
, Hq(PN ,OPN (t)) = 0 for 0 < q < N .

Let H ⊂ PN (N ≥ 2) be a nonsingular, irreducible, algebraic hypersurface
defined by the equation F = 0, that means, D = H is a prime divisor in PN .
Both F and D are of degree m and D = H has dimension N − 1.

3.1. Alternating Differential Forms

We denote by Ωr
PN the local free sheaf of germs of alternating differential forms

on the projective space PN and consider the following sequence (t ∈ Z)

0 −→ Ωr
PN (t) −→ Ωr

PN (log D)(t) −→ Ωr−1
D (t) −→ 0, (3.1)

which is known to be exact (cf. [4]). The dimensions of the cohomology groups
Hq(PN ,Ωr

PN (t)) and Hq(D,Ωr−1
D (t)) are calculated in [1], where we also find

the following exact sequences

0 −→ Ωr
PN (t − m) −→ Ωr

PN (t)
α

−→ OD(t) ⊗O
PN

Ωr
PN −→ 0 , (3.2)

0 −→ Ωr−1
D (t − m) −→ OD(t) ⊗O

PN
Ωr

PN

β
→ Ωr

D(t) −→ 0. (3.3)

The mapping ϕ∗ := β◦α means the restriction of the differential forms on PN to
the hypersurface D = H. In the case r = 1, one has to replace the sheaf Ωr−1

D by



T -SYMMETRICAL TENSOR DIFFERENTIAL FORMS WITH... 117

the structure sheaf OD. For 0 < q < N we have dim Hq(PN ,Ωr
PN (t)) = δq,r ·δt,0

(Kronecker-δ) and we know by [1, Lemma 4] a base element of Hr(PN ,Ωr
PN )

which is given by the cohomology class of the cocycle ω(r) ∈ Cr(U,Ωr
PN ) defined

by

ω
(r)
i0,...,ir

=
xi0

xir

· d
xi1

xi0

∧ d
xi2

xi1

∧ . . . ∧ d
xir

xir−1

. (3.4)

U stands for the affine open covering of PN by the affine spaces Ui = {xi 6= 0}.

For r = 1, in particular, ω
(1)
i0,i1

=
xi0
xi1

·d
xi1
xi0

is a logarithmic differential. We may

represent (3.4) by

ω
(r)
i0,...,ir

= ω
(1)
i0,i1

∧ ω
(1)
i1,i2

∧ . . . ∧ ω
(1)
ir−1,ir

,

which is an outer product of logarithmic differential forms. In the case q = r =
N , t = 0 the cochain ω(N) creates a base of HN (PN ,ΩN

PN ) (cf. [1, Lemma 2]).

Finally, we set ω(0) = 1.

Lemma 3.1. Let 0 < r ≤ N . Then the homomorphism d : Hr−1(D,Ωr−1
D )

−→ Hr(PN ,Ωr
PN ) in the long homology sequence with respect to the exact

sequence

0 −→ Ωr
PN −→ Ωr

PN (log D) −→ Ωr−1
D −→ 0

is epimorphic. If in addition 2(r−1) 6= N −1 is valid, then d is an isomorphism.

Proof. We calculate the image of the cohomology class of ω(r−1) at the
composition

Hr−1(PN ,Ωr−1
PN )

ϕ∗

−→ Hr−1(D,Ωr−1
D )

d
−→ Hr(PN ,Ωr

PN )

and denote ϕ∗(ω(r−1)) again by ω(r−1). Let U be the affine, open covering
of PN given by the affine spaces Ui = {xi 6= 0}. We consider the following
commutative diagram

0 → Cr−1(U,Ωr
PN ) → Cr−1(U,Ωr

PN (log D)) → Cr−1(U,Ωr−1
D ) → 0

↓ ↓ ↓

0 → Cr(U,Ωr
PN ) → Cr(U,Ωr

PN (log D)) → Cr(U,Ωr−1
D ) → 0

where the cocycle ω(r−1) ∈ Cr−1(U,Ωr−1
D ) possesses in Cr−1(U,Ωr

PN (log D)) the

preimage ̺ defined by ̺i0,...,ir−1 = ω
(r−1)
i0,...,ir−1

∧
xm

i0
F

· d F
xm

i0

(cf. [4]).

Elementary calculations show that dω(r−1) = (−1)r ·m · ω(r) ∈ Cr(U,Ωr
PN ).

Therefore, the cocycle dω(r−1) ∈ Cr(U,Ωr
PN ) is nonzero and the associated

cohomology class is a base of Hr(PN ,Ωr
PN ). Thus, the homomorphism d :

Hr−1(D,Ωr−1
D ) −→ Hr(PN ,Ωr

PN ) is epimorphic. In the case 2(r − 1) 6= N − 1,
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we obtain dimHr−1(D,Ωr−1
D ) = 1 by [1, Satz 2 and Lemma 5], which implies

that d is an isomorphism.

Theorem 3.2. Let D ⊂ PN be a smooth algebraic hypersurface of degree
m (N ≥ 2).

(a) For each r ∈ {1, . . . , N − 1} one has:

dim H0(PN ,Ωr
PN (log D)(t)) =

r∑

i=0

(−1)i ·

(
N + 1

r − i

)
·

(
t + N − i · (m − 1) − r

N

)
.

(b) For all r ∈ {1, . . . , N −1} it holds: H0(PN ,Ωr
PN (log D)(t)) 6= 0 ⇔ t ≥ r.

(c) In the case r = N one has: dim H0(PN ,ΩN
PN (log D)(t)) =

(
t + m − 1

N

)
.

(d) If D ⊂ PN is a hyperplane (m = 1), then it holds: dim H0(PN ,

Ωr
PN (log D)(t)) =

(
N

r

)
·

(
t + N − r

N

)
.

Proof. The formula (a) follows directly from the long exact cohomology
sequence related to the exact sequence in (3.1) by applying Lemma 3.1. For
r = N we obtain ΩN

PN (log D) ∼= ΩN
PN (m) ∼= OPN (m − N − 1) which yields (c).

(a) obviously implies (b) and (d).

Theorem 3.3. (a) Let 0 < q < N , q + r 6= N and r ≥ 1. Then we obtain
Hq(PN ,Ωr

PN (log D)(t)) = 0 for all t ∈ Z.

(b) For 1 ≤ r ≤ N − 1 it follows:

dimHN−r(PN ,Ωr
PN (log D)(t))

=

N+1∑

i=0

(−1)i ·

(
N + 1

i

)
·

(
t + (N − r) · m − (i − 1) · (m − 1)

N

)

=

N+1∑

i=0

(−1)i ·

(
N + 1

i

)
·

(
−t + (r − 1) · m − (i − 1) · (m − 1)

N

)

That means: If D is a hyperplane (m = 1), then we have HN−r(PN ,
Ωr

PN (log D)(t)) = 0 for all t ∈ Z.

(c) For 1 ≤ r ≤ N − 1 one has:

dim HN (PN ,Ωr
PN (log D)(t))

=

N−r∑

i=0

(−1)i ·

(
N + 1

N − r − i

)
·

(
−t − m − i · (m − 1) + r

N

)
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If D is a hyperplane (m = 1), then we get: dim HN (PN ,Ωr
PN (log D)(t)) =(

N

r

)
·

(
−t − 1 + r

N

)
.

(d) dimHN (PN ,ΩN
PN (log D)(t)) =

(
−t − m + N

N

)
.

Proof. We consider the following exact sequence

. . . −→ Hq−1(D,Ωr−1
D (t))

d1−→ Hq(PN ,Ωr
PN (t)) −→

−→ Hq(PN ,Ωr
PN (log D)(t)) −→ Hq(D,Ωr−1

D (t))
d2−→

d2−→ Hq+1(PN ,Ωr
PN (t)) −→ . . . ,

(3.5)

and assume 0 < q 0 < r and q + r < N . By Lemma 3.1 the mappings d1 and
d2 are epimorphic for all t ∈ Z and from (3.5) we get the exact sequence

0 → Hq(PN ,Ωr
PN (log D)(t)) → Hq(D,Ωr−1

D (t))
d2−→ Hq+1(PN ,Ωr

PN (t)) → 0.

Under these assumptions holds Hq(D,Ωr−1
D (t)) = 0 if q 6= r − 1 or t 6= 0 (cf.

[1]). In case q = r − 1, t = 0 we know that d2 is an isomorphism by Lemma 3.1
since 2(r − 1) < N − 1. Therefore, one has

Hq(PN ,Ωr
PN (log D)(t)) = 0 for 0 < q 0 < r and q + r < N.

For q < N, r < N, q + r > N we use the Serre duality to show statement (a).
The case r = N is trivial since ΩN

PN (log D) ∼= OPN (m − N − 1).

If r ≥ 2 and q + r = N then the mappings d1 and d2 are epimorphic, i.e.

dimHN−r(PN ,Ωr
PN (log D)(t))

= dim HN−r(D,Ωr−1
D (t)) − dim HN−r+1(PN ,Ωr

PN (t)).

In the case r = 1 and q = N − 1 one has dimHN−1(PN ,Ω1
PN (log D)(t)) =

dimHN−1(D,OD(t)) − dimHN (PN ,Ω1
PN (t)) + HN (PN ,Ω1

PN (log D)(t)).

Applying Theorem 3.2, Lemma 2.1 and the results in [1] delivers (b) and
(c).

3.2. T -Symmetric Tensor Differential Forms

Let T be a Young tableau with r boxes. We study the sheaf ΩT (log D) =

(Ω1(log D))
T

on PN and begin with a free resolution of the sheaf Ω1(log D).

Lemma 3.4. Let D ⊂ PN be a nonsingular, irreducible, algebraic hyper-
surface of degree m ≥ 2 defined by the equation F = 0.
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Then there exists a short exact sequence

0 −→ OPN (−m) −→
N+1
⊕ OPN (−1) −→ Ω1

PN (log D) −→ 0. (3.6)

If D is a hyperplane, i.e. m = 1, we have Ω1
PN (log D) ∼=

N
⊕ OPN (−1).

Proof. Let Ui = {xi 6= 0} ⊂ PN and let U ⊆ PN be an arbitrary open affine
subset. We are going to show that there is an exact sequence

0 → Γ(U,OPN (−m))
α
→

N+1
⊕ Γ(U,OPN (−1))

β
→ Γ(U,Ω1

PN (log D)) → 0.

For sections f0, . . . , fN ∈ Γ(U,O(−1)) we put g := − 1
m

·
∑N

µ=0 xµfµ ∈ Γ(U,O).

Let Fj = ∂F
∂xj

denotes the partial derivatives of F . The mapping β is defined

by (f0, . . . , fN ) 7−→ ω, where the differential form ω on U ∩ Ui is given by

ω = ωi :=
N∑

ν=0
ν 6=i

(
fν + g ·

Fν

F

)
· xi · d

xν

xi
.

One easily verifies that ω is a section of Ω1
PN (log D) on U and it holds, in

particular, ωi = ωj for any i, j ∈ {0, 1, . . . , N}. For a section δ ∈ Γ(U,O(−m))
let fν = δ · Fν for all ν = 0, 1, . . . , N which implies that fν ∈ Γ(U,O(−1)) and
g = −δ · F . Finally, we have ker β = {(δ · F0, . . . , δ · FN )} ∼= Γ(U,OPN (−m)),
which yields the claim for m ≥ 2.

In the last part we have to show the statement of Lemma 3.4 in case m = 1.
Let D ⊂ PN be the hyperplane satisfying the equation xN = 0, and let U ⊆ PN

be an open subset. For given sections f0, . . . , fN−1 ∈ Γ(U,O(−1)) let ω be the
differential form, which has on U ∩ Ui i = 0, . . . , N − 1, the representation

ω = ωi =
N−1∑

ν=0
ν 6=i

fν · xi · d
xν

xi
−




N−1∑

µ=0

fµ · xµ


 ·

xi

xN
d

xN

xi
,

respectively on U ∩ UN ,

ω = ωN =
N−1∑

ν=0

fν · xN · d
xν

xN
.

Then ω is a section of Ω1
PN (log D) on U , and the mapping (f0, . . . , fN−1) 7→ ω

becomes an isomorphism of Γ(U,
N
⊕ OPN (−1)) onto Γ(U,Ω1

PN (log D)).

Lemma 3.5. Let T be a Young tableau with r boxes and the row lengths
l1, l2, . . . , ld, set ti := r + li − i for all i ≥ 1 (li = 0 if i > d) and assume
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d = depth T ≤ N . Then the following sequence is exact for m ≥ 2:

0 −→ ⊕
bd

OPN (d · (1 − m) − r)
αd−→ ⊕

bd−1

OPN ((d − 1) · (1 − m) − r)
αd−1
−→

αd−1
−→ ⊕

bd−2

OPN ((d − 2) · (1 − m) − r)
αd−2
−→ . . .

α2−→ ⊕
b1

OPN (1 − m − r)
α1−→

α1−→ ⊕
b0

OPN (−r)
α0−→ ΩT

PN (log D) −→ 0

(3.7)

with the integers

bs =

(
N∏

i=1

i!

)−1

·
∑

1≤i1<...<is≤d

∆(t1, t2, . . . , ti1 − 1, . . . , tis − 1, . . . , tN , tN+1), (3.8)

where ∆ denotes the Vandermonde determinant.

In the case s = 0 we have b0 =

(
N∏

i=1

i!

)−1

·
∏

1≤i<j≤N+1

(li − lj + j − i) =

(
N∏

i=1

i!

)−1

· ∆(t1, t2, . . . , tN , tN+1). For m = 1 (D is a hyperplane) holds

ΩT
PN (log D) ∼=

rk
“
ΩT

PN

”

⊕ OPN (−r)

with

rk(ΩT
PN ) =

∏

1≤i<j≤N

(
li − lj

j − i
+ 1

)
=

d∑

i=0

(−1)i · bi

=

(
N−1∏

i=1

i!

)−1

· ∆(t1, t2, . . . , tN ) .

Proof. The T-Power of (3.6) yields the claim for m ≥ 2 (cf. [3]) and Lemma
3.4 shows the case m = 1.

Theorem 3.6. Let T be a Young tableau with r boxes and with d =
depthT rows.

(a) χ(PN ,ΩT
PN (log D)(t)) =

1

N !
·

d∑

i=0

(−1)i · bi ·

N∏

j=1

(t − i · (m − 1) + j − r).
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(b) For depth T < N one has:

dim H0(PN ,ΩT
PN (log D)(t)) =

d∑

i=0

(−1)i · bi ·

(
t − i · (m − 1) + N − r

N

)

and therefore: H0(PN ,ΩT
PN (log D)(t)) 6= 0 ⇔ t ≥ r.

(c) Let d = depthT = N and let lN be the number of columns of T with
the length N . We denote by T ′ the Young tableau which is given by T without
these columns of length N . Then depth T ′ < N and it holds ΩT

PN (log D)(t) ∼=

ΩT ′

PN (log D)(t + lN · (m − N − 1)).

If T is a rectangle with N rows and l columns, then we have ΩT
PN (log D)(t)

∼= OPN (t + l · (m − N − 1)).

(d) For 1 ≤ q < N − d we get Hq(PN ,ΩT
PN (log D)(t)) = 0 for all t ∈ Z.

(e) Let dl be the length of the last column of T . Then it holds: Hq(PN ,
ΩT

PN (log D)(t)) = 0 for N − dl < q < N and ∀t ∈ Z.

Proof. The short exact sequences of (3.7) yields
0 −→ ⊕

bd

OPN (d · (1 − m) − r) −→ ⊕
bd−1

OPN ((d − 1) · (1 − m) − r) −→

−→ Imαd−1 −→ 0,
0 −→ Imαd−1 −→ ⊕

bd−2

OPN ((d − 2) · (1 − m) − r) −→ Im αd−2 −→ 0,

...
...

0 −→ Imα2 −→ ⊕
b1

OPN (1 − m − r) −→ Im α1 −→ 0,

0 −→ Imα1 −→ ⊕
b0

OPN (−r) −→ ΩT
PN (log D) −→ 0,

where Hq(PN ,OPN (t)) = 0 for 1 ≤ q ≤ N − 1 and for all t ∈ Z. This implies
Hq(PN , Im αi(t)) = 0 for 1 ≤ q ≤ N − 1 + i − d and hence, we have in case
d < N

dim H0(PN ,ΩT
PN (log D)(t))

= b0 · dim H0(PN ,OPN (t − r)) − dim H0(PN , Im α1(t)) ,

dim H0(PN , Im α1(t))

= b1 · dim H0(PN ,OPN (t + 1 − m − r)) − dimH0(PN , Im α2(t)) ,

...

dim H0(PN , Im αd−1(t)) = bd−1 · dimH0(PN ,OPN (t + (d − 1) · (1 − m) − r))

− bd · dim H0(PN ,OPN (t + d · (1 − m) − r)).
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This shows (b). For d = N we already know that

ΩT
PN (log)(t) ∼= ΩN

PN (log D) ⊗ . . . ⊗ ΩN
PN (log D) ⊗ ΩT ′

PN (log D)(t)

∼= ΩT ′

PN (log D)(t + lN · (m − N − 1)) ,

which proves assertion (c). In order to prove (d), we consider again the short
exact sequences of (3.7) and obtain

Hq(PN ,ΩT
PN (log D)(t)) = 0 if

Hq(PN ,OPN (t − r)) = 0 and Hq+1(PN , Im α1(t)) = 0 ,

Hq+1(PN , Im α1(t)) = 0 if

Hq+1(PN ,OPN (t + 1 − m − r)) = 0 and Hq+2(PN , Im α2(t)) = 0 ,

...

Hq+d−1(PN , Im αd−1(t)) = 0 if

Hq+d−1(PN ,OPN (t + (d − 1) · (1 − m) − r)) = 0 ,

and Hq+d(PN ,OPN (t + d · (1 − m) − r)) = 0.

This implies Hq(PN ,ΩT
PN (log D)(t)) = 0 for 1 ≤ q ≤ N − d − 1 and ∀t ∈ Z.

The last statement can be proven by Serre duality which means

dimHq(PN ,ΩT
PN (log D)(t))

= dimHN−q(PN ,ΩT ∗

PN (log D)(−t − m − (l − 1) · (m − N − 1))) ,

where depthT ∗ = N − dl < N . Note if we use (b) with T ∗ instead of T , we
obtain a formula for dimHN (PN ,ΩT

PN (log D)(t)).

3.3. Symmetric Differential Forms

Let T be a Young tableau with r boxes and only one row, i.e. depthT = 1.
We will specify the dimensions of Hq(PN , SrΩ1(log D)(t)) and consider the
following exact sequence (cf. Lemma 3.5)

0 −→ ⊕
b1

OPN (−m + 1 − r) −→ ⊕
b0

OPN (−r) −→ SrΩ1
PN (log D) −→ 0 (3.9)

with the integers b0 =

(
N + r

N

)
and b1 =

(
N + r − 1

N

)
.

Theorem 3.7. Let N ≥ 2. Then one has:

(a) χ(PN , SrΩ1
PN (log D)(t)) =

1

N !
·

(
N + r

N

)
·

N∏

j=1

(t−r+j)−
1

N !
·

(
N + r − 1

N

)
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·
∏N

i=1(t − m + 1 − r + i).

(b) dim H0(PN , SrΩ1
PN (log D)(t)) =

(
N+r
N

)
·
(
t−r+N

N

)
−
(
N+r−1

N

)
·
(
t−m+1−r+N

N

)
.

(c) For 1 ≤ q ≤ N − 2 it holds: Hq(PN , SrΩ1
PN (log D)(t)) = 0 for all t ∈ Z.

(d) dim HN−1(PN , SrΩ1
PN (log D)(t))

=
N−1∑

i=0

(−1)i · b̃i ·

(
−t − r(m − 2) − i · (m − 1) − 1

N

)

−

(
N + r

N

)
·

(
−t + r − 1

N

)
+

(
N + r − 1

N

)
·

(
−t + m + r − 2

N

)

dimHN (PN , SrΩ1
PN (log D)(t))

=
N−1∑

i=0

(−1)i · b̃i ·

(
−t − r(m − 2) − i · (m − 1) − 1

N

)
with the integers

b̃i =
1

N + r
·

(
N + r

N − 1 − i

)
·

(
N + r

N

)
·

(
r + i − 1

i

)
. (3.10)

Proof. (a) follows directly from (3.9) and the additivity of the Euler char-
acteristic. We consider (3.9) together with the corresponding cohomology se-
quence and know that Hq(PN ,OPN (t)) = 0 for any q ∈ {1, . . . , N − 1} and for
all t ∈ Z, which implies (b) and (c). Using the Serre Duality yields

dimHN (PN , SrΩ1(log D)(t))

= dim H0(PN ,ΩT ∗

(log D)(−t + (r − 1) · (N + 1) − r · m)),

where T ∗ is a rectangle with depth T ∗ = N −1 rows and length T ∗ = r columns
and with the associated integers b̃i in (3.10) (cf. Lemma 3.5). Theorem 3.6(b)
delivers the formula for dimH0(PN ,ΩT ∗

(log D)(−t + (r − 1) · (N + 1)− r ·m)).

Finally, one gets easily the dimension dimHN−1(PN , SrΩ1
PN (log D)(t)) from

the long cohomology sequence.

Corollary 3.8. For N ≥ 2 we obtain:

(a) H0(PN , SrΩ1
PN (log D)(t)) 6= 0 ⇔ t ≥ r.

(b) dimH0(PN , SrΩ1
PN (log D)(t)) = χ(PN , SrΩ1

PN (log D)(t)) if t ≥ m + r −
N − 1.

(c) HN (PN , SrΩ1
PN (log D)(t)) = 0 ⇔ t ≥ −r(m − 2) − N .

(d) HN−1(PN , SrΩ1
PN (log D)(t)) = 0 if t ≥ m + r − N − 1.

Proof. Obviously, the proof follows from Theorem 3.7.

Theorem 3.9. Let N ≥ 2 and let D be a hyperplane, that is, m = 1.
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Then one has

(a) dimH0(PN , SrΩ1
PN (log D)(t)) =

(
N + r − 1

N − 1

)
·

(
t − r + N

N

)
.

(b) For 1 ≤ q ≤ N − 1 it holds: Hq(PN , SrΩ1
PN (log D)(t)) = 0 ∀t ∈ Z.

(c) dim HN (PN , SrΩ1
PN (log D)(t)) =

(
N + r − 1

N − 1

)
·

(
−t + r − 1

N

)

Proof. SrΩ1
PN (log D) ∼= ⊕

(N+r−1
N−1 )

OPN (−r).

4. Complete Intersections Y ⊂ PN

Let Y = H1 ∩ . . . ∩ HN−n ⊆ PN be a nonsingular, irreducible, complete inter-
section of algebraic hypersurfaces Hi ⊂ PN , where Hi is given by the equation
Fi = 0 with deg Fi = mi. We denote by n the dimension of Y . Let D be a
prime divisor on Y , which is defined by the equation D = Y ∩ H with a hy-
persurface H : F = 0. The degree of H is m. In the following, we abbreviating
denote c = N − n = codim Y and assume n ≥ 2. Let X be a further complete
intersection which is described by X = H1 ∩ . . . ∩ Hc−1. Here dim X = n + 1
and Y = X ∩ Hc. There exists also a divisor D∗ = X ∩ H on X. Assume that
the hypersurfaces H1, . . . ,HN−n and H lie in general position, i.e. for instance
X = H1 ∩ . . . ∩ Hc−1 ⊆ PN and the prime divisors D on Y and D∗ on X are
nonsingular, irreducible, complete intersections, too.

4.1. Alternating Differential Forms

In case r = n we obtain Ωn
Y = ωY

∼= OY (
∑c

i=1 mi − N − 1) which implies

Ωn
Y (log D) ∼= Ωn

Y (m) ∼= OY (

c∑

i=1

mi − N − 1 + m) ,

where D = Y ∩ H with deg H = m. The dimensions of Hq(Y,Ωn
Y (log D)(t)) =

Hq(Y,OY (
∑c

i=1 mi − N − 1 + m + t)) are well known:

If 1 ≤ q ≤ n − 1 then Hq(Y,OY (t)) = 0 ∀t ∈ Z.

dimH0(Y,OY (t)) =

(
t + N

N

)
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+

c∑

j=1

(−1)j ·
∑

1≤i1<i2<...<ij≤c

(
t + N − mi1 − mi2 − . . . − mij

N

)

dim Hn(Y,OY (t)) = dimH0(Y,OY (−t + m1 + m2 + . . . + mc − N − 1)) ,

(cf. e.g. [1] or the proof of Lemma (4.4) in the present paper).

We study the cohomology groups Hq(Y,Ωr
Y (log D)(t)) with r < dimY = n:

Lemma 4.1. The following sequences are exact.

(a) 0 → OX(−mc) → OX
ϕ∗

→ OY → 0 . (4.1)

(b) 0 → Ωr
X(log D∗)(−mc)

α
→ Ωr

X(log D∗)
β
→ OY ⊗OX

Ωr
X(log D∗) → 0 .

(4.2)

(c) 0 → Ωr−1
Y (log D)(−mc)

γ
→ OY ⊗OX

Ωr
X(log D∗)

δ
→ Ωr

Y (log D) → 0 .

(4.3)

Proof. Notice, for r = 1 we have to substitute Ωr−1
Y (log D) by the structure

sheaf OY . The composition δ ◦ β is the restriction of the differential forms
on X to the subvariety Y ⊂ X. Obviously, the sequence (4.1) is exact and
(4.2) results by multiplication of (4.1) with the locally free sheaf Ωr

X(log D∗).
We will show that (4.3) is also an exact sequence. Let U ⊆ X be an open
subset of X and let V = Y ∩ U be an open, nonempty subset of Y . Without
loss of generality we assume U ⊆ Ui = {xi 6= 0}. Moreover, we suppose the
existence of local parameters u1, . . . , un−1, un = F

xm
i

, un+1 = Fc

x
mc
i

of X on U such

that their restriction to Y are also local parameters v1 = ϕ∗(u1), . . . , vn−1 =
ϕ∗(un−1), vn = ϕ∗(un) = F

xm
i

of Y on V . Then Γ(V,OY ⊗OX
Ωr

X(log D∗)) is

a free Γ(V,OY )-module whose rank is equal to
(
n+1

r

)
. Let ω ∈ Γ(V,OY ⊗OX

Ωr
X(log D∗)) be a section of the form

ω =

n−1∑

iν=1

fi1,...,ir dui1 ∧ . . . ∧ d uir

+
n−1∑

iν=1

fi1,...,ir−1,n dui1 ∧ . . . ∧ d uir−1 ∧
d un

un

+
n−1∑

iν=1

fi1,...,ir−1,n+1 dui1 ∧ . . . ∧ d uir−1 ∧ d un+1

+

n−1∑

iν=1

fi1,...,ir−2,n,n+1 d ui1 ∧ . . . ∧ duir−2 ∧
dun

un
∧ d un+1



T -SYMMETRICAL TENSOR DIFFERENTIAL FORMS WITH... 127

where fi1,...,ir ∈ Γ(V,OY ). The homomorphism δ is defined as follows:

δ(ω) =

n−1∑

iν=1

fi1,...,ir d vi1∧. . .∧d vir +

n−1∑

iν=1

fi1,...,ir−1,n d vi1∧. . .∧d vir−1∧
d vn

vn
,

which means that δ(ω) ∈ Γ(V,Ωr
Y (log D)). The kernel of δ is given by

ker δ =

{
n−1∑

iν=1

fi1,...,ir−1,n+1 d ui1 ∧ . . . ∧ d uir−1 ∧ dun+1

+
n−1∑

iν=1

fi1,...,ir−2,n,n+1 d ui1 ∧ . . . ∧ d uir−2 ∧
dun

un
∧ d un+1

}
,

where ker δ ⊆ Γ(V,OY ⊗OX
Ωr

X(log D∗)). In order to show that the kernel of δ

is isomorphic to Γ(V,Ωr−1
Y (log D)(−mc)), we consider the following homomor-

phisms

ker δ
eα

−→ Γ(V,OY (−mc) ⊗OX
Ωr−1

X (log D∗))
eβ

−→ Γ(V,Ωr−1
Y (log D)(−mc)).

Let ξ ∈ ker δ be any element. The mappings α̃ and β̃ are illustrated by

α̃(ξ) =
1

xmc

i

n−1∑

iν=1

fi1,...,ir−1,n+1 d ui1 ∧ . . . ∧ duir−1

+
1

xmc

i

n−1∑

iν=1

fi1,...,ir−2,n,n+1 dui1 ∧ . . . ∧ d uir−2 ∧
d un

un
,

respectively,

β̃(α̃(ξ)) =
1

xmc

i

n−1∑

iν=1

fi1,...,ir−1,n+1 d vi1 ∧ . . . ∧ d vir−1

+
1

xmc

i

n−1∑

iν=1

fi1,...,ir−2,n,n+1 d vi1 ∧ . . . ∧ d vir−2 ∧
d vn

vn
.

Since xmc

i · dun+1 = xmc

i · d Fc

x
mc
i

is a global section of the sheaf OY (mc) ⊗OX

Ω1
X the functions α̃ and β̃ are independent of the index i with U ⊆ Ui and

independent of the choice of the local parameters u1, . . . , un−1. One can easily
see that α̃ and β̃ are monomorphic. The mapping β̃ is the restriction from X

to Y which obviously is epimorphic. While α̃ is generally not epimorphic, any
element of Γ(V,Ωr−1

Y (log D)(−mc)) has a preimage in ker δ. We can represent an

element of Γ(V,Ωr−1
Y (log D)(−mc)) by the form β̃(α̃(ξ)) with functions fi1,...,ir ∈

Γ(V,OY ). In order to find a preimage in ker δ, we use the same functions
fi1,...,ir , and in place of vi we take the local parameters ui on X and multiply
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with xmc

i · dun+1. This proves that the composition β̃ ◦ α̃ is isomorphic, the
sequence (4.3) is exact.

By means of these exact sequences we are going to prove recursion formulas
about the dimensions of the cohomology groups Hq(Y,Ωr

Y (log D)(t)). As above
mentioned, for r = n these dimensions are known.

Theorem 4.2. (a) χ(Y,Ωr
Y (log D)(t)) = χ(X,Ωr

X(log D∗)(t)) − χ(X,
Ωr

X(log D∗)(t − mc)) − χ(Y,Ωr−1
Y (log D)(t − mc)) for r ≥ 1

In the case r = 1 one has to substitute Ωr−1
Y (log D) by the structure sheaf

OY .

(b) Let 0 < q < n, q+r 6= n and r ≥ 0. Then one has Hq(Y,Ωr
Y (log D)(t)) =

0 for any t ∈ Z.

(c) dim H0(Y,Ωr
Y (log D)(t)) = dim H0(X,Ωr

X(log D∗)(t)) − dim H0(X,
Ωr

X(log D∗)(t − mc)) − dimH0(Y,Ωr−1
Y (log D)(t − mc)) for 0 < r < n.

(d) dim Hn(Y,Ωr
Y (log D)(t)) = dim H0(X,Ωn−r

X (log D∗)(−t − m))
− dim H0(X,Ωn−r

X (log D∗)(−t−mc−m))−dimH0(Y,Ωn−r−1
Y (log D)(−t−mc−

m)).

(e) dimH1(Y,Ωn−1
Y (log D)(t)) = dim H0(Y,Ωn−1

Y (log D)(t)) + dim H0(Y ,
Ωn

Y (log D)(t + mc)) + dim H0(X,Ωn
X(log D∗)(t)) − dimH0(X,Ωn

X(log D∗)(t +
mc)) − dimH1(X,Ωn

X(log D∗)(t)) + dimH1(X,Ωn
X(log D∗)(t + mc)).

(f) dimHn−r(Y,Ωr
Y (log D)(t)) = dim Hn−r−1(Y,Ωr+1

Y (log D)(t + mc)) −
dim Hn−r(X,Ωr+1

X (log D∗)(t)) + dimHn−r(X,Ωr+1
X (log D∗)(t + mc)) for 2 ≤

r < n.

Proof. Under the additional condition q + r < n the proof of (b) will be
shown by complete induction with respect to c = codim Y and r. Then the
case q + r > n follows directly from the Serre duality. If c = 0, i.e. Y = PN ,
Theorem 3.3 implies Hq(Y,Ωr

Y (log D)(t)) = 0 for 0 < q < N and q + r 6= N .

If r = 0 then we get Hq(Y,OY (t)) = 0 for 0 < q < n (cf. e.g. [2, Lemma
1]).

In particular, we have the following induction assumption (c−1 = codim X):

(i) From q, r ∈ N , 0 < q, 0 ≤ r and q + r < n + 1 it follows

Hq(X,Ωr
X(log D∗)(t)) = 0 for all t ∈ Z.

Now assume 0 < q, 0 ≤ r and q + r < n. From (4.2) we get the exact
sequence

. . . −→ Hq(X,Ωr
X(log D∗)(t)) −→ Hq(Y,OY (t) ⊗OX

Ωr
X(log D∗)) −→
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−→ Hq+1(X,Ωr
X (log D∗)(t − mc)) −→ . . . .

Since 0 < q q + 1 + r < n + 1 we have by induction assumption (i):

Hq(X,Ωr
X(log D∗)(t)) = 0 and Hq+1(X,Ωr

X(log D∗)(t − mc)) = 0.

Hence, Hq(Y,OY (t) ⊗OX
Ωr

X(log D∗)) = 0 for 0 < q q + r < n and any t ∈ Z.

Now, let r > 0 be a fixed integer. We use the following induction assump-
tion:

(ii) If 0 < q and q + r − 1 < n then Hq(Y,Ωr−1
Y (log D)(t)) = 0 for all t ∈ Z.

To prove: If 0 < q and q + r < n then Hq(Y,Ωr
Y (log D)(t)) = 0 for all

t ∈ Z. Let 0 < q q + r < n. We consider the exact sequence which is given by
(4.3)

. . . −→ Hq(Y,OY (t) ⊗OX
Ωr

X(log D∗)) −→ Hq(Y,Ωr
Y (log D)(t) −→

−→ Hq+1(Y,Ωr−1
Y (log D)(t − mc)) −→ . . . .

By (ii) one has Hq+1(Y,Ωr−1
Y (log D)(t−mc)) = 0 for all t ∈ Z since q+1+r−1 =

q + r < n (and q + 1 < n). Furthermore, we know that Hq(Y,OY (t) ⊗OX

Ωr
X(log D∗)) = 0 for any t ∈ Z because of 0 < q q + r < n.

This implies Hq(Y,Ωr
Y (log D)(t) = 0 for 0 < q < n and q + r < n for any

t ∈ Z.

For the proof of (c) we first consider the exact sequence from (4.2)

0 −→ H0(X,Ωr
X (log D∗)(t − mc)) −→ H0(X,Ωr

X(log D∗)(t)) −→

−→ H0(Y,OY (t) ⊗OX
Ωr

X(log D∗) −→ H1(X,Ωr
X(log D∗)(t − mc)) −→ . . . ,

(4.4)

and apply (i) which yields H1(X,Ωr
X(log D∗)(t − mc)) = 0 as 1 + r < n + 1 =

dimX. Because of (4.3) one gets the exact sequence

0 −→ H0(Y,Ωr−1
Y (log D)(t − mc)) −→ H0(Y,OY (t) ⊗OX

Ωr
X(log D∗)) −→

H0(Y,Ωr
Y (log D)(t)) −→ H1(Y,Ωr−1

Y (log D)(t − mc)) −→ . . . ,

(4.5)

and due to 1 + r − 1 = r < n one has H1(Y,Ωr−1
Y (log D)(t − mc)) = 0. State-

ment (c) can be read from (4.4) and (4.5). Assertion (d) can easily be shown
by Serre duality. The Euler-Poincare characteristic can be calculated by the
exact sequences (4.1)–(4.3). This allows us to specify finally the dimension of
Hn−r(Y,Ωr

Y (log D)(t)). (e) and (f) also can be shown using the exact cohomol-
ogy sequences.
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4.2. T -Symmetric Differential Forms

Let Y ⊆ PN be the n-dimensional complete intersection of multidegree (m) =
(m1,m2, . . . ,mc) .c = N − n denotes the codimension of Y.

We consider a Young tableau T with r boxes, the row lengths l1 ≥ l2 ≥
. . . ≥ ld > 0 and the column lengths d1 ≥ d2 ≥ . . . ≥ dl > 0. We denote
l = l1 = length T and d = d1 = depthT . Let M(T ) be the set of all integer
matrices A = ((di,j)) ∈ N(c+1,l) with c+1 rows, l columns and with the following
properties:

(1) d1,j = dj ∀j ∈ {1, . . . , l},

(2) di,l ≥ di+1,l ≥ 0 ∀i ∈ {1, . . . , c},

(3) di,j ≥ di+1,j ≥ di,j+1 ∀i ∈ {1, . . . , c} ∀j ∈ {1, . . . , l − 1}.

Let ̺i(A) =
∑l

j=1 dij be the i-th row sum of A and we put ̺(A) = ̺c+1(A).
We denote by

µ =

c∑

j=1

dj (4.6)

the number of boxes in the first c columns of T , where dj = 0 for j > l. One
can easily see that r − µ ≤ ̺(A) ≤ r for all A ∈ M(T ). Finally, we define
the subset Ms(T ) of M(T ) by Ms(T ) := {A ∈ M(T ) : ̺(A) = r − s} for all
s ∈ {0, 1, . . . , µ}. For simplification we set furthermore:

ΩT ′

PN |Y (log D∗) = OY ⊗O
PN

ΩT ′

PN (log D∗) , Es
T =

⊕

A∈Ms(T )

Ω
T ′(A)

PN |Y
(log D∗)(t(A))

with t(A) =
∑c

i=1(̺i+1(A) − ̺i(A)) · mi. Here T ′(A) denotes a Young tableau
with ̺(A) boxes and the column lengths dc+1,1, . . . , dc+1,l, that is, T ′(A) de-
pends only on the last row of A. If ̺(A) = 0 we need to replace the sheaf

Ω
T ′(A)

PN |Y
(log D∗) by the structure sheaf OY .

Lemma 4.3. There exists following exact sequence:

0 −→ E
µ
T

βµ
−→ E

µ−1
T

βµ−1
−→ . . .

β2
−→ E1

T

β1
−→ ΩT

PN |Y (log D∗)
β0
−→ ΩT

Y (log D) −→ 0. (4.7)

Proof. (4.7) is the T -Power of the following short exact sequence (cf. [3]):

0 −→

c⊕

i=1

OY (−mi)
α

−→ OY ⊗O
PN

Ω1
PN (log D∗)

β
−→ Ω1

Y (log D) −→ 0 . (4.8)
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We need to show that (4.8) is an exact sequence. Let U ⊆ PN be an open
subset. Without loss of generality we put U ⊆ Ui = {xi 6= 0}. Assume that
there exist local parameters F1

x
m1
i

, . . . , Fc

x
mc
i

, u1, . . . , un−1,
F
xm

i
of PN on U such

that the restrictions v1 = ϕ∗(u1), . . . , vn−1 = ϕ∗(un−1), vn = ϕ∗
(

F
xm

i

)
are local

parameters of Y on U ∩ Y . We know that Γ(U ∩ Y,OY ⊗O
PN

Ω1
PN (log D∗)) is

a free Γ(U ∩ Y,OY )-module defined by the span

d
F1

xm1
i

, . . . ,d
Fc

xmc

i

,d u1, . . . ,d un−1,
xm

i

F
· d

F

xm
i

.

Γ(U ∩Y,Ω1
Y (log D)) is a free Γ(U ∩Y,OY )-module with the span d v1, . . . ,d vn.

Let ω ∈ Γ(U ∩ Y,OY ⊗O
PN

Ω1
PN (log D∗)) be any element given by

ω =
c∑

j=1

fj · x
mj

i · d
Fj

x
mj

i

+
n−1∑

k=1

gk · d uk + h ·
xm

i

F
· d

F

xm
i

.

The homomorphism β maps ω to β(ω) =
∑n−1

k=1 gk · d vk + h · d vn

vn
, where the

kernel of this mapping is given by ker β =

{∑c
j=1 fj · x

mj

i · d
Fj

x
mj
i

}
. We obtain

the following homomorphism

γ :

c⊕

j=1

Γ(U∩Y,OY (−mj)) −→ ker β with (f1, . . . , fc) 7−→

c∑

j=1

fj ·x
mj

i ·d
Fj

x
mj

i

which is isomorphic and independent of the index i with U ⊆ Ui.

Lemma 4.4. For an arbitrary Young tableau T ′ there exists the following
exact sequence

0 −→ ΩT ′

PN (log D∗)(−

c∑

i=1

mi)
αc−→

⊕

1≤i≤c

ΩT ′

PN (log D∗)(−

c∑

j=1

mj + mi)
αc−1
−→ . . .

. . .
α3−→

⊕

1≤i1<i2≤c

ΩT ′

PN (log D∗)(−mi1 − mi2)
α2−→

⊕

1≤i≤c

ΩT ′

PN (log D∗)(−mi)
α1−→

α1−→ ΩT ′

PN (log D∗)
α0−→ OY ⊗O

PN
ΩT ′

PN (log D∗) −→ 0.

(4.9)

Proof. We consider the following exact sequence which is called the Koszul
complex:

0 −→ OPN (−

c∑

i=1

mi)
αc−→

⊕

1≤i≤c

OPN (−

c∑

j=1

mj + mi)
αc−1
−→ . . .
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α3−→
⊕

1≤i1<i2≤c

OPN (−mi1−mi2)
α2−→

⊕

1≤i≤c

OPN (−mi)
α1−→ OPN

α0−→ OY −→ 0.

Multiplying this exact sequence with the local free sheaf ΩT ′

PN (log D∗) yields the
assertion.

Theorem 4.5. Under the assumption 1 ≤ q < n − depth T − µ one gets
Hq(Y,ΩT

Y (log D)(t)) = 0 for all st ∈ Z.

Proof. We write instead of (4.9) short exact sequences and obtain

0 −→ ΩT ′

PN (log D∗)(−
c∑

i=1

mi) −→
⊕

1≤i≤c

ΩT ′

PN (log D∗)(−
c∑

j=1

mj + mi) −→

−→ Im αc−1 −→ 0 ,

0 −→ Imαc−1 −→
⊕

1≤i1<i2≤c

ΩT ′

PN (log D∗)(−

c∑

j=1

mj + mi1 + mi2) −→

−→ Im αc−2 −→ 0 ,

...
...

0 −→ Imα2 −→
⊕

1≤i≤c

ΩT ′

PN (log D∗)(−mi) −→ Imα1 −→ 0 ,

0 −→ Imα1 −→ ΩT ′

PN (log D∗) −→ OY ⊗O
PN

ΩT ′

PN (log D∗) −→ 0.

Using the long exact cohomology sequences yields a vanishing criterion for
Hq(Y,OY ⊗O

PN
ΩT ′

PN (log D∗)(t)). We have

Hq(Y,OY ⊗O
PN

ΩT ′

PN (log D∗)(t)) = 0 if Hq(PN ,ΩT ′

PN (log D∗)(t)) = 0 ,

and Hq+1(PN , Im α1(t)) = 0 ,

Hq+1(PN , Im α1(t)) = 0 if Hq+1(PN ,
⊕

1≤i≤c

ΩT ′

PN (log D∗)(t − mi)) = 0 ,

and Hq+2(PN , Im α2(t)) = 0 ,

...

Hq+c−1(PN , Im αc−1(t)) = 0

if Hq+c−1(PN ,
⊕

1≤i≤c

ΩT ′

PN (log D∗)(t −
c∑

j=1

mj + mi)) = 0

and Hq+c(PN ,ΩT ′

PN (log D∗)(t −

c∑

i=1

mi) = 0.
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Applying Theorem 3.6 (d) yields Hq(Y,OY (t) ⊗O
PN

ΩT ′

PN (log D∗)) = 0 for 1 ≤

q < n − depth T ′. Now we study Hq(Y,ΩT
Y (log D)(t)) with the aid of (4.7).

Decomposing (4.7) in short exact sequences delivers

0 −→ E
µ
T −→ E

µ−1
T −→ Imβµ−1 −→ 0 ,

0 −→ Im βµ−1 −→ E
µ−2
T −→ Im βµ−2 −→ 0 ,

...
...

0 −→ Im β2 −→ E1
T −→ Im β1 −→ 0 ,

0 −→ Im β1 −→ ΩT
PN |Y (log D∗) −→ ΩT

Y (log D) −→ 0.

With Es
T (t) =

⊕

A∈Ms(T )

Ω
T ′(A)

PN |Y
(log D∗)(t + t(A)) one has

Hq(Y,ΩT
Y (log D)(t)) = 0 if Hq(Y,ΩT

PN |Y (log D∗)(t)) = 0 ,

and Hq+1(Y, Im β1(t)) = 0 ,

...

Hq+µ−1(Y, Im βµ−1(t)) = 0 if Hq+µ−1(Y,E
µ−1
T (t)) = 0 ,

and Hq+µ(Y,E
µ
T (t)) = 0.

This implies Hq(Y,ΩT
Y (log D)(t)) = 0 for 1 ≤ q < n − depth T − µ.

Now assume for instance µ < n − depthT . Then for each t ∈ Z it follows
from our exact sequences:

Hq(PN , Im αi(t)) = 0 if 1 ≤ q ≤ µ + i ,

Hq(Y,OY (t) ⊗O
PN

ΩT ′

PN (log D∗)) = 0 if 1 ≤ q ≤ µ + c ,

Hq(Y,E
j
T (t)) = 0 if 1 ≤ q ≤ j , Hq(Y, Im βj(t)) = 0 if 1 ≤ q ≤ j.

In particular, the cohomology groups H1(. . .) of all these sheaves van-
ish. Therefore, we have the opportunity to calculate the dimensions of their
cohomology groups H0(. . .): Let hT (t) abbreviating denotes the dimension
dimH0(PN ,ΩT

PN (log D∗)(t)) as an integer function of t. Remember that (m) =
(m1,m2, . . . ,mc) is the multidegree of the complete intersection Y . We set

hT
(m)(t) := hT (t) +

c∑

s=1

(−1)s ·
∑

1≤i1<i2<...<is≤c

hT (t − mi1 − mi2 − . . . − mis).

Because of (4.9) we have dim H0(Y,OY ⊗O
PN

ΩT ′

PN (log D∗)(t)) = hT ′

(m)(t) and

using (4.7) we get the following formula:

Theorem 4.6. If µ < dim Y − depthT then dimH0(Y,ΩT
Y (log D)(t)) =
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∑

A∈M(T )

(−1)r−̺(A) · h
T ′(A)
(m) (t + t(A)) with t(A) =

∑c
i=1(̺i+1(A) − ̺i(A)) · mi.

In particular for t = 0: H0(Y,ΩT
Y (log D)) = 0 if µ < dimY − depth T .

Remark 4.7. For regular T -symmetrical tensor differential forms one has
H0(Y,ΩT

Y ) = 0 if µ < dim Y .

4.3. Symmetric Differential Forms

We consider symmetrical differential forms with logarithmic poles as a spe-
cial case, that means, T is a Young tableau with r boxes and only one row
(depth T = 1 l = length T = r).

Let D∗ = H be the prime divisor on projective space PN and let D be the
prime divisor on the n-dimensional complete intersection Y as above (n ≥ 2).
Distinguishing the cases r ≤ c and c < r we obtain two exact sequences as
symmetrical power of (4.8): Assume at first r ≤ c:

0 −→
⊕

1≤i1<i2<...<ir≤ c

OY (−mi1 − mi2 − . . . − mir)−→

−→
⊕

1≤i1<...<ir−1≤ c

OY (−mi1 − mi2 − . . . − mir−1) ⊗O
PN

Ω1
PN (log D∗)−→ . . .

. . .−→
⊕

1≤i≤c

OY (−mi) ⊗O
PN

Sr−1Ω1
PN (log D∗)−→

−→OY ⊗O
PN

SrΩ1
PN (log D∗)−→SrΩ1

Y (log D)−→ 0 .

In the case c < r the following sequence is exact:

0 −→ OY (−

c∑

j=1

mj) ⊗O
PN

Ωr−c
PN (log D∗)−→

−→
⊕

1≤i≤c

OY (−
c∑

j=1

mj + mi) ⊗O
PN

Ωr−c+1
PN (log D∗)−→ . . .

. . .−→
⊕

1≤i≤c

OY (−mi) ⊗O
PN

Sr−1Ω1
PN (log D∗)−→

−→OY ⊗O
PN

SrΩ1
PN (log D∗)−→SrΩ1

Y (log D)−→ 0 .

Furthermore, we have Lemma 4.4 with the sheaf SrΩ1
PN (log D∗) instead of

ΩT ′

PN (log D∗). With the corresponding cohomology sequences we get:

Theorem 4.8. Assume n = dim Y ≥ 2.
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(a) If 1 ≤ q ≤ n − 2 then Hq(Y,OY (t) ⊗O
PN

SrΩ1
PN (log D∗)) = 0 ∀t ∈ Z.

(b)

dim H0(Y,OY (t) ⊗O
PN

SrΩ1
PN (log D∗)) = dim H0(PN , SrΩ1

PN (log D∗)(t))

+

c∑

j=1

(−1)j ·
∑

1≤i1<...<ij≤c

dim H0(PN , SrΩ1
PN (log D∗)(t − mi1 − . . . − mij)) .

(c) H0(Y,OY (t) ⊗O
PN

SrΩ1
PN (log D∗)) 6= 0 ⇔ t ≥ r.

(d) In case t = 0: H0(Y,OY ⊗O
PN

SrΩ1
PN (log D∗)) = 0 for all r > 0.

Theorem 4.9.

(a) If r ≤ c and 1 ≤ q < n − r then Hq(Y, SrΩ1
Y (log D)(t)) = 0 ∀t ∈ Z.

(b) If c < r and 1 ≤ q < n − c − 1 then Hq(Y, SrΩ1
Y (log D)(t)) = 0 ∀t ∈ Z.

Proof. By Theorem 4.5 we know Hq(Y,ΩT
Y (log D)(t)) = 0 for all t ∈ Z if

1 ≤ q < n−depth T −µ. For symmetric differential forms we have depthT = 1
and µ =

∑c
i=1 di = min{c, r}, where di = 1 for i ≤ r and di = 0 for i > r.

This proves (b). Under condition r ≤ c one gets the stronger result (a) since
Hq(Y,OY (t)) = 0 for 1 ≤ q < n and for all t ∈ Z.

Theorem 4.10.

(c) If r ≤ c and r < n then

H0(Y, SrΩ1
Y (log D)(t)) = dimH0(Y,OY (t) ⊗O

PN
SrΩ1

PN (log D∗))

+

r−1∑

k=1

(−1)k ·
∑

1≤i1<...<ik≤c

dim H0(Y,OY (t −

k∑

j=1

mij) ⊗O
PN

Sr−kΩ1
PN (log D∗))

+ (−1)r ·
∑

1≤i1<...<ir≤c

dimH0(Y,OY (t − mi1 − . . . − mir) .

(d) If c < r and c < n − 1 then

H0(Y, SrΩ1
Y (log D)(t)) = dim H0(Y,OY (t) ⊗O

PN
SrΩ1

PN (log D∗))

+
c∑

k=1

(−1)k ·
∑

1≤i1<...<ik≤c

dim H0(Y,OY (t −
k∑

j=1

mij) ⊗O
PN

Sr−kΩ1
PN (log D∗)).

Proof. Statements (c) and (d) follow from the related exact sequences since
under these premises by Theorem 4.8 the cohomology groups H1(. . .) of all
these sheaves vanish (cf. Theorem 4.8 and Theorem 3.7).

Finally, it is easy to see:
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Theorem 4.11. (e) If t < r ≤ min(c, n−1) then H0(Y, SrΩ1
Y (log D)(t)) =

0.

(f) If t < r and c < min(r, n − 1) then H0(Y, SrΩ1
Y (log D)(t)) = 0.

(g) If c < n − 1 then H0(Y, SrΩ1
Y (log D)) = 0 for all r > 0.

(h) If 0 < r < n then H0(Y, SrΩ1
Y (log D)) = 0.

Remark 4.12. On the other hand, for regular symmetrical differential
forms on complete intersections it is well known:

If c < n then H0(Y, SrΩ1
Y ) = 0 for all r > 0.
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