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Abstract:This paper concerns the existence andmultiplicity of solutions for a nonlinear Schrödinger–Kirchhoff-
type equation involving the fractional p-Laplace operator inℝN . Precisely, we study the Kirchhoff-type problem

(a + b∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy)(−Δ)spu + V(x)|u|p−2u = f(x, u) in ℝN ,

where a, b > 0, (−Δ)sp is the fractional p-Laplacian with 0 < s < 1 < p < N
s , V : ℝ

N → ℝ and f : ℝN × ℝ → ℝ are
continuous functions while V can have negative values and f fulfills suitable growth assumptions. According
to the interaction between the attenuation of the potential at infinity and the behavior of the nonlinear term
at the origin, using a penalization argument along with L∞-estimates and variational methods, we prove the
existence of a positive solution. In addition, we also establish the existence of infinitelymany solutions provided
the nonlinear term is odd.
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technique, unbounded domain
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1 Introduction and main results

In this article, we consider the following fractional p-Laplacian Kirchhoff-type elliptic problem:

{{{
{{{
{

(a + b∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy)(−Δ)spu + V(x)|u|p−2u = f(x, u) in ℝN ,

u ∈ W s,p(ℝN),

(1.1)

where a, b > 0, p ∈ (1,∞), s ∈ (0, 1), N > sp, V is a continuous function whichmay vanishing at infinity and f is
a continuous function verifying suitable growth assumptions. Here, (−Δ)sp is the fractional p-Laplacian operator,
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which (up to normalization factors) is defined by

(−Δ)spu(x) = 2 lim
δ→0+

∫
ℝN\Bδ(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+sp

dy, x ∈ ℝN ,

for any u ∈ C∞0 (ℝN), where Bδ(x) denotes the ball in ℝN centered at x with radius δ.
In recent years, there has been a surge of interest in the study of partial differential equations involving

nonlocal fractional Laplace operators. This type of nonlocal operator comes up naturally in the real world in
many different applications, such as phase transitions, game theory, finance, image processing, Lévy processes,
and optimization; see, for example the works of Applebaum [16], Di Nezza-Palatucci-Valdinoci [26] and their
references for more details.

In the case a = 1, b = 0 and p = 2, (1.1) becomes the fractional Laplacian equation of the type

(−Δ)su + V(x)u = f(x, u) in ℝN , (1.2)

which can be seen as the fractional form of the following classical stationary Schrödinger equation

−Δu + V(x)u = f(x, u) in ℝN . (1.3)

During the last years, equations (1.2) and (1.3) have been widely considered. Indeed, by using appropriate tech-
niques and assuming different conditions of the potential V and the nonlinearity f , several existence, mul-
tiplicity, and concentration results of equations (1.2) and (1.3) have been established. We refer to Alves and
Miyagaki [3], Ambrosio [9–11], Figueiredo and Siciliano [28], Li, Sun and Tersian [33] and Willem [48], see also
the references therein.

In the case s = 1 and p = 2, (1.1) turns into the classical Kirchhoff-type equation of the form

−(a + b ∫
ℝN

|∇u|2 dx)Δu + V(x)u = f(x, u) in ℝN , (1.4)

which was proposed by Kirchhoff [32] as a generalization of the well-known d’Alembert’s wave equation

ρutt − (
p0
h +

E
2L

L

∫
0

|ux|2 dx)uxx = f(x, u),

for free vibrations of elastic strings. Kirchhoff’s model takes into account the changes in the length of the string
produced by transverse vibrations. Here, L is the length of the string, h is the area of the cross-section, E is the
Young modulus of the material, ρ is the mass density, and p0 is the initial tension. In [1], it was pointed out that
problem (1.4) models several physical systems, in which u described a process dependent on its own average
value. Nonlocal effects also have applications in biological systems. In fact, the parabolic version of the equation
can be used to describe the growth and movement of specific species. The motion modeled by the integral term
is assumed to depend on the energy of the whole system, where u is its population density. Some interesting
results concerning (1.4) can be found in [19] or [23]. Since Lions’ work [36], problem (1.4) began to attract the
attention of several mathematicians, we refer to the papers of Chen and Li [22], He and Zou [31], Perera and
Zhang [41], Sun, Li, Cencelj and Gabrovšek [46] and the references therein.

On the other hand, the study of fractional p-Kirchhoff problems has attracted considerable attention. Pucci,
Xiang and Zhang [42] dealt with a nonhomogeneous fractional p-Laplacian Kirchhoff–Schrödinger equation
given by

M(∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+ps
dx dy)(−Δ)spu + V(x)|u|p−2u = f(x, u) + g(x) in ℝN ,

where the potential V satisfies a Bartsch–Wang-type condition. In [51], Xiang, Zhang and Ferrara studied the
existence of two solutions for a nonhomogeneous fractional p-Kirchhoff problem, where the nonlinearity is
convex-concave. In [21], Caponi and Pucci dealt with the existence, multiplicity, and asymptotic behavior of
entire solutions for a series of stationary Kirchhoff fractional p-Laplacian equations. Subsequently, Liang and
Rădulescu applied Kajikiya’s new version of the symmetric mountain pass lemma to study a class of fractional
p-Kirchhoff-type Schrödinger–Choquard equations in [35]. In [29], Fiscella and Pucci obtained the existence
and the asymptotic behavior of nontrivial solutions for stationary fractional p-Laplacian Kirchhoff equations
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involving a Hardy potential and different critical nonlinearities. In [52], Xiang, Zhang and Rădulescu obtained
a multiplicity result for a fractional p-Kirchhoff system driven by a nonlocal integro-differential operator with
zero Dirichlet boundary data. Moreover, Liang, Molica Bisci and Zhang [34] studied the multiplicity of solu-
tions of a class of noncooperative critical fractional p-Laplacian elliptic system with homogeneous Dirichlet
boundary conditions by using the Limit Index Theory and the fractional version of the concentration com-
pactness principle. The existence and multiplicity of solutions for a critical fractional p-Kirchhoff-type problem
involving discontinuous nonlinearity has been obtained by Xiang and Zhang [50] while Ambrosio, Isernia and
Rădulescu [14] discussed the concentration of positive solutions for fractional p-Kirchhoff-type problems given
in the form

{
{
{

(εspa + ε2sp−3b[u]pW s,p(ℝ3))(−Δ)
s
pu + V(x)up−1 = f(u) in ℝ3 ,

u ∈ W s,p(ℝ3), u > 0 in ℝ3 ,

where ε is a small positive parameter and a, b > 0. Another interesting work has been done by Thin, Xiang and
Zhang [47] who studied the existence of solutions for critical Kirchhoff–Schrödinger-type fractional p-Laplacian
problems with potential vanishing at infinity defined by

M(∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy + ∫

ℝN

V(x)|u(x)|p dx)((−Δ)spu(x) + V(x)|u|p−2u) = K(x)(λf(x, u) + |u|p
∗
s −2u),

where p∗s =
Np
N−ps ,M, K, V are nonnegative continuous functions satisfying suitable conditions and λ > 0 is a real

parameter. Very recently, Lv and Zheng [37, 38], studied critical fractional p-Kirchhoff equations involving com-
petitive nonlinearities or logarithmic nonlinearity while Xiong, Chen, Chen and Sun [54] considered concave-
convex fractional p-Kirchhoff-type elliptic equation with steep well potential. Finally, other interesting results
in this direction can be found in the papers of Ambrosio [12], Ambrosio and Isernia [13], Ambrosio and Ser-
vadei [15], Arora, Fiscella, Mukherjee and Winkert [17, 18], Fiscella and Pucci [30], Nyamoradi and Zaidan [40],
Pucci, Xiang and Zhang [43], Song and Shi [45], Xiang, Molica Bisci, Tian and Zhang [39], Xiang, Zhang and
Rădulescu [49] and Xiang, Zhang and Rădulescu [53]. However, in the above works, the potential V is always
nonnegative, that is,

inf
x∈ℝN

V(x) ≥ V(x0) ≥ 0,

where V(x0) ≥ 0 is a constant.
In the past two decades, many studies have focused on the potential that can vanish at infinity, that is,

V(x) → 0 as |x| → ∞, or briefly, V∞ = 0. We refer the reader to Alves, Figueiredo and Yang [2], Alves and
Souto [4], Ambrosetti, Felli and Malchiodi [5], Ambrosetti, Malchiodi and Ruiz [6], Ambrosetti and Wang [8],
de B. Silva and Soares [24], and references therein. It is worth mentioning that a penalization technique and
corresponding L∞-estimates have been applied. It should also be emphasized that the existence result shows
the interplay between the behavior of the nonlinear term at the origin and the decay of the potential at infinity.
A key factor in establishing this relationship is the result of the L∞-estimates for the penalized problem, which
does not depend on the behavior of the nonlinear term near the origin.

Motivated by the papers of Alves and Souto [4], de B. Silva and Soares [24] and Ambrosio, Isernia and Răd-
ulescu [14] as well as due to the large interest shared by the mathematical community on fractional p-Laplacian
problems,we study the existence andmultiplicity of solutions to problem (1.1)where the potential Vmayassume
negative values. Along the paper, we always assume f and V satisfy the following assumptions:
(f1) f : ℝN × ℝ → ℝ is a continuous function and there exists ϑ > p such that

lim sup
z→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
zf(x, z)
zϑ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< +∞ uniformly for all x ∈ ℝN .

(f2) There exist a1 , a2 > 0 and q ∈ (p, p∗s ) with p∗s =
Np
N−sp such that

|f(x, z)| ≤ a1|z|q−1 + a2 for all (x, z) ∈ ℝN × ℝ.

(f3) There exist θ > 2p and S0 ≥ 0 such that

zf(x, z) ≥ θF(x, z) > 0 for all |z| ≥ S0 and for all x ∈ ℝN ,

where F(x, z) := ∫z0 f(x, t) dt.
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(V1) V : ℝN → ℝ is a continuous function and either V ≥ 0 in ℝN and satisfies

V(x) ≤ V∞ for all x ∈ Br0 (x0) (1.5)

for some V∞ , r0 > 0 and x0 ∈ ℝN or
Ω := {x ∈ ℝN : V(x) < 0}

is a nonempty bounded set and

inf
Ω
V > − S

|Ω|
sp
N
,

where S > 0 is the best constant for the embeddingW s,p(ℝN) into Lp∗s (ℝN).
(V2) There are constants Λ > 0 and R > 0 (R > |x0| + r0 , for r0 > 0 and x0 ∈ ℝN given by (1.5), if V ≥ 0) such that

inf
|x|≥R
|x|

(N−sp)(ϑ−p)
p−1 V(x) ≥ Λ

with ϑ > p given by (f1).
Now, we state our first main result of this work:

Theorem 1.1. Suppose hypotheses (V1)–(V2) and (f1)–(f3) hold. Then there exists a constant Λ∗ > 0 such that (1.1)
has a positive solution for every Λ ≥ Λ∗.

Note that Λ∗ given in Theorem 1.1 depends on the radius R > 0 given in condition (V2). In particular, when
condition (f3) holds with S0 = 0, and V satisfies the following version of (V2):
(V3) There are constants Λ > 0 and R > 0 (R > |x0| + r0 , for r0 > 0 and x0 ∈ ℝN given by (1.5), if V ≥ 0) such that

1

R
(N−sp)(ϑ−p)

p−1

inf
|x|≥R
|x|

(N−sp)(ϑ−p)
p−1 V(x) ≥ Λ,

where ϑ > p given by (f1).
Now, we state the second result of this paper:

Theorem 1.2. Suppose hypotheses (V1), (V3), (f1)–(f2), and (f3)with S0 = 0 hold. Then there exists Λ̃∗ > 0 such that
(1.1) has a positive solution for every Λ ≥ Λ̃∗.

To strengthen the interaction between the theoretical behavior of the nonlinear term and the decay of the poten-
tial, by conditions (f1) and (V2), we give a result in which the function f approaches zero at the origin: Assume
that f and V satisfy:
(f̂1) There are constants ϑ, ς > 0 such that

lim sup
z→0
|f(x, z)|e

ς
|z|ϑ < +∞ uniformly in ℝN .

(V4) There are constants Λ > 0, μ > 0 and R > 0 (R > |x0| + r0, for r0 > 0 and x0 ∈ ℝN given by (1.5), if V ≥ 0)
such that

inf
|x|≥R

eμ|x|
(N−sp)ϑ
p−1 V(x) ≥ Λ,

where ϑ given by (f̂1).
We can state the following result.

Theorem 1.3. Suppose hypotheses (V1), (V4), (f̂1) and (f2)–(f3) hold. Then there exist constants Λ∗ , μ∗ > 0 such
that (1.1) has a positive solution for every Λ ≥ Λ∗ and 0 < μ ≤ μ∗.

Similar to Theorem 1.3, if (f3) holds with S0 = 0 and V satisfies
(V5) There are constants Λ > 0, μ > 0 and R > 0 (R > |x0| + r0, for r0 > 0 and x0 ∈ ℝN given by (1.5), if V ≥ 0)

such that
inf
|x|≥R

eμ(
|x|
R )

(N−sp)ϑ
p−1 V(x) ≥ Λ,

with ϑ given by (f̂1).
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Then we may take Λ̂∗ > 0, which does not depend on R, such that problem (1.1) has a positive solution for each
Λ > Λ̂∗. More precisely, using the arguments employed in the proof of Theorem 1.3, we also have the following
theorem.

Theorem 1.4. Suppose hypotheses (V1), (V5), (f̂1), (f2) and (f3)with S0 = 0hold. Then there are constants Λ̂∗, μ̂∗ > 0
such that (1.1) has a positive solution for every Λ ≥ Λ̂∗ and 0 < μ ≤ μ̂∗.

Remark that, under the above hypotheses, we may actually obtain solutions u+ and u− of problem (1.1) with
u+ > 0 and u− < 0 in ℝN . Suppose now f is odd with respect to the second variable, that is:
(f4) f(x, −z) = −f(x, z), for every (x, z) ∈ ℝN × ℝ.
Then we may use a version of the penalization technique and a minimax critical point theorem for functional
with symmetry to get the subsequent results.

Theorem 1.5. Suppose hypotheses (V1)–(V2), (f1)–(f3) and (f4) hold. Then there exists constant Λ∗ > 0 such that
(1.1) has infinitely many nontrivial solutions for every Λ ≥ Λ∗.

Theorem 1.6. Suppose hypotheses (V1), (V3), (f1)–(f2), (f4) and (f3)with S0 = 0 hold. Then there exists Λ̃∗ > 0 such
that (1.1) has infinitely many nontrivial solutions for every Λ ≥ Λ̃∗.

Theorem 1.7. Suppose hypotheses (V1), (V4), (f̂1) and (f2)–(f4) hold. Then there exist constants Λ∗ , μ∗ > 0 such
that (1.1) has infinitely many nontrivial solutions for every Λ ≥ Λ∗ and 0 < μ ≤ μ∗.

Theorem 1.8. Suppose hypotheses (V1), (V5), (f̂1), (f2), (f4) and (f3) with S0 = 0 hold. Then there are constants Λ̂∗,
μ̂∗ > 0 such that (1.1) has a positive solution for every Λ ≥ Λ̂∗ and 0 < μ ≤ μ̂∗.

We know that (f3) is the classical (AR) condition, and it only considers the case θ > 2p. When p < θ ≤ 2p, we can
obtain a similar existence result considering the following hypothesis:
(f̃3) There exist p < θ ≤ 2p and S0 ≥ 0 such that

zf(x, z) ≥ θF(x, z) > 0 for every |z| ≥ S0 , x ∈ ℝN ,

where F(x, z) := ∫z0 f(x, t) dt.
Then we have the following theorem.

Theorem 1.9. Suppose hypotheses (V1)–(V2), (f1)–(f2) and (f̃3) hold. Then there exist b∗ > 0 and Λ∗ > 0 such that
(1.1) has a positive solution for every b ∈ (0, b∗) and Λ ≥ Λ∗.

It is not difficult to verify that, as a direct consequence of Theorem 1.9, versions of Theorems 1.2–1.4 hold under
condition (f̃3):

Theorem 1.10. Suppose hypotheses (V1), (V3), (f1)–(f2), and (f̃3)with S0 = 0 hold. Then there exist constants b∗ > 0
and Λ̃∗ > 0 such that (1.1) has a positive solution for every b ∈ (0, b∗) and Λ ≥ Λ̃∗.

Theorem 1.11. Suppose hypotheses (V1), (V4), (f̂1), (f2) and (f̃3) hold. Then there exist constants b∗ > 0, Λ∗ and
μ∗ > 0 such that (1.1) has a positive solution for every b ∈ (0, b∗), Λ ≥ Λ∗ and 0 < μ ≤ μ∗.

Theorem 1.12. Suppose hypotheses (V1), (V5), (f̂1), (f2) and (f̃3) with S0 = 0 hold. Then there are constants b∗ > 0,
Λ̂∗ > 0 and μ̂∗ > 0 such that (1.1) has a positive solution for every b ∈ (0, b∗), Λ ≥ Λ̂∗ and 0 < μ ≤ μ̂∗.

Remark 1.13. The paper by de B. Silva and Soares [24] established the same conclusions for a semilinear elliptic
problem involving the Laplacian operator. More precisely, they considered only the case a = 1, b = 0, p = 2 and
s → 1−. Obviously, our results are more general than those of [24].

Remark 1.14. By the subcritical and Kirchhoff problem, we will use the following techniques:
(i) In order to prove Theorems 1.1–1.4, we use the penalization argument explored by Alves and Souto [4],

which consists of amodification of the original problem such that f to be controlled by a function at infinity.
(ii) Next, we use the Fountain Theorem to obtain the multiplicity of solutions.
(iii) When p < θ ≤ 2p, the mountain pass geometry and the boundedness of the (PS)c- or (C)c-sequence {un}n∈ℕ

is very difficult to prove by a standard argument. In order to show Theorem 1.9, we also use the truncation
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technique in Zhang and Du [55] to prove the boundedness of (C)c-sequences and later we prove that every
(C)c-sequence contains a convergent subsequence.

This paper is organized as follows. In Section 2, we give a detailed description of the properties of the function
space defined by the energy functional. In Section 3, considering the case θ > 2p, we introduce the version of
the penalization argument used for proving our results and establish the existence of a positive solution for the
penalized problem. Then we present an estimate for the L∞ norm for the solution to the modified problem.
Finally, we obtain the positive solution of the original problem and the multiplicity of the solutions. In Section
4, when p < θ ≤ 2p, we provide the proof of Theorem 1.9.

2 Preliminaries

In this section, let us first recall some basic results related to the fractional Sobolev spaces. Let u : ℝN → ℝ be
a measurable function. We say that u belongs to the spaceW s,p(ℝN) if and only if u ∈ Lp(ℝN) and

[u]pW s,p(ℝN ) := ∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy < ∞.

The spaceW s,p(ℝN) is a Banach space endowed with the norm

‖u‖W s,p(ℝN ) = [|u|
p
Lp(ℝN ) + [u]

p
W s,p(ℝN )]

1
p .

Moreover, Lt(ℝN) denotes the Lebesgue space with norm

|u|Lt(ℝN ) = ( ∫
ℝN

|u|t dx)
1
t

for 1 ≤ t < ∞. Then W s,p(ℝN) 󳨅→ Lt(ℝN) is continuous for any t ∈ [p, p∗s ], that is, there exists a positive con-
stant C∗ such that

|u|Lt(ℝN ) ≤ C∗‖u‖W s,p(ℝN ) for all u ∈ W s,p(ℝN). (2.1)

For detailed properties ofW s,p(ℝN), we refer the reader to the work of Di Nezza, Palatucci and Valdinoci [26].
Now let E be the subspace ofW s,p(ℝN) defined by

E = {u ∈ W s,p(ℝN) : ∫
ℝN

V(x)|u|p dx < ∞}.

Under hypothesis (V1), we can introduce a new norm ‖ ⋅ ‖ on E given by

‖u‖ = ‖u‖E(ℝN ) := [a[u]
p
W s,p(ℝN ) + ∫

ℝN

V(x)|u|p dx]
1
p

.

Lemma 2.1. Let s ∈ (0, 1)and p ∈ (1,∞) be such that N > sp. Under hypothesis (V1), the embedding E 󳨅→ W s,p(ℝN)
is continuous in such a way that E is a Banach space that is continuously embedded into Lt(ℝN) for all t ∈ [p, p∗s ].
In particular, there exists a constant Ct > 0 such that

|u|Lt(ℝN ) ≤ Ct‖u‖ for all u ∈ E.

If t ∈ [1, p∗s ), then the embedding E 󳨅→󳨅→ Lt(BR) is compact for any R > 0.

Proof. Since the result is trivially verified if V ≥ 0 in ℝN , it suffices to suppose that Ω ̸= 0. Given u ∈ W s,p(ℝN),
we may use Hölder’s inequality and the estimate |u|p

Lp∗s (Ω)
≤ S−1[u]pW s,p(ℝN ) to get

∫
Ω

|u|p dx ≤ (∫
Ω

|u|p∗s dx)
p
p∗s
(∫

Ω

1
N
sp dx)

sp
N

= |Ω|
sp
N |u|p

Lp∗s (Ω)
≤
|Ω|

sp
N

S
[u]pW s,p(ℝN ) . (2.2)
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From (V1), there is α > 0 such that
inf
x∈Ω

V(x) ≥ −α > − S

|Ω|
sp
N
. (2.3)

Then we may invoke (2.2) to obtain

a[u]pW s,p(ℝN ) + ∫
ℝN

V(x)|u|p dx ≥ (a − α|Ω|
sp
N

S
)[u]pW s,p(ℝN ) > 0.

Consequently, the first part follows.
Now, fix R > 0 and note that

(‖u‖pLp(BR) + ∬
BR×BR

|u(x) − u(y)|p

|x − y|N+ps
dx dy)

1
p

is an equivalent norm on W s,p(BR) and the embedding E 󳨅→ W s,p(BR) is continuous. By Di Nezza, Palatucci
and Valdinoci [26, Corollary 7.2], the embedding W s,p(BR) 󳨅→󳨅→ Lt(BR) is compact. Thus, the embedding
E 󳨅→󳨅→ Lt(BR) is also compact by the first part of the Lemma. This proves the assertion.

Remark 2.2. In this paper we take α = 0 and Ω = 0 whenever V ≥ 0 in ℝN . Note that in this setting the above
estimates are satisfied for those values of α and Ω.

The Euler–Lagrange functional associated with (1.1) is given by

Φ(u) = ap [u]
p
W s,p(ℝN ) +

b
2p ([u]

p
W s,p(ℝN ))

2 +
1
p ∫
ℝN

V(x)|u|p dx − ∫
ℝN

F(x, u) dx for all u ∈ E.

From the conditions on f , it is easy to see that the functional Φ belongs to C1(E,ℝ). Now we give the definition
of solutions for problem (1.1).

Definition 2.3. We say that u ∈ E is a weak solution of equation (1.1) if

(a + b∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy)(∬

ℝ2N

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps

(φ(x) − φ(y)) dx dy)

+ ∫
ℝN

V(x)|u|p−2uφ dx = ∫
ℝN

f(x, u)φ dx

holds for any φ ∈ E.

Moreover, since in Theorems 1.1–1.4 we intend to prove the existence of a positive solution, we let f(x, z) = 0 for
every (x, z) ∈ ℝN × (−∞, 0].

3 The case θ > 2p
3.1 The penalized problem

In this section, we adopt a version of the penalization argument employed in Alves and Souto [4]. To this end,
for θ > p and R > 0 given by conditions (f3) and (V2), respectively, we take k = pθ

θ−p and consider, for every
(x, z) ∈ ℝN × (0,∞),

̃f(x, z) =

{{{{{{
{{{{{{
{

−
1
k V(x)|z|

p−1 if kf(x, z) < −V(x)|z|p−1 ,

f(x, z) if −V(x)|z|p−1 ≤ kf(x, z) ≤ V(x)|z|p−1 ,
1
k V(x)|z|

p−1 if kf(x, z) > V(x)|z|p−1 .
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Furthermore, set ̃f(x, z) = 0 for every (x, z) ∈ ℝN × (−∞, 0], and define

g(x, z) =
{
{
{

f(x, z) for (x, z) ∈ ℝN × ℝ, |x| ≤ R,
̃f(x, z) for (x, z) ∈ ℝN × ℝ, |x| > R.

A direct computation shows that g is a Carathéodory function and the following hold:

{{{{{{{
{{{{{{{
{

g(x, z) = 0 for (x, z) ∈ ℝN × (−∞, 0],
g(x, z) = f(x, z) for (x, z) ∈ ℝN × ℝ, |x| ≤ R,
|g(x, z)| ≤ |f(x, z)| for (x, z) ∈ ℝN × ℝ,

|g(x, z)| ≤ 1k
V(x)|z|p−1 for (x, z) ∈ ℝN × ℝ, |x| > R,

(3.1)

and
{{
{{
{

G(x, z) = F(x, z) for (x, z) ∈ ℝN × ℝ, |x| ≤ R,

G(x, z) ≤ 1
pk

V(x)|z|p for (x, z) ∈ ℝN × ℝ, |x| > R,
(3.2)

where G(x, z) := ∫z0 g(x, t) dt.
The auxiliary problem that we will consider is the following one:

{{{
{{{
{

(a + b∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy)(−Δ)spu + V(x)|u|p−2u = g(x, u) in ℝN ,

u ∈ E.

(3.3)

Remark 3.1. Observe that any positive solution u of (3.3) that satisfies k|f(x, u)| ≤ V(x)|u|p−1 for |x| ≥ R is a solu-
tion of (1.1).

Due to (3.3), the associated Euler–Lagrange functional I : E → ℝ given by

I(u) = ap [u]
p
W s,p(ℝN ) +

b
2p ([u]

p
W s,p(ℝN ))

2 +
1
p ∫
ℝN

V(x)|u|p dx − ∫
ℝN

G(x, u) dx

is well defined and of class C1(E,ℝ) and its Gateaux derivative is

I󸀠(u)v = (a + b∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy)(∬

ℝ2N

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps

(v(x) − v(y)) dx dy)

+ ∫
ℝN

V(x)|u|p−2uv dx − ∫
ℝN

g(x, u)v dx (3.4)

for all u, v ∈ E. Therefore, it is easy to see that the solutions of (3.3) correspond to the critical points of the energy
functional I.

Under our assumptions, we can show that functional has the mountain pass geometry.

Lemma 3.2. Suppose V satisfies (V1)–(V2) and f satisfies (f1)–(f3). Then the following hold:
(1) There exist β, ρ > 0 such that I(u) ≥ β for every u ∈ E such that ‖u‖ = ρ;
(2) There exists a function e ∈ E with ‖u‖ ≥ ρ, such that I(e) < 0.

Proof. The proof for (1) is standard and follows well-known arguments. We give a proof for the case Ω ̸= 0. By
(V1) and (V2), Ω ⊂ BR(0) and V(x) > 0 for every |x| ≥ R. Note that, by (f1)–(f2), it follows that for each η > 0, there
exists Cη > 0 such that

|F(x, z)| ≤ η|z|p + Cη|z|p
∗
s for every (x, z) ∈ ℝN × ℝ.

Thus, there are positive constants d1 = d1(R) and d2 = d2(η) such that

∫
BR(0)

F(x, u) dx ≤ ηd1‖u‖p + d2‖u‖p
∗
s for all u ∈ E. (3.5)
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Then, combining (2.3) with (3.2), we obtain

I(u) = a
p
[u]pW s,p(ℝN ) +

b
2p
([u]pW s,p(ℝN ))

2 +
1
p ∫
ℝN

V(x)|u|p dx − ∫
ℝN

G(x, u) dx

≥
a
p
[u]pW s,p(ℝN ) +

1
p ∫
ℝN

V(x)|u|p dx − ∫
ℝN

G(x, u) dx

≥
a
p
[u]pW s,p(ℝN ) +

1
p ∫
ℝN

V(x)|u|p dx − ∫
BR(0)

F(x, u) dx − 1
pk ∫
ℝN\Ω

V(x)|u|p dx

≥
a
p(

1 − α|Ω|
sp
N

aS )
[u]pW s,p(ℝN ) +

k − 1
pk ∫
ℝN\Ω

V(x)|u|p dx − ∫
BR(0)

F(x, u) dx

≥ d3(a[u]
p
W s,p(ℝN ) + ∫

ℝN

V(x)|u|p dx) − ∫
BR(0)

F(x, u) dx

= d3‖u‖p − ∫
BR(0)

F(x, u) dx, (3.6)

where

d3 := min{
1
p(

1 − α|Ω|
sp
N

aS )
, k − 1
pk }

.

From the above estimates (3.5) and (3.6), one has

I(u) ≥ d3‖u‖p − ηd1‖u‖p − d2‖u‖p
∗
s for every u ∈ E.

By using the above estimate and taking η > 0 sufficiently small, statement (1) follows by finding appropriated
values of β, ρ > 0.

On the other hand, by hypotheses (V1)–(V2) and taking V∞ = 0, if Ω ̸= 0, we suppose that Br0 (x0) ⊂ BR(0)
and V(x) ≤ V∞, for each x ∈ Br0 (x0). Note that, by (f2) and (f3), there exist constants C1 , C2 > 0, depending on r0,
such that

F(x, z) ≥ C1|z|θ − C2 for every (x, z) ∈ Br0 (x0) × [0,∞). (3.7)

Then, considering a nonnegative function ϕ ∈ E \ {0} such that supp(ϕ) ⊂ Br0 (x0), we obtain

I(tϕ) ≤ at
p

p [ϕ]
p
W s,p(Br0 (x0))

+
bt2p

2p ([ϕ]
p
W s,p(Br0 (x0))

)2 + tp ∫
Br0 (x0)

V∞|ϕ|p dx − ∫
Br0 (x0)

F(x, tϕ) dx (3.8)

for every t ≥ 0. Combining (3.7) with (3.8), we have

I(tϕ) ≤ at
p

p [ϕ]
p
W s,p(Br0 (x0))

+
bt2p

2p ([ϕ]
p
W s,p(Br0 (x0))

)2 + tp ∫
Br0 (x0)

V∞|ϕ|p dx − C1tθ ∫
Br0 (x0)

|ϕ|θ dx + C2|Br0 (x0)|, (3.9)

which implies that I(tϕ) → −∞ as t → +∞, since θ > 2p. Hence, taking e = tϕ, with t > 0 sufficiently large, we
have that ‖e‖ > ρ and I(e) < 0. The proof is complete.

Consequently, using a version of the Mountain Pass Theorem (see Willem [48]), there exists a (PS)c sequence
{un}n∈ℕ ⊂ E such that

I(un) → c and I󸀠(un) → 0,

where the minimax value c is given by
c := inf

γ∈Γ
sup
t∈[0,1]

I(γ(t)),

with
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, I(γ(1)) < 0}.
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Lemma 3.3. There exist constants β1 , β2 > 0 such that β1 ≤ c ≤ β2.

Proof. Note that by Lemma 3.2, c ≥ β > 0, and we take β1 ∈ (0, β). On the other hand, fix φ ∈ E \ {0}. Then, for
all t > 0, as in (3.9) we can get

I(tφ) ≤ at
p

p
[φ]pW s,p(Br0 (x0))

+
bt2p

2p
([φ]pW s,p(Br0 (x0))

)2 + tp ∫
Br0 (x0)

V∞|φ|p dx − C1tθ ∫
Br0 (x0)

|φ|θ dx + C2|Br0 (x0)| → −∞

as t → +∞. Thus, if β2 =: maxt>0 I(tϕ) > 0, it follows from the definition of c that c ≤ β2. The proof of the lemma
is complete.

Lemma 3.4. The sequence {un}n∈ℕ is bounded in E.

Proof. Note that by (f1) and (f3), there exists a positive constant C = C(R) such that
1
θ
f(x, z)z − F(x, z) ≥ −C for every (x, z) ∈ ℝN × ℝ. (3.10)

Hence, it follows from (3.1), (3.2) and (3.10) that

c + on(1) = I(un) −
1
θ I
󸀠(un)un

= (
a
p −

a
θ)
[u]pW s,p(ℝN ) + (

b
2p −

b
θ)
([u]pW s,p(ℝN ))

2

+ (
1
p −

1
θ) ∫
ℝN

V(x)|un|p dx + ∫
ℝN

(
1
θ g(x, un)un − G(x, un)) dx

≥ (
a
p −

a
θ)[u]

p
W s,p(ℝN ) + (

b
2p −

b
θ)([u]

p
W s,p(ℝN ))

2 + (
1
p −

1
θ) ∫
ℝN

V(x)|un|p dx

+ ∫
BR(0)

(
1
θ f(x, un)un − F(x, un)) dx +

p − θ
θpk ∫
ℝN\BR(0)

V(x)|un|p dx

≥ (
1
p −

1
θ)
a[u]pW s,p(ℝN ) + (

b
2p −

b
θ)
([u]pW s,p(ℝN ))

2 + (
1
p −

1
θ) ∫

BR(0)

V(x)|un|p dx

+
(θ − p)(θp − θ + p)
(θp)2

∫
ℝN\BR(0)

V(x)|un|p dx − C|BR(0)|

≥ K(a[u]pW s,p(ℝN ) + ∫
ℝN

V(x)|un|p dx) − C|BR(0)|,

where
K = min{ 1p −

1
θ ,
(θ − p)(θp − θ + p)
(θp)2

} > 0.

Consequently, by a > 0 and θ > 2p, we obtain

c + on(1) ≥ K‖un‖p − C|BR(0)|,

which means that {un}n∈ℕ is bounded in E.

Remark 3.5. Note that by Lemmas 3.3 and 3.4, there is L > 0 such that ‖un‖ ≤ L for every n.

By Lemma 3.4, the embeddings of E inW s,p(ℝN) and the Sobolev embedding theorem, up to a subsequence, we
may suppose that there exists u ∈ E such that

{{{
{{{
{

un ⇀ u weakly in E,
un → u strongly in Ltloc(ℝ

N) for all t ∈ [1, p∗s ),
un(x) → u(x) a.e. x ∈ ℝN .

(3.11)

Now we give several useful conclusions.
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Lemma 3.6. Assume that conditions (f1)–(f3) and (V1)–(V2) hold. Then for any ε > 0, there exists r = r(ε) > R > 0
such that

lim sup
n→∞

∫
ℝN\Br

(a ∫
ℝN

|un(x) − un(y)|p

|x − y|N+sp
dy + V(x)|un|p) dx < ε, (3.12)

lim sup
n→∞
∫
Br

V(x)(|un|p−2un − |u|p−2u)(un − u) dx = 0, (3.13)

un → u strongly in Lt(ℝN)for all t ∈ [p, p∗s ). (3.14)

Proof. First, we consider r > R and a function ψ = ψr ∈ C∞0 (Bcr) such that ψ ≡ 0 if x ∈ Br(0), ψ ≡ 1 if x ∉ B2r(0)
with 0 ≤ ψ(x) ≤ 1, and |∇ψ(x)| ≤ C

r , where C is a constant independent of r, for all x ∈ ℝ
N . As {un}n∈ℕ is bounded

in E, the sequence {ψun}n∈ℕ is also bounded. This shows that I󸀠(un)(ψun) = on(1), namely,

(a + b[un]
p
W s,p(ℝN )) ∬

ℝ2N

|un(x) − un(y)|p

|x − y|N+ps
ψ(x) dx dy + ∫

ℝN

V(x)|un|pψ dx

= on(1) + ∫
ℝN

g(x, un)ψun dx

− (a + b[un]
p
W s,p(ℝN )) ∬

ℝ2N

|un(x) − un(y)|p−2(un(x) − un(y))(ψ(x) − ψ(y))
|x − y|N+ps

un(y) dx dy.

Then, by the definition of ψ and (3.1), we obtain

a∬
ℝ2N

|un(x) − un(y)|p

|x − y|N+sp
ψ(x) dx dy + (1 − 1k) ∫

ℝN

V(x)|un|pψ dx

≤ on(1) − (a + b[un]
p
W s,p(ℝN )) ∬

ℝ2N

|un(x) − un(y)|p−2(un(x) − un(y))(ψ(x) − ψ(y))
|x − y|N+sp

un(y) dx dy. (3.15)

Due to the boundedness of {un}n∈ℕ in E, we can suppose that a + b[un]
p
W s,p(ℝN ) → ℓ ∈ (0,∞). From Lemma 3.4

and Hölder’s inequality, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∬
ℝ2N

|un(x) − un(y)|p−2(un(x)−un(y))(ψ(x)−ψ(y))
|x − y|N+sp

un(y)dx dy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ C(∬
ℝ2N

|ψ(x)−ψ(y)|p

|x − y|N+sp
|un(y)|p dx dy)

1
p

. (3.16)

In addition, by the definition of ψ, Lemma 3.4 and the polar coordinates, it follows that

∬
ℝ2N

|ψ(x) − ψ(y)|p

|x − y|N+sp
|un(x)|p dx dy

= ∫
ℝN

∫
|y−x|>r

|ψ(x) − ψ(y)|p

|x − y|N+sp
|un(x)|p dx dy + ∫

ℝN

∫
|y−x|⩽r

|ψ(x) − ψ(y)|p

|x − y|N+sp
|un(x)|p dx dy

≤ C ∫
ℝN

|un(x)|p( ∫
|y−x|>r

dy
|x − y|N+sp

) dx + Crp ∫
ℝN

|un(x)|p( ∫
|y−x|⩽r

dy
|x − y|N+sp−p

) dx

≤ C ∫
ℝN

|un(x)|p( ∫
|z|>r

dz
|z|N+sp
) dx + Crp ∫

ℝN

|un(x)|p( ∫
|z|⩽r

dz
|z|N+sp−p

) dx

≤ C ∫
ℝN

|un(x)|p dx(
∞

∫
r

dρ
ρsp+1
) +

C
rp ∫
ℝN

|un(x)|p dx(
r

∫
0

dρ
ρsp−p+1
)

≤
C
rsp ∫
ℝN

|un(x)|p dx +
C
rp r
−sp+p ∫
ℝN

|un(x)|p dx ≤
C
rsp ∫
ℝN

|un(x)|p dx ≤
C
rsp → 0 (3.17)

as r →∞. Using (3.15), (3.16) and (3.17), we conclude that (3.12) is verified.
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On the other hand, since un → u in Lt(Br), for all t ∈ [1, p∗s ), by Lebesgue’s Dominated Convergence Theo-
rem, we obtain that

lim
n→∞
∫
Br

V(x)|un|t dx = ∫
Br

V(x)|u|t dx,

which shows that (3.13) holds. The proof of part (b) is finished.
In particular, it follows from (3.12) and Fatou’s lemma that

∫
ℝN\Br

(a ∫
ℝN

|un(x) − un(y)|p

|x − y|N+sp
dy + V(x)|un|p) dx < ε. (3.18)

For any n large enough, by (3.18), we obtain

|un − u|
p
Lp(ℝN ) = |un − u|

p
Lp(Br) + |un − u|

p
Lp(ℝN\Br) ≤ ε + |un − u|

p
Lp(ℝN\Br) ≤ ε +

1
V0
∫
ℝN\Br

V(x)|un − u|p dx

≤ ε + C ∫
ℝN\Br

(a ∫
ℝN

|(un(x) − u(x)) − (un(y) − u(y))|p

|x − y|N+sp
dy + V(x)|un − u|p) dx

≤ (1 + C)ε,

where V0 = infx∈ℝN\BR(0) V(x) > 0. This implies that un → u in Lp(ℝN). Then, by interpolation, we have that
(3.14) holds, which shows part (c).

Lemma 3.7. Assume that conditions (f1)–(f3) and (V1)–(V2)hold. Then the functional I satisfies the (PS)c condition.

Proof. The proof is based on the proofs of Lemmas 3.4–3.6. Indeed, fromLemma 3.4 and the growth assumptions
on g, we have that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
ℝN

(g(x, un)un − g(x, u)u)(un − u) dx
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ (|un|

p−1
Lp(ℝN ) + |u|

p−1
Lp(ℝN ))|un − u|Lp(ℝN )

+ C(|un|
q−1
Lq(ℝN ) + |u|

q−1
Lq(ℝN ))|un − u|Lq(ℝN )

≤ C|un − u|Lp(ℝN ) + C|un − u|Lq(ℝN ) ,

where q is given by (f2). The above estimate and (3.14) provide

lim
n→∞
∫
ℝN

(g(x, un)un − g(x, u)u)(un − u) dx = 0. (3.19)

Now,weprove that ‖un − u‖ → 0 as n →∞. Consider φ ∈ E to befixed andBφ : E → ℝ the linear functional
on E defined as

Bφ(v) := ∬
ℝ2N

|φ(x) − φ(y)|p−2(φ(x) − φ(y))(v(x) − v(y))
|x − y|N+sp

dx dy for all v ∈ E.

Note that, by Hölder’s inequality,Bφ is continuous on E, which shows using un → u in E that

lim
n→∞
((a + b[un]

p
W s,p(ℝN )) − (a + b[u]

p
W s,p(ℝN )))Bu(un − u) = 0, (3.20)

where we have that (a + b[un]
p
W s,p(ℝN )) − (a + b[u]

p
WWs,p (ℝN )(ℝN )

) is bounded in ℝ. Moreover, since un → u in E,
I󸀠(un) → 0, and (3.14), we have that ⟨I󸀠(un) − I󸀠(u), un − u⟩ → 0, as n →∞. Then, by (3.19) and (3.20), one has

on(1) = ⟨I󸀠(un) − I󸀠(u), un − u⟩
= (a + b[un]

p
W s,p(ℝN ))Bun (un − u) − (a + b[un]

p
W s,p(ℝN ))Bu(un − u)

+ ((a + b[un]
p
W s,p(ℝN )) − (a + b[u]

p
W s,p(ℝN )))Bu(un − u)

+ ∫
ℝN

V(x)(|un|p−2un − |u|p−2u)(un − u) dx − ∫
ℝN

(g(x, un)un − g(x, u)u)(un − u) dx

= (a + b[un]
p
W s,p(ℝN ))(Bun (un − u) −Bu(un − u)) + ∫

ℝN

V(x)(|un|p−2un − |u|p−2u)(un − u) dx + on(1),



H. Tao et al., Fractional Schrödinger-p-Kirchhoff equations  13

and so,

lim
n→∞
((a + b[un]

p
W s,p(ℝN ))(Bun (un − u) −Bu(un − u)) + ∫

ℝN

V(x)(|un|p−2un − |u|p−2u)(un − u) dx) = 0.

Then, by the inequality
(|x|p−2x − |y|p−2y)(z − w) ≥ 0 for all x, y ∈ ℝ,

it follows that
(a + b[un]

p
W s,p(ℝN ))(Bun (un − u) −Bu(un − u)) ≥ 0,

and we also obtain
V(x)(|un|p−2un − |u|p−2u)(un − u) ≥ 0 if x ∈ ℝN \ Ω.

Thus we may invoke (3.13) to get

lim
n→∞
(a + b[un]

p
W s,p(ℝN ))(Bun (un − u) −Bu(un − u)) = 0,

lim
n→∞
∫
ℝN\Ω

V(x)(|un|p−2un − |u|p−2u)(un − u) dx = 0. (3.21)

Let us recall the Simon’s inequalities [44] given as

|ξ − η|p ≤
{
{
{

cp(|ξ|p−2ξ − |η|p−2η) ⋅ (ξ − η) if p ≥ 2,

Cp[(|ξ|p−2ξ − |η|p−2η) ⋅ (ξ − η)]
p
2 (|ξ|p + |η|p)

2−p
2 if 1 < p < 2

(3.22)

for all ξ, η ∈ ℝN with positive constants cp and Cp depending only on p.

Case (i). Suppose that p ≥ 2. Then, by (3.21) and (3.22), it follows that

[un − u]
p
W s,p(ℝN ) = ∬

ℝ2N

|un(x) − un(y) − u(x) + u(y)|p|x − y|−(N+sp) dx dy

≤ cp∬
ℝ2N

[|un(x) − un(y)|p−2(un(x) − un(y))

− |u(x) − u(y)|p−2(u(x) − u(y))](un(x) − un(y) − u(x) + u(y))|x − y|−(N+sp) dx dy
= cp[Bun (un − u) −Bu(un − u)] = on(1).

Similarly, by (3.21), we obtain

∫
ℝN

V(x)|un − u|p dx ≤ ∫
ℝN\Ω

V(x)|un − u|p dx

≤ cp ∫
ℝN\Ω

V(x)(|un|p−2un − |u|p−2u)(un − u)dx = on(1).

In conclusion, ‖un − u‖ → 0 as n →∞.

Case (ii). Suppose that 1 < p < 2. Since un ⇀ u in E, there exists ϱ > 0 such that ‖un‖ ≤ ϱ for all n ∈ ℕ. Then,
applying the inequality

(a + b)
2−p
2 ≤ a

2−p
2 + b

2−p
2 for all a, b ≥ 0, 1 < p < 2,

it follows from (3.21), (3.22) and Hölder’s inequality that

[un − u]
p
W s,p(ℝN ) ≤ Cp(Bun (un − u) −Bu(un − u))

p
2 ([un]

p
W s,p(ℝN ) + [u]

p
W s,p(ℝN ))

2−p
2

≤ Cp(Bun (un − u) −Bu(un − u))
p
2 ([un]

p(2−p)
2

W s,p(ℝN ) + [u]
p(2−p)

2
W s,p(ℝN ))

≤ C󸀠p(Bun (un − u) −Bu(un − u))
p
2 = on(1).



14  H. Tao et al., Fractional Schrödinger-p-Kirchhoff equations

Similarly, we also get that

∫
ℝN

V(x)|un − u|p dx ≤ ∫
ℝN\Ω

V(x)|un − u|p dx

≤ C󸀠󸀠p( ∫
ℝN\Ω

V(x)(|un|p−2un − |u|p−2u)(un − u) dx)
p
2

= on(1).

Then ‖un − u‖ → 0 as n →∞. This fact implies that un → u strongly in E.

Remark 3.8. Actually, in the proofs of Lemmas 3.2–3.7, we have only used (V1) and the fact that V is positive on
ℝN \ BR(0). The decay of V at infinity is not needed.

As a byproduct of Lemmas 3.2–3.7 and the Mountain Pass Theorem (see Ambrosetti and Rabinowitz [7]), there
exists u ∈ E such that

I(u) = c > 0 and I󸀠(u) = 0,

which shows that u is a weak solution of problem (3.3).
Furthermore, u− = min{u, 0} = 0. Indeed, by the definition of u−, (3.4) and the fact u is a weak solution

to (3.3), we obtain that
I󸀠(u−)u− = 0,

which together with (3.1) and (3.11) yields

‖u−‖p = a∬
ℝ2N

|u−(x) − u−(y)|p

|x − y|N+sp
dx dy + ∫

ℝN

V(x)|u−|p dx

= I󸀠(u−)u− − b([u−]pW s,p(ℝN ))
2 + ∫
ℝN

g(x, u−)u− dx

= −b([u−]pW s,p(ℝN ))
2

≤ 0.

This implies that u− = 0. Since c > 0, the function u is a nontrivial and nonnegative weak solution of (3.3). Con-
sequently, from a Moser iteration argument, we can prove that u ∈ L∞(ℝN) ∩ C0(ℝN) (see Lemma 3.11 below).
Then, by the maximum principle (see Del Pezzo and Quaas [25]), we can get that u is positive in ℝN . It remains
to prove that u is also a positive solution of problem (1.1).

Let us denote

d := sup
t≥0
[
atp

p [ϕ]
p
W s,p(B0) +

bt2p

2p ([ϕ]
p
W s,p(B0))

2 + tp ∫
B0

V∞|ϕ|p dx − C1tθ ∫
B0

|ϕ|θ dx + C2|B0|],

where the constants C1 , C2 are given in the proof of Lemma 3.2 and B0 := Br0 (x0).

Lemma 3.9. Any solution u of (3.3) satisfies the estimate

‖u‖p ≤ K−1(d + C|BR(0)|),

where C, K are given by the proof of Lemma 3.4, respectively.

Proof. Note that, by (3.14), we obtain that c ≤ d. In addition, arguing as in the proof of Lemma 3.4, we have

c ≥ K‖u‖p − C|BR(0)|.

Thus, ‖u‖p ≤ K−1(c + C|BR(0)|) ≤ K−1(d + C|BR(0)|).

Remark 3.10. If we suppose (f3) with S0 = 0, the estimate provided by Lemma 3.9 is independent of R. Indeed,
since in this case the constant C given by (3.10) is zero, we get ‖u‖p ≤ K−1d.
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3.2 A priori estimates of the solution of the penalized problem

In this part, we establish an estimate for the L∞ norm of the solutions u in terms of its Lp∗s norm. Here, we
shall consider the problem (3.3) with V satisfying (V1) and g : ℝN × ℝ → ℝ a Carathéodory function fulfilling
the subsequent assumptions:
(g1) There exist R > 0 and k > 1 such that

|g(x, z)| ≤ 1
k
V(x)|z|p−1

for all z ∈ ℝ, for all x ∈ ℝN \ BR(0).
(g2) There exist a1 > 0, a2 ≥ 0, and q ∈ (p, p∗s ) such that

|g(x, z)| ≤ a1|z|q−1 + a2

for all z ∈ ℝ and for all x ∈ ℝN .
Note that for (V1) and (g1) we have that Ω ⊂ BR(0)whenever Ω ̸= 0. For our problem, we shall adopt some ideas
found in Alves and Souto [4] and Ambrosio, Isernia and Rădulescu [14].

Lemma 3.11. Suppose (V1) and (g1)–(g2) hold. Let u ∈ E be a solution of problem (3.3). Then u ∈ L∞(ℝN) and

|u|L∞(ℝN ) ≤ M.

Proof. It is sufficient to prove u+ ∈ L∞(ℝN). In addition, we shall prove the lemma under the hypothesis Ω ̸= 0.
For each L > 0, let uL := min{u, L} and denote the function

ℓ(u) := ℓL,σ(u) = uu
p(σ−1)
L ∈ E,

with σ > 1 to be determined later. Note that ℓ is increasing, thus we have

(a − b)(ℓ(a) − ℓ(b)) ≥ 0 for any a, b ∈ ℝ.

Consider the functions

Q(t) := |t|
p

p and L(t) :=
t

∫
0

(ℓ󸀠(τ))
1
p dτ,

and note that
L(u) ≥ 1σ uu

σ−1
L . (3.23)

Hence, from (2.1) and (3.23), we obtain

[L(u)]pW s,p(ℝN ) ≥ C
−1
∗ |L(u)|

p
Lp∗s (ℝN )
≥ C−1∗

1
σp |uu

σ−1
L |

p
Lp∗s (ℝN )

. (3.24)

In addition, for any a, b ∈ ℝ, it holds

Q󸀠(a − b)(ℓ(a) − ℓ(b)) ≥ |L(a) − L(b)|p .

In fact, suppose that a > b, it follows from Jensen’s inequality that

Q󸀠(a − b)(ℓ(a) − ℓ(b)) = (a − b)p−1(ℓ(a) − ℓ(b))

= (a − b)p−1
a

∫
b

ℓ󸀠(τ) dτ

= (a − b)p−1
a

∫
b

(L󸀠(τ))p dτ

≥ (
a

∫
b

L󸀠(τ) dτ)
p

= (L(a) − L(b))p .
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A similar argument holds if a ≤ b. Thus, we infer that

|L(u)(x) − L(u)(y)|p ≤ |u(x) − u(y)|p−2(u(x) − u(y))(u(x)up(σ−1)L (x) − u(y)up(σ−1)L (y)).

Using ℓ(u) as the test function in (3.3), in view of the above inequality and (g1), we get that

a[L(u)]pW s,p(ℝN ) + ∫
ℝN

V(x)|u|pup(σ−1)L dx

≤ a∬
ℝ2N

|u(x) − u(y)|p−2(u(x) − u(y))(u(x)up(σ−1)L (x) − u(y)up(σ−1)L (y))
|x − y|N+sp

dx dy

+ b[u]pW s,p(ℝN )∬
ℝ2N

|u(x) − u(y)|p−2(u(x) − u(y))(u(x)up(σ−1)L (x) − un(y)u
p(σ−1)
L (y))

|x − y|N+sp
dx dy

+ ∫
ℝN

V(x)|u|pup(σ−1)L dx

= ∫
ℝN

g(x, u)uup(σ−1)L dx

≤ ∫
BR(0)

|g(x, u)|uup(σ−1)L dx + 1k ∫
ℝN\BR(0)

V(x)|u|pup(σ−1)L dx.

By the fact that Ω ⊂ BR(0), we have

a[L(u)]pW s,p(ℝN ) + ∫
Ω

V(x)|u|pup(σ−1)L dx + k − 1k ∫
ℝN\Ω

V(x)|u|pup(σ−1)L dx ≤ ∫
BR(0)

|g(x, u)|uup(σ−1)L dx,

which leads to
a[L(u)]pW s,p(ℝN ) ≤ ∫

BR(0)

|g(x, u)|uup(σ−1)L dx + α∫
Ω

|u|pup(σ−1)L dx,

where α is given by (2.3). The above estimate and (3.24) provide

|uuσ−1L |
p
Lp∗s (ℝN )
≤ σpC∗[L(u)]

p
W s,p(ℝN )

≤
σpC∗
a ( ∫

BR(0)

|g(x, u)|uup(σ−1)L dx + α∫
Ω

|u|pup(σ−1)L dx)

≤ Cσp( ∫
BR(0)

|g(x, u)|uup(σ−1)L dx + α∫
Ω

|u|pup(σ−1)L dx). (3.25)

On the other hand, by the growth assumptions on g and (3.25), it follows that

|uuσ−1L |
p
Lp∗s (ℝN )
≤ Cσp(a1 ∫

BR(0)

|u|qup(σ−1)L dx + a2 ∫
BR(0)

uup(σ−1)L dx + α∫
Ω

|u|pup(σ−1)L dx). (3.26)

Applying Hölder’s inequality, we have that

∫
BR(0)

|u|qup(σ−1)L dx ≤ ( ∫
BR(0)

up∗s dx)
q−p
p∗s
( ∫
BR(0)

(uuσ−1L )
pp∗s

p∗s −(q−p) dx)

p∗s −(q−p)
p∗s

,

∫
BR(0)

uup(σ−1)L dx ≤ |BR(0)|
q−p
p∗s ( ∫

BR(0)

(uup(σ−1)L )
p∗s

p∗s −(q−p) dx)

p∗s −(q−p)
p∗s

,

∫
Ω

|u|pup(σ−1)L dx ≤ |Ω|
q−p
p∗s ( ∫

BR(0)

(uuσ−1L )
pp∗s

p∗s −(q−p) dx)

p∗s −(q−p)
p∗s

,
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where p < pp∗s
p∗s −(q−p)

< p∗s . Since u ≥ uL in ℝN , using Hölder’s inequality one more time, we have

∫
BR(0)

|u|qup(σ−1)L dx ≤ ( ∫
BR(0)

up∗s dx)
q−p
p∗s
( ∫
BR(0)

|u|
pp∗s σ

p∗s −(q−p) dx)

p∗s −(q−p)
p∗s

,

∫
BR(0)

uup(σ−1)L dx ≤ |BR(0)|
q−p
p∗s ( ∫

BR(0)

(uup(σ−1))
p∗s

p∗s −(q−p) dx)

p∗s −(q−p)
p∗s

≤ |BR(0)|
q−p
p∗s
+ p−1pσ ⋅

p∗s −(q−p)
p∗s ( ∫

BR(0)

|u|
pp∗s σ

p∗s −(q−p) dx)
p(σ−1)+1

pσ ⋅
p∗s −(q−p)

p∗s
,

∫
Ω

|u|pup(σ−1)L dx ≤ |Ω|
q−p
p∗s ( ∫

BR(0)

|u|
pp∗s σ

p∗s −(q−p) dx)

p∗s −(q−p)
p∗s

,

which together with (3.26) implies

|u|pσ
Lp∗s σ(ℝN )

≤ Cσp(a3|u|
pσ
σα∗ + a4|u|

p(σ−1)+1
σα∗ ) ≤ Cσp(|u|pσσα∗ + |u|

p(σ−1)+1
σα∗ ),

where

α∗ = pp∗s
p∗s − (q − p)

, a3 = a1( ∫
BR(0)

up∗s dx)
q−p
p∗s
+ α|Ω|

q−p
p∗s and a4 = a2|BR(0)|

q−p
p∗s
+ p−1α∗σ .

Now, taking σ = p∗s
α∗ , we have

|u|pσ
Lp∗s σ(ℝN )

≤ Cσp(|u|pσ
Lp∗s (ℝN )
+ |u|p(σ−1)+1

Lp∗s (ℝN )
),

and replacing σ by σ j , j ∈ ℕ, in the above inequality, we obtain that

|u|pσ
j

Lp∗s σj (ℝN )
≤ Cσ jp(|u|pσ

j

Lp∗s (ℝN )
+ |u|p(σ

j−1)+1
Lp∗s (ℝN )

).

Then, by an argument of induction, we may verify that

|u|Lp∗s σj (ℝN ) ≤ σ
1
σ +

2
σ2
+⋅⋅⋅+ j

σj (pC + 1)
1
p (

1
σ +

1
σ2
+⋅⋅⋅+ 1

σj
)(1 + |u|Lp∗s (ℝN )) (3.27)

for every j ∈ ℕ. Note that
∞
∑
j=1

1
σ j
=

1
σ − 1 and

∞
∑
j=1

i
σ j
=

σ
(σ − 1)2

.

Since σ > 1, passing to the limit as j →∞ in (3.27), we may infer that u ∈ L∞(ℝN) and

|u|L∞(ℝN ) ≤ σ
σ

(σ−1)2 (pC + 1)
1
σ−1 (1 + |u|Lp∗s (ℝN )). (3.28)

From inequality (3.28) and the argument used at the end of the proof of [14, Lemma 2.8], we can conclude that
u ∈ L∞(ℝN) ∩ C0(ℝN).

Lemma 3.12. Suppose (V1) and (g1)–(g2) hold. Let u ∈ E be a solution of problem (3.3). Then

|u(x)| ≤ M( R
|x| )

N−sp
p−1

for all x ∈ ℝN and for all |x| ≥ R,

where R > 0 is given by (g1) and M is given by Lemma 3.11.

Proof. Let v ∈ C∞(ℝN \ {0}) be the function

v(x) = M( R
|x| )

N−sp
p−1

,

for each x ∈ ℝN . Moreover, since 1

|x|
N−sp
p−1

is s-harmonic (see for instance Bucur-Valdinoci [20]), it shows that



18  H. Tao et al., Fractional Schrödinger-p-Kirchhoff equations

(−Δ)spv = 0 in ℝN \ BR(0). Obviously, by Lemma 3.11, we obtain the inequality

u(x) ≤ |u|L∞(ℝN ) ≤ M(
R
|x| )

N−sp
p−1
= v(x) for all 0 < |x| ≤ R.

Next, we define the function

w+(x) =
{
{
{

(u(x) − v(x))+ if |x| ≥ R,
0 if |x| < R.

Since (−Δ)spv = 0 in ℝN \ BR(0), w+ ∈ E, w+(x) = 0 for every |x| ≤ R, and w+ ≥ 0, it follows from (g1) that

(a + b[w+]pW s,p(ℝN ))[w
+]pW s,p(ℝN ) = ∫

ℝN

g(x, w+)w+ dx − ∫
ℝN

V(x)|w+|p dx

≤ (
1
k
− 1) ∫
ℝN\BR(0)

V(x)|w+|p dx

≤ 0.

Hence, we have w+ ≡ 0, which implies that u(x) ≤ v(x) in |x| ≥ R. Similarly, by defining

w−(x) =
{
{
{

(−u(x) − v(x))+ if |x| ≥ R,
0 if |x| < R,

we can also get −u(x) ≤ v(x) in |x| ≥ R. Thus

|u(x)| ≤ M( R
|x| )

N−sp
p−1

for all x ∈ ℝN and for all |x| ≥ R.

The proof is complete.

3.3 Existence results for problem (1.1)

Now we present the proofs of Theorems 1.1–1.4.

Proof of Theorem 1.1. From Lemmas 3.2–3.9 and the estimate |u|Lp∗s (Ω) ≤ S
−1[u]pW s,p(ℝN ), problem (3.3) has a pos-

itive solution u ∈ E, which satisfies

|u|Lp∗s (ℝN ) ≤ Č := [K
−1(aS − α|Ω|

sp
N )−1(d + C|BR(0)|)]

1
p ,

where C, K and d are given by Lemma 3.7. Next, using the hypotheses (f1), (f2), there exists a constant C > 0 such
that

|f(x, z)| ≤ C|z|ϑ−1 for all |x| ≥ R.

Therefore, it is enough to show that an appropriate u satisfies the inequality

|f(x, u(x))|
|u(x)|p−1

≤ CM(ϑ−p)( R
|x| )

(N−sp)(ϑ−p)
p−1

for all |x| ≥ R.

Fixing Λ∗ = kCM(ϑ−p)R
(N−sp)(ϑ−p)

p−1 and Λ ≥ Λ∗ > 0, it follows from (V2) that

|f(x, u(x))| ≤ 1k V(x)|u(x)|
p−1 for all |x| ≥ R.

This shows that u is a positive solution of (1.1). The proof of Theorem 1.1 is complete.

When (f3) holds with S0 = 0, we may provide a relation between the parameter in hypothesis (V2) and the value
of R.
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Proof of Theorem 1.2. Since f satisfies (f3)with S0 = 0,wemay invokeRemark 3.10 and (3.28) to infer that the con-
stants C andM, do not depend on the values of Λ and R. Consequently, supposing that (V3) holds, the argument
used in the proof of Theorem 1.1 shows that problem (1.1) has a positive solution for every Λ ≥ Λ̃∗ = kCMϑ−p .
The proof is complete.

Proof of Theorem 1.3. As (f̂1) shows that (f1) holds, we may exploit the arguments used in the proof of Theo-
rem 1.1 to infer that problem (3.3) has a positive solution u ∈ E. Fixing 0 < ς̂ < ς, from (f̂1) and (f2) we may find
C > 0 such that

|f(x, z)| ≤ Ce−
ς̂

|z|ϑ .

Consequently, we may obtain

|f(x, u(x))| ≤ Ce−μ∗|x|
(N−sp)ϑ
p−1 for all |x| ≥ R,

where μ∗ = ς̂(MR
N−sp
p−1 )−ϑ . Thereby, fixing 0 < μ ≤ μ∗, Λ∗ = kC and Λ ≥ Λ∗ > 0, it follows from (V4) that

|f(x, u(x))| ≤ 1
k
V(x)|u(x)|p−1 for all |x| ≥ R.

This shows that u is a positive solution of (1.1).

Proof of Theorem 1.4. The proof is analogous to Lemma 1.3, we omit it here.

3.4 Multiplicity of solutions

In this subsection, we give the proof for the multiplicity results. Before we prove Theorem 1.5, let us recall the
following version of the Fountain Theorem which can be found in Willem [48].

Theorem 3.13. Let X be aBanach spacewith the norm ‖ ⋅ ‖ and Xj a sequence of subspace of X withdim Xj < ∞ for
each j ∈ ℕ. Further, X = ⨁j∈ℕ Xj , the closure of the direct sum of all Xj . Set Yk = ⨁k

j=0 Xj , Zk = ⨁
∞
j=k Xj . Consider

an even functional I ∈ C1(X,ℝ) (i.e. I(−u) = I(u) for all u ∈ X). Suppose, for every k ∈ ℕ, there exist ρk > rk > 0
such that:
(A1) ak := maxu∈Yk ,‖u‖=ρk I(u) ≤ 0,
(A2) bk := infu∈Zk ,‖u‖=rk I(u) → +∞ as k →∞,
(A3) the Palais–Smale condition holds above 0, i.e. any sequence {un}n∈ℕ in X which satisfies I(un) → c > 0 and

I󸀠(un) → 0 contains a convergent subsequence.
Then I possesses an unbounded sequence of critical values.

To apply the Fountain Theorem, we still consider the odd extension of the function ĝ : ℝN × ℝ → ℝ, which is
a Carathéodory function satisfying

{{{{
{{{{
{

ĝ(x, z) = f(x, z) for (x, z) ∈ ℝN × ℝ, |x| ≤ R,
|ĝ(x, z)| ≤ |f(x, z)| for (x, z) ∈ ℝN × ℝ,

|ĝ(x, z)| ≤ 1
k V(x)|z|

p−1 for (x, z) ∈ ℝN × ℝ, |x| > R,

and
{{
{{
{

Ĝ(x, z) = F(x, z) for (x, z) ∈ ℝN × ℝ, |x| ≤ R,

Ĝ(x, z) ≤ 1
pk V(x)z

p for (x, z) ∈ ℝN × ℝ, |x| > R,

where Ĝ(x, z) := ∫z0 g(x, t) dt. The symmetric version of the auxiliary problem that we will consider is the fol-
lowing:

{{{
{{{
{

(a + b∬
ℝ2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy)(−Δ)spu + V(x)|u|p−2u = ĝ(x, u) in ℝN ,

u ∈ E.

(3.29)

Observe that any solution u of (3.29) satisfying k|f(x, u)| ≤ V(x)|u|p−1 for |x| ≥ R is a solution of problem (1.1).
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Moreover, the associated Euler–Lagrange functional ̂I : E → ℝ given by

̂I(u) = a
p
[u]pW s,p(ℝN ) +

b
2p
([u]pW s,p(ℝN ))

2 +
1
p ∫
ℝN

V(x)|u|p dx − ∫
ℝN

Ĝ(x, u) dx

is of class C1(E,ℝ) and the critical points of ̂I are weak solutions of (3.29). By assumption (f4), we know that
̂I(0) = 0 and ̂I is an even functional.

We choose an orthogonal basis {ej} of X := E and define

Yk := span{e1 , . . . , ek}, Zk := Y⊥k−1 .

In addition, to complete the proof of our result, we need the following Lemma.

Lemma 3.14. Suppose that (V1) holds. Then, for p ≤ t < p∗s , we have

βk := sup
u∈Zk ,‖u‖E(BR )=1

‖u‖Lt(BR) → 0, k →∞.

Proof. It is clear that 0 < βk+1 ≤ βk , so that βk → β ≥ 0, as k →∞. For every k ∈ ℕ, there is uk ∈ Zk such that
‖uk‖Lt(BR) >

βk
2 and ‖uk‖E(BR) = 1. By the definition of Zk , we can obtain that uk ⇀ 0 in E. By Lemma 2.1, the

Sobolev embedding theorem implies that uk → 0 in Lt(BR). Thus, taking k →∞, we have proved that β = 0,
which completes the proof.

Next, we will verify that the functional ̂I satisfies the remaining conditions of Theorem 3.13.

Lemma 3.15. Suppose (V1)–(V2) and (f1)–(f3) hold. Then the functional ̂I satisfies (A1).

Proof. As in the proof of Lemma 3.2, we consider B0 := Br0 (x0) ⊂ BR(0) such that V(x) ≤ V∞ for every x ∈ B0,
and take a function ϕ ∈ Yk \ {0}, such that supp(ϕ) ⊂ Br0 (x0). Then

̂I(tϕ) ≤ at
p

p [ϕ]
p
W s,p(B0) +

bt2p

2p ([ϕ]
p
W s,p(B0))

2 + tp ∫
B0

V∞|ϕ|p dx − C1tθ ∫
B0

|ϕ|θ dx + C2|B0|,

where C1 , C2 are given by (3.7). Since on the finite-dimensional space Yk all norms are equivalent, it follows
from θ > 2p that

ak := max
u∈Yk ,‖u‖=ρk

̂I(u) ≤ 0

for some ρk > 0 large enough.

Lemma 3.16. Suppose (V1)–(V2) and (f1)–(f3) hold. Then the functional ̂I satisfies (A2).

Proof. As in the proof of Lemma 3.2, we consider the case Ω ̸= 0. By (V1) and (V2), Ω ⊂ BR(0) and V(x) > 0 for
every |x| ≥ R. From (f1)–(f2), we get

̂I(u) ≥ d3‖u‖p − ηd1‖u‖p − d2(η)‖u‖p
∗
s for all u ∈ Zk ,

where d1 , d2 are given by (3.5), and

d3 := min{
1
p(1 −

α|Ω|
sp
N

aS ),
k − 1
pk } > 0.

Then we have
̂I(u) ≥ d4‖u‖p − d2(η)β

p∗s
k ‖u‖

p∗s for all u ∈ Zk ,

for enough small η > 0 such that d4 = d3 − ηd1 > 0. Using the above estimate and choosing rk := β
p∗s /(p−p∗s )
k , we

have

bk := inf
u∈Zk ,‖u‖=rk

̂I(u) = inf
u∈Zk ,‖u‖=rk

̂I(u)|BR + inf
u∈Zk ,‖u‖=rk

̂I(u)|BcR ≥ inf
u∈Zk ,‖u‖=rk

̂I(u)|BR ≥ (d4 − d2(η))β
pp∗s
p−p∗s
k .

Since, by Lemma 3.14, βk → 0 as k →∞ and p∗s > p, we obtain

bk → +∞.

Thus, (A2) is proved.
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Proof of Theorem 1.5. Let E = Yk ⊕ Zk . By (f4) and Lemma 3.7, the functional ̂I satisfies the (PS)c condition, and
̂I satisfies (I3). Then Lemmas 3.15 and 3.16 imply that all conditions of Theorem 3.13 are satisfied. Thus, from the
Fountain Theorem, problem (3.29) possesses infinitelymany nontrivial solutions by using the estimate provided
by Lemma 3.12. Hence, problem (1.1) also possesses infinitely many nontrivial solutions.

4 The case p < θ ≤ 2p
4.1 The penalized problem

In this section, we study the existence of a positive solution for (1.1) in the case p < θ ≤ 2p. For this, we first
define a cut-off function ζ ∈ C1([0,∞),ℝ) (see Zhang and Du [55]) which satisfies

ζ(t) =

{{{{{{
{{{{{{
{

1, 0 ≤ t ≤ 1,
0, t ≥ 2,
maxt>0 |ζ 󸀠(t)| ≤ 2, t > 0,
ζ 󸀠(t) ≤ 0, t > 0.

Moreover, using ζ , for any T > 0, we then define the truncated functional ITb (u) : E → ℝ by

ITb (u) =
a
p [u]

p
W s,p(ℝN ) +

b
2p ζ(
‖u‖p

Tp )([u]
p
W s,p(ℝN ))

2 +
1
p ∫
ℝN

V(x)|u|p dx − ∫
ℝN

G(x, u) dx.

By a standard argument, we can infer that ITb ∈ C
1(E,ℝ) and its Gateaux differential is

(ITb )
󸀠(u)v = a∬

ℝ2N

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps

(v(x) − v(y)) dx dy

+ bζ(‖u‖
p

Tp )[u]
p
W s,p(ℝN )∬

ℝ2N

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps

(v(x) − v(y)) dx dy

+
b
2Tp ζ
󸀠(
‖u‖p

Tp )(∬
ℝ2N

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps

(v(x) − v(y)) dx dy

+ ∫
ℝN

V(x)|u|p−2uv dx dy)([u]pW s,p(ℝN ))
2 + ∫
ℝN

V(x)|u|p−2uv dx dy − ∫
ℝN

g(x, u)v dx

for all u, v ∈ E. With this penalization, by choosing an appropriate T > 0 and restricting b > 0 small enough,
we may obtain a Cerami sequence {un}n∈ℕ of ITb satisfying ‖un‖ ≤ T , and so {un} is also a Cerami sequence of I
satisfying ‖un‖ ≤ T . Also, we are able to find a critical point u of ITb such that ‖u‖ ≤ T and so u is also a critical
point of I.

In order to obtain the critical point for ITb , we show that ITb satisfies the mountain pass geometry.

Lemma 4.1. Suppose (V1)–(V2), (f1), (f2) and (f̃3) hold. Then we have the following:
(I) For any T > 0 and b > 0, there exist β, ρ > 0 (independent of T and b) such that ITb (u) ≥ β for every u ∈ E such

that ‖u‖ = ρ.
(II) There exist

∘
b > 0 and a function e ∈ E with ‖u‖ ≥ ρ, such that for each T > 0 and b ∈ (0,

∘
b), we have ITb (e) < 0.

Proof. Similar to the proof of (1) in Lemma 3.2, we also give a proof for the case Ω ̸= 0. By (V1) and (V2), Ω ⊂ BR(0)
and V(x) > 0 for every |x| ≥ R. Then, by (f1)–(f2), combining (2.3) with (3.5), we also obtain

ITb (u) =
a
p [u]

p
W s,p(ℝN ) +

b
2p ζ(
‖u‖p

Tp )([u]
p
W s,p(ℝN ))

2 +
1
p ∫
ℝN

V(x)|u|p dx − ∫
ℝN

G(x, u) dx

≥ d3‖u‖p − ηd1‖u‖p + d2‖u‖p
∗
s ,
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where d1 , d2 are given by (3.5), and

d3 := min{
1
p(1 −

α|Ω|
sp
N

aS ),
k − 1
pk } > 0.

Using the above estimate and taking η > 0 sufficiently small, the item (I) follows by finding appropriated values
of β, ρ > 0.

On the other hand, by hypotheses (V1)–(V2) and taking V∞ = 0, if Ω ̸= 0, we suppose that Br0 (x0) ⊂ BR(0)
and V(x) ≤ V∞, for each x ∈ Br0 (x0). We first define the functional I(u) : E → ℝ by

I(u) = a
p
[u]pW s,p(ℝN ) +

1
p ∫
ℝN

V(x)|u|p dx − ∫
ℝN

G(x, u) dx.

Then, by (3.7), we can choose a positive smooth function ϕ ∈ E \ {0} such that supp(ϕ) ⊂ Br0 (x0), to get

I(tϕ) ≤ at
p

p
[ϕ]pW s,p(Br0 (x0))

+ tp ∫
Br0 (x0)

V∞|ϕ|p dx − C1tθ ∫
Br0 (x0)

|ϕ|θ dx + C2|Br0 (x0)| → −∞

as t →∞, since p < θ ≤ 2p. Thus, there exist t0 > 0 large enough and e = t0ϕ such that I(e) ≤ −1 with ‖e‖ > ρ.
Since

ITb (e) = I(e) +
b
2p ζ(
‖e‖p

Tp )([e]
p
W s,p(ℝN ))

2 ≤ −1 + b
2p ([e]

p
W s,p(ℝN ))

2 ,

there exists
∘
b = 2p
[e]2p

Ws,p (ℝN )

> 0 such that ITb (e) < 0 for each T > 0 and b ∈ (0,
∘
b). The proof is complete.

Remark 4.2. We point out that the function e ∈ E \ {0} is a positive smooth function and does not depend on T
and b.

Next, we recall the following version of the Mountain Pass Theorem which can be found in Ekeland [27].

Theorem 4.3. Let X be a Banach space with its dual space X∗, and suppose that Φ ∈ C1(X,ℝ) satisfies

max{Φ(0), Φ(e)} ≤ μ < η ≤ inf
‖u‖=ρ

Φ(u)

for some μ < η, ρ > 0 and e ∈ X with ‖e‖ > ρ. Let c ≥ η be characterized by

c = inf
ϖ∈Γ

max
t∈[0,1]

Φ(ϖ(t)),

where Γ = {ϖ ∈ C([0, 1], X) : ϖ(0) = 0, ϖ(1) = e} is the set of continuous paths joining 0 and e. Then there exists
a sequence {un}n∈ℕ ⊆ X such that

Φ(un) → c ≥ η and (1 + ‖un‖)‖Φ󸀠(un)‖X∗ → 0 as n →∞.

By Lemma 4.1, we consider the mountain pass value

cTb := infγ∈Γ
sup
t∈[0,1]

ITb (γ(t))

with
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, γ(1) = e}.

From Lemma 4.1 and Theorem 4.3, we deduce that for each T > 0 and b ∈ (0,
∘
b), there exists a Cerami sequence

{un}n∈ℕ ⊂ E (here we do not write the dependence on T and b) such that

ITb (un) → cTb and (1 + ‖un‖)‖(ITb )
󸀠(un)‖E∗ → 0. (4.1)

The above sequence is called a (C)cTb -sequence for I
T
b .

Lemma 4.4. For each T > 0 and b ∈ (0,
∘
b), there exist constants βT1 , β

T
2 > 0 such that β

T
1 ≤ c

T
b ≤ β

T
2 .
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Proof. Note that by Lemma 4.1, cTb ≥ β > 0, and we take β
T
1 ∈ (0, β). On the other hand, fix e as in Lemma 4.1.

Then it is easy to see that

ITb (te) ≤
atp

p
[e]pW s,p(Br0 (x0))

+
∘
bt2p

2p
([e]pW s,p(Br0 (x0))

)2 + tp ∫
Br0 (x0)

V∞|e|p dx − C1tθ ∫
Br0 (x0)

|e|θ dx + C2|Br0 (x0)|.

Consequently, there exists a constant βT2 > 0 (independent of T and b) such that

cTb ≤ maxt∈[0,1]
ITb (te) ≤ β

T
2 .

The proof is complete.

In the following lemma, we shall show that for a properly chosen T > 0, after passing to a subsequence, the
sequence {un}n∈ℕ given by (4.1) satisfies ‖un‖ ≤ T , and so {un}n∈ℕ is also a bounded Cerami sequence of I
satisfying ‖un‖ ≤ T .

Lemma 4.5. If {un}n∈ℕ ⊂ E is a Cerami sequence satisfying (4.1), then, up to a subsequence, there exists b∗ > 0
such that for any b ∈ (0, b∗), there holds

‖un‖ ≤ T.

In particular, this sequence {un}n∈ℕ is also a Cerami sequence at level cTb for I, i.e.,

I(un) → cTb and (1 + ‖un‖)‖I󸀠(un)‖E∗ → 0.

Proof. Suppose by contradiction, for any T > 0, there exists a subsequence of {un}n∈ℕ (still denoted by {un}n∈ℕ)
such that ‖un‖ > T . We divide the proof into the two cases ‖un‖p ≥ 2Tp and Tp < ‖un‖p ≤ 2Tp .

Case (i). Assume that ‖un‖p ≥ 2Tp holds. By Lemma 4.4 and k = pθ/(θ − p), we have

βT2 + 1 ≥ c
T
b + 1

≥ ITb (un) −
1
θ (I

T
b )
󸀠(un)un

= (
a
p −

a
θ)
[un]

p
W s,p(ℝN ) + (

b
2p −

b
θ)
ζ(‖un‖

p

Tp )([un]
p
W s,p(ℝN ))

2

−
b

2θTp ζ
󸀠(
‖un‖p

Tp )‖un‖
p([un]

p
W s,p(ℝN ))

2 + (
1
p −

1
θ) ∫
ℝN

V(x)|un|p dx

+ ∫
ℝN

(
1
θ g(x, un)un − G(x, un)) dx

≥ (
a
p −

a
θ)[un]

p
W s,p(ℝN ) + (

1
p −

1
θ) ∫
ℝN

V(x)|un|p dx

+ ∫
BR(0)

(
1
θ f(x, un)un − F(x, un)) dx +

p − θ
θpk ∫
ℝN\BR(0)

V(x)|un|p dx

≥ (
1
p −

1
θ)a[un]

p
W s,p(ℝN ) + (

1
p −

1
θ) ∫

BR(0)

V(x)|un|p dx +
(θ − p)(θp − θ + p)
(θp)2

∫
ℝN\BR(0)

V(x)|un|p dx

≥ K(a[un]
p
W s,p(ℝN ) + ∫

ℝN

V(x)|un|p dx) = K‖un‖p ,

where K = min{ 1p −
1
θ ,
(θ−p)(θp−θ+p)
(θp)2 } > 0, for n large enough, which is a contradiction when T > 0 is large

enough.

Case (ii). Assume that Tp < ‖un‖p ≤ 2Tp holds. We have

0 ≤ ζ(‖un‖
p

Tp ) ≤ 1 and ζ 󸀠(‖un‖
p

Tp ) ≤ 0 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
ζ 󸀠(‖un‖

p

Tp )
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2,
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which shows that

K‖un‖p −
1
θ
‖(ITb )
󸀠(un)‖E∗‖un‖ ≤ K‖un‖p +

1
θ
(ITb )
󸀠(un)un

≤ ITb (un) + (
b
θ
−
b
2p)

ζ(‖un‖
p

Tp )
([un]

p
W s,p(ℝN ))

2

+
b

2θTp ζ
󸀠(
‖un‖p

Tp )‖u‖
p([un]

p
W s,p(ℝN ))

2

≤ ITb (un) + 4b(
3
r
−

1
2p)T

2p

=: ITb (un) + CbT
2p . (4.2)

Let e ∈ E \ {0} be as in Lemma 4.1. By ITb (un) → cTb as n →∞, we have

ITb (un) ≤ 2c
T
b ≤ 2 maxt∈[0,1]

ITb (te) ≤ 2β
T
2 (4.3)

for n large enough. Moreover, we obtain

K‖un‖p −
1
θ ‖(I

T
b )
󸀠(un)‖E∗‖un‖ ≥ KTp − T. (4.4)

So from (4.2), (4.3) and (4.4) we get
KTp − T ≤ 2βT2 + CbT

2p ,

which is a contradiction if bT := 1
T2p > 0, b

∗ = min{
∘
b, bT } and b ∈ (0, b∗) for T large enough. Thus, we obtain

‖un‖ ≤ T .

By Lemma 4.5, the embeddings of E inW s,p(ℝN) and the Sobolev embedding theorem, up to a subsequence, we
may suppose that there exists u ∈ E such that

{{{
{{{
{

un ⇀ u weakly in E,
un → u strongly in Ltloc(ℝ

N), for all t ∈ [1, p∗s ),
un(x) → u(x) for a.a. x ∈ ℝN .

Similar to the proof of Lemma 3.7, we can obtain that for all b ∈ (0, b∗), {un}n∈ℕ ⊂ E contains a convergent
subsequence. Furthermore, u− = min{u, 0} = 0. Since c > 0, from aMoser iteration argument and themaximum
principle, we can get that u is a positive solution of problem (3.3). It remains to verify that u is also a positive
solution of problem (1.1).

4.2 Existence results for problem (1.1)

Proof of Theorem 1.9. From Lemmas 4.1–4.5 and the estimate

|u|Lp∗s (Ω) ≤ S
−1[u]pW s,p(ℝN ) for every b ∈ (0, b∗),

problem (3.3) has a positive solution u ∈ E. Next, using hypotheses (f1)–(f2), there exists a constant C > 0 such
that

|f(x, z)| ≤ C|z|ϑ−1 for all |x| ≥ R.

Thus, we still have the inequality

|f(x, u(x))| ≤ CM(ϑ−p)( R
|x| )

(N−sp)(ϑ−p)
p−1
|u(x)|p−1 for all |x| ≥ R.

Fixing Λ∗ = kCM(ϑ−p)R
(N−sp)(ϑ−p)

p−1 and Λ ≥ Λ∗ > 0, it follows from (V2) that

|f(x, u(x))| ≤ 1k V(x)|u(x)|
p−1 for all |x| ≥ R.

It follows that u is a positive solution of (1.1). The proof of Theorem 1.9 is complete.



H. Tao et al., Fractional Schrödinger-p-Kirchhoff equations  25

Funding: This work is supported by Research Fund of National Natural Science Foundation of China (No.
12361024), the Team Building Project for Graduate Tutors in Chongqing (No. yds223010) and Innovative Project
of Chongqing Technology and Business University (No. CYS23567).

References
[1] C. O. Alves, F. J. S. A. Corrêa and T. F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math.

Appl. 49 (2005), no. 1, 85–93.
[2] C. O. Alves, G. M. Figueiredo and M. Yang, Existence of solutions for a nonlinear Choquard equation with potential vanishing at

infinity, Adv. Nonlinear Anal. 5 (2016), no. 4, 331–345.
[3] C. O. Alves and O. H. Miyagaki, Existence and concentration of solution for a class of fractional elliptic equation inℝN via

penalization method, Calc. Var. Partial Differential Equations 55 (2016), no. 3, Paper No. 47.
[4] C. O. Alves and M. A. S. Souto, Existence of solutions for a class of elliptic equations inℝN with vanishing potentials, J. Differential

Equations 252 (2012), no. 10, 5555–5568.
[5] A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur.

Math. Soc. ( JEMS) 7 (2005), no. 1, 117–144.
[6] A. Ambrosetti, A. Malchiodi and D. Ruiz, Bound states of nonlinear Schrödinger equations with potentials vanishing at infinity,

J. Anal. Math. 98 (2006), 317–348.
[7] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973),

349–381.
[8] A. Ambrosetti and Z.-Q. Wang, Nonlinear Schrödinger equations with vanishing and decaying potentials, Differential Integral

Equations 18 (2005), no. 12, 1321–1332.
[9] V. Ambrosio, Multiplicity of positive solutions for a class of fractional Schrödinger equations via penalization method, Ann. Mat. Pura

Appl. (4) 196 (2017), no. 6, 2043–2062.
[10] V. Ambrosio, Concentrating solutions for a class of nonlinear fractional Schrödinger equations inℝN , Rev. Mat. Iberoam. 35 (2019),

no. 5, 1367–1414.
[11] V. Ambrosio, Nonlinear fractional Schrödinger equations inℝN , Front Elliptic Parabolic Probl., Birkhäuser/Springer, Cham, 2021.
[12] V. Ambrosio, A Kirchhoff type equation inℝN involving the fractional (p, q)-Laplacian, J. Geom. Anal. 32 (2022), no. 4, Paper No. 135.
[13] V. Ambrosio and T. Isernia, A multiplicity result for a (p, q)-Schrödinger–Kirchhoff type equation, Ann. Mat. Pura Appl. (4) 201 (2022),

no. 2, 943–984.
[14] V. Ambrosio, T. Isernia and V. D. Radulescu, Concentration of positive solutions for a class of fractional p-Kirchhoff type equations,

Proc. Roy. Soc. Edinburgh Sect. A 151 (2021), no. 2, 601–651.
[15] V. Ambrosio and R. Servadei, Supercritical fractional Kirchhoff type problems, Fract. Calc. Appl. Anal. 22 (2019), no. 5, 1351–1377.
[16] D. Applebaum, Lévy processes—from probability to finance and quantum groups, Notices Amer. Math. Soc. 51 (2004), no. 11,

1336–1347.
[17] R. Arora, A. Fiscella, T. Mukherjee and P. Winkert, Existence of ground state solutions for a Choquard double phase problem,

Nonlinear Anal. Real World Appl. 73 (2023), Article ID 103914.
[18] R. Arora, A. Fiscella, T. Mukherjee and P. Winkert, On double phase Kirchhoff problems with singular nonlinearity, Adv. Nonlinear

Anal. 12 (2023), no. 1, Article ID 20220312.
[19] A. Arosio and S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), no. 1, 305–330.
[20] C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, Lect. Notes Unione Mat. Ital. 20, Unione Matematica Italiana, Bologna,

2016.
[21] M. Caponi and P. Pucci, Existence theorems for entire solutions of stationary Kirchhoff fractional p-Laplacian equations, Ann. Mat.

Pura Appl. (4) 195 (2016), no. 6, 2099–2129.
[22] S.-J. Chen and L. Li, Multiple solutions for the nonhomogeneous Kirchhoff equation on RN , Nonlinear Anal. Real World Appl. 14 (2013),

no. 3, 1477–1486.
[23] P. D’Ancona and S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108

(1992), no. 2, 247–262.
[24] E. A. de B. Silva and S. H. M. Soares, Semilinear elliptic problems inℝN : The interplay between the potential and the nonlinear term,

preprint (2022), https://arxiv.org/abs/2212.13300.
[25] L. M. Del Pezzo and A. Quaas, Spectrum of the fractional p-Laplacian inℝN and decay estimate for positive solutions of a

Schrödinger equation, Nonlinear Anal. 193 (2020), Article ID 111479.
[26] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (2012), no. 5,

521–573.
[27] I. Ekeland, Convexity Methods in Hamiltonian Mechanics, Ergeb. Math. Grenzgeb. (3) 19, Springer, Berlin, 1990.
[28] G. M. Figueiredo and G. Siciliano, A multiplicity result via Ljusternick–Schnirelmann category and Morse theory for a fractional

Schrödinger equation inℝN , NoDEA Nonlinear Differential Equations Appl. 23 (2016), no. 2, Article ID 12.

https://arxiv.org/abs/2212.13300


26  H. Tao et al., Fractional Schrödinger-p-Kirchhoff equations

[29] A. Fiscella and P. Pucci, Kirchhoff–Hardy fractional problems with lack of compactness, Adv. Nonlinear Stud. 17 (2017), no. 3, 429–456.
[30] A. Fiscella and P. Pucci, p-fractional Kirchhoff equations involving critical nonlinearities, Nonlinear Anal. Real World Appl. 35 (2017),

350–378.
[31] X. He and W. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation inℝ3, J. Differential

Equations 252 (2012), no. 2, 1813–1834.
[32] G. R. Kirchhoff, Vorlesungen über Mathematische Physik, Band 1: Mechanik, Teubner, Leipzig, 1876.
[33] L. Li, J. Sun and S. Tersian, Infinitely many sign-changing solutions for the Brézis–Nirenberg problem involving the fractional

Laplacian, Fract. Calc. Appl. Anal. 20 (2017), no. 5, 1146–1164.
[34] S. Liang, G. Molica Bisci and B. Zhang, Multiple solutions for a noncooperative Kirchhoff-type system involving the fractional

p-Laplacian and critical exponents, Math. Nachr. 291 (2018), no. 10, 1533–1546.
[35] S. Liang and V. D. Rădulescu, Existence of infinitely many solutions for degenerate Kirchhoff-type Schrödinger–Choquard

equations, Electron. J. Differential Equations 2017 (2017), Paper No. 230.
[36] J.-L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum

Mechanics and Partial Differential Equations, North-Holland Math. Stud. 30, North-Holland, Amsterdam (1978), 284–346.
[37] H. Lv and S. Zheng, Existence and multiplicity for fractional p-Kirchhoff problem with competitive nonlinearities and critical growth,

Anal. Math. Phys. 12 (2022), no. 4, Paper No. 96.
[38] H. Lv and S. Zheng, Ground states for Schrödinger–Kirchhoff equations of fractional p-Laplacian involving logarithmic and critical

nonlinearity, Commun. Nonlinear Sci. Numer. Simul. 111 (2022), Article ID 106438.
[39] X. Mingqi, G. Molica Bisci, G. Tian and B. Zhang, Infinitely many solutions for the stationary Kirchhoff problems involving the

fractional p-Laplacian, Nonlinearity 29 (2016), no. 2, 357–374.
[40] N. Nyamoradi and L. I. Zaidan, Existence and multiplicity of solutions for fractional p-Laplacian Schrödinger–Kirchhoff type

equations, Complex Var. Elliptic Equ. 63 (2018), no. 3, 346–359.
[41] K. Perera and Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006), no. 1,

246–255.
[42] P. Pucci, M. Xiang and B. Zhang, Multiple solutions for nonhomogeneous Schrödinger–Kirchhoff type equations involving the

fractional p-Laplacian inℝN , Calc. Var. Partial Differential Equations 54 (2015), no. 3, 2785–2806.
[43] P. Pucci, M. Xiang and B. Zhang, Existence and multiplicity of entire solutions for fractional p-Kirchhoff equations, Adv. Nonlinear

Anal. 5 (2016), no. 1, 27–55.
[44] J. Simon, Régularité de la solution d’une équation non linéaire dans RN , in: Journées d’Analyse Non Linéaire, Lecture Notes in

Math. 665, Springer, Berlin (1978), 205–227.
[45] Y. Song and S. Shi, Existence of infinitely many solutions for degenerate p-fractional Kirchhoff equations with critical Sobolev–Hardy

nonlinearities, Z. Angew. Math. Phys. 68 (2017), no. 6, Paper No. 128.
[46] J. Sun, L. Li, M. Cencelj and B. Gabrovšek, Infinitely many sign-changing solutions for Kirchhoff type problems inℝ3, Nonlinear

Anal. 186 (2019), 33–54.
[47] N. Van Thin, M. Xiang and B. Zhang, On critical Schrödinger–Kirchhoff-type problems involving the fractional p-Laplacian with

potential vanishing at infinity, Mediterr. J. Math. 18 (2021), no. 1, Paper No. 1.
[48] M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl. 24, Birkhäuser, Boston, 1996.
[49] M. Xiang, V. D. Rădulescu and B. Zhang, Existence results for singular fractional p-Kirchhoff problems, Acta Math. Sci. Ser. B

(Engl. Ed.) 42 (2022), no. 3, 1209–1224.
[50] M. Xiang and B. Zhang, A critical fractional p-Kirchhoff type problem involving discontinuous nonlinearity, Discrete Contin. Dyn. Syst.

Ser. S 12 (2019), no. 2, 413–433.
[51] M. Xiang, B. Zhang and M. Ferrara, Multiplicity results for the non-homogeneous fractional p-Kirchhoff equations with

concave-convex nonlinearities, Proc. A. 471 (2015), no. 2177, Article ID 20150034.
[52] M. Xiang, B. Zhang and V. D. Rădulescu, Multiplicity of solutions for a class of quasilinear Kirchhoff system involving the fractional

p-Laplacian, Nonlinearity 29 (2016), no. 10, 3186–3205.
[53] M. Xiang, B. Zhang and V. D. Rădulescu, Superlinear Schrödinger–Kirchhoff type problems involving the fractional p-Laplacian and

critical exponent, Adv. Nonlinear Anal. 9 (2020), no. 1, 690–709.
[54] C. Xiong, C. Chen, J. Chen and J. Sun, A concave-convex Kirchhoff type elliptic equation involving the fractional p-Laplacian and steep

well potential, Complex Var. Elliptic Equ. 68 (2023), no. 6, 932–962.
[55] F. Zhang and M. Du, Existence and asymptotic behavior of positive solutions for Kirchhoff type problems with steep potential well,

J. Differential Equations 269 (2020), no. 11, 10085–10106.


	Existence and multiplicity of solutions for fractional Schrödinger-$p$-Kirchhoff equations in $\mathbb{R}^N$
	1 Introduction and main results
	2 Preliminaries
	3 The case $\theta>2p$
	3.1 The penalized problem
	3.2 A priori estimates of the solution of the penalized problem
	3.3 Existence results for problem (1.1)
	3.4 Multiplicity of solutions

	4 The case $p<\theta\le 2p$
	4.1 The penalized problem
	4.2 Existence results for problem (1.1)



