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1. Introduction

The following functional prototype was first introduced and investigated by Zhikov [1] in the context
of strongly anisotropic materials:

u 7→
∫

Ω

(
|∇u|p

p
+ µ(x)

|∇u|q

q

)
dx, (1.1)

where 1 < p < q and µ ∈ L∞(Ω) is a nonnegative weight function. The associated Euler-Lagrange
operator is the so-called double phase operator, given by

div
(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
. (1.2)

According to Marcellini’s terminology [2, 3], the functional (1.1) belongs to the class of integral
functionals with nonstandard growth conditions. Its energy density exhibits ellipticity of order q at
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points x ∈ Ω where µ(x) > 0, and ellipticity of order p at points where µ(x) = 0. Furthermore, the
energy density associated with (1.1) can also serve to model the viscosity coefficients of certain non-
Newtonian fluids, see [4] for further details. For a mathematical study of such integral functionals with
(p, q)-growth we refer to the works of [2, 3, 5–14] and the references therein.

Given a bounded domain Ω ⊆ RN , N ≥ 1 with boundary ∂Ω of class C1,1, in this paper we study
quasilinear elliptic equations involving singular terms of the form

− div
(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
= λ

(
ξ(x)u−α + f (x, u)

)
in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

where λ is a positive parameter and the following conditions are supposed:

(H) (i) N < p < q and 0 ≤ µ(·) ∈ C0,1(Ω);

(ii) 0 < α < 1, ξ ∈ C0,β(Ω) for some 0 < β ≤ 1 and ξ(x) > 0 for all x ∈ Ω;

(iii) there exist 0 ≤ g0(·) ∈ C1
0(Ω) and ϑ > N such that ξ(·)g0(·)−α ∈ Lϑ(Ω).

(iv) f : Ω × [0,∞) → R is a Carathéodory function and there exist constants s0 > 0, c0 > 0 such
that f (x, s) ≥ c0ξ(x) for some s ∈ [0, s0] and for a.a. x ∈ Ω;

(v) lim
s→+∞

f (x,s)
|s|p−1 = 0 uniformly for a.a. x ∈ Ω;

(vi) there exists an open ball of radius R0 centered at y0, denoted by B(y0,R0) (⊂ Ω), such that
the inequality∫

B(y0,R0)

∫ u1

C(qρ)
1
p

(
ξ(x)s−α + f (x, s)

)
ds dx >

∫
Ω

∫ C(qρ)
1
p

u

(
ξ(x)s−α + f (x, s)

)
ds dx

holds, where u is a subsolution of (1.3) given in Lemma 3.2 and u1 is defined by

u1(x) =


C (qρ)

1
p , x ∈ Ω \ B(y0,R0),

C (qρ)
1
p − 1

1−θ (|x| − R0) , x ∈ B(y0,R0) \ B(y0, θR0),
C (qρ)

1
p + R0, x ∈ B(y0, θR0),

where 0 ≤ θ < 1, ρ > 0 is defined in (4.4), and C denotes the embedding constant of
W1,p

0 (Ω) ↪→ C(Ω).

The occurrence of the singular term in (1.3) is motivated by various physical models, including the
motion of a body through a viscous fluid, the flow field above a moving conveyor belt, shock waves
propagating over smooth surfaces, heterogeneous chemical catalysis, and glacial advance. For further
discussion and related results, we refer to [15–20], and the references therein.

In the literature, considerable attention has been devoted to singular double phase problems of
the form

− div
(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
= λξ(x)u−α + τ f (x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω.

(1.4)
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From a mathematical perspective, the presence of the singular term introduces substantial and
intriguing challenges. Liu et al. [21] studied problem (1.4) in the case λ = 1 and f (x, u) = ur−1 with
r > q, and established the existence of two positive solutions whenever 0 < τ < τ∗ for a suitable τ∗ > 0.
Their result was generalized by Bai et al. [22] to the case of a general (q−1)-superlinear nonlinearity f
while Liu and Papageorgiou [23] considered the setting ξ(·) = τ = 1 and f (x, u) = η(x)ur−1 with r > q,
obtaining the same multiplicity result as in [21]. Papageorgiou et al. [24] investigated the case p > q,
λ = 1, and f (x, u) = ur−1 with r > p, again deriving analogous conclusions. In a related direction, Liu
and Winkert [25] extended the analysis of [21] to the whole space RN . Further refinements include the
work of Bai et al. [26], who considered ξ(·) = 1 and a (q − 1)-superlinear nonlinearity f . They showed
the existence of a bifurcation-type threshold τ∗ > 0 depending on λ, where λ has to be sufficiently
large, such that problem (1.4) admits at least two bounded positive solutions if 0 < τ < τ∗, at least one
positive solution if τ = τ∗, and no positive solution if τ > τ∗. Papageorgiou et al. [27] studied (1.4)
under variable exponents p, q, α being Lipschitz continuous with 0 < α(x) < 1, and proved a similar
bifurcation phenomenon as in [26]. On the other hand, Failla et al. [28] considered the case λ = τ = 1
with a (p−1)-sublinear nonlinearity f , proving the existence of a bounded positive solution and, under
an additional monotonicity assumption on f , its uniqueness. Papageorgiou et al. [29] analyzed (1.4)
for α > 1, λ = τ = 1, and f (x, u) = η(x)ur−1 with r < p, establishing the existence of positive solutions
while Papageorgiou et al. [30] addressed the case τ = 1, α > 1, and (q − 1)-superlinear nonlinearities,
and proved the existence of a positive solution for every λ > 0. In addition, we point out to other
related investigations on the double phase operator with singular nonlinearities, in particular the works
by [31–40], see also the references therein. We emphasize that all the above contributions concern the
case 1 < p < N.

Inspired by the aforementioned works, we are led to the following natural questions:

(i) Is it possible to establish the existence of more than two solutions?

(ii) Can one obtain explicit estimates for the parameters ensuring the existence of multiple
solutions?

In this paper, for the sake of simplicity, we address the two questions stated above in the context
of problem (1.4) under the assumptions λ = τ and p > N, that is, for problem (1.3). As our analysis
concerns weak solutions, we begin by providing a precise definition of the concept. A function u ∈
W1,H

0 (Ω) is said to be a weak solution of problem (1.3), if ξ(·)u−αv ∈ L1(Ω), u(x) > 0 for a.a. x ∈ Ω

and if ∫
Ω

(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
· ∇v dx = λ

∫
Ω

(
ξ(x)u−α + f (x, u)

)
v dx

is satisfied for all v ∈ W1,H
0 (Ω). Here W1,H

0 (Ω) represents the Musielak-Orlicz Sobolev space which
will be introduced in Section 2.

Our main result reads as follows.

Theorem 1.1. Let hypotheses (H) be satisfied. Then there exist an open interval Λ and a constant
M > 0 such that for every λ ∈ Λ problem (1.3) has at least three distinct positive solutions in W1,H

0 (Ω),
with their W1,H

0 (Ω) norms less than M. Furthermore, we have an estimate for the interval Λ, which is
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Λ ⊂ [0, b], where

b =
(1 + ρ)ρ

ρK(w1)
I(w1) − sup

I(w)<ρ
K(w)

< +∞

with I and K defined in (4.2).

The proof of Theorem 1.1 relies on truncation techniques combined with an abstract critical point
theorem (see Theorem 2.4). We begin by establishing a version of Hopf’s Lemma for the double
phase problem (3.1), which in turn allows us to construct a subsolution u for problem (1.3). Having
constructed the subsolution, we truncate the right-hand side of (1.3) to handle the singular term,
resulting in the modified problem (4.1), and subsequently apply the abstract critical point theorem to
obtain three distinct solutions. A careful analysis of the proof further enables us to determine an explicit
upper bound for the parameter λ. We also present an illustrative example in which the computed upper
bound of the parameter is approximately 0.00296, a relatively small value. This demonstrates that
the multiplicity of solutions for singular double phase problems is highly sensitive to the size of the
parameters, particularly when they are sufficiently small. We note that our paper extends the results of
Zhao et al. [41] from the p-Laplacian to the double phase setting. We also emphasize that the abstract
critical point theorem employed here has been widely used to study the multiplicity of solutions for
a variety of elliptic problems. For instance, we refer to Bonanno and Molica Bisci [42] for Laplace
equations, Kristály et al. [43] for p-Laplacian type equations, and Bonanno et al. [44] for Φ-Laplacian
type equations.

The rest of the paper is organized as follows. In Section 2 we recall basic definitions and results on
Musielak-Orlicz Sobolev spaces and the double phase operator 1.2, and we state the abstract critical
point theorem. In Section 3, we prove Hopf’s Lemma for double phase problems and construct a
subsolution for problem (1.3). Finally, in Section 4, we provide the proof of Theorem 1.1 and present
a nontrivial example illustrating its applicability.

2. Preliminaries

In this section, we recall the main properties of Musielak-Orlicz spaces and the double phase
operator (1.2). Most of the results presented here are taken from [45–47]. First, we denote by Lr(Ω)
and Lr(Ω;RN) the standard Lebesgue spaces equipped with the norm ‖ · ‖r for every 1 ≤ r < ∞.
For 1 < r < ∞, W1,r(Ω) and W1,r

0 (Ω) denote the usual Sobolev spaces endowed with the norms ‖ · ‖1,r
and ‖ · ‖1,r,0 = ‖∇ · ‖r, respectively.

Let M(Ω) the space of all measurable functions u : Ω → R and H : Ω × [0,∞) → [0,∞) be the
function defined by

H(x, t) = tp + µ(x)tq.

Then, the Musielak-Orlicz space LH (Ω) is defined by

LH (Ω) = {u ∈ M(Ω) : ρH (u) < +∞}

equipped with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1

}
,
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where the modular function ρH (·) is given by

ρH (u) :=
∫

Ω

H(x, |u|) dx =

∫
Ω

(
|u|p + µ(x)|u|q

)
dx. (2.1)

The Musielak-Orlicz Sobolev space W1,H (Ω) is defined by

W1,H (Ω) =
{
u ∈ LH (Ω) : |∇u| ∈ LH (Ω)

}
equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H ,

where ‖∇u‖H = ‖ |∇u| ‖H . Moreover, the completion of C∞0 (Ω) in W1,H (Ω) is denoted by W1,H
0 (Ω). The

spaces LH (Ω), W1,H (Ω), and W1,H
0 (Ω) are reflexive and separable Banach spaces. We equip the space

W1,H
0 (Ω) with the equivalent norm

‖u‖ = ‖∇u‖H .

We have the following continuous embedding

W1,H
0 (Ω) ↪→ W1,p

0 (Ω). (2.2)

The norm ‖ · ‖H and the modular function ρH are related as follows, see [46, Proposition 2.1].

Proposition 2.1. Let (H)(i) be satisfied, y ∈ LH (Ω) and ρH be defined by (2.1). Then the
following hold:

(i) If y , 0, then ‖y‖H = λ if and only if ρH ( y
λ
) = 1;

(ii) ‖y‖H < 1 (resp.> 1, = 1) if and only if ρH (y) < 1 (resp.> 1, = 1);

(iii) If ‖y‖H < 1, then ‖y‖q
H
≤ ρH (y) ≤ ‖y‖p

H
;

(iv) If ‖y‖H > 1, then ‖y‖p
H
≤ ρH (y) ≤ ‖y‖q

H
;

(v) ‖y‖H → 0 if and only if ρH (y)→ 0;

(vi) ‖y‖H → +∞ if and only if ρH (y)→ +∞.

Let A : W1,H
0 (Ω)→ W1,H

0 (Ω)∗ be the nonlinear map defined by

〈A(u), v〉 :=
∫

Ω

(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
· ∇v dx (2.3)

for all u, v ∈ W1,H
0 (Ω), where 〈 · , · 〉H is the duality pairing between W1,H

0 (Ω) and its dual space
W1,H

0 (Ω)∗. The operator A : W1,H
0 (Ω)→ W1,H

0 (Ω)∗ has the following properties, see [46].

Proposition 2.2. Let (H)(i) be satisfied. Then the operator A defined in (2.3) is bounded, continuous,
strictly monotone, coercive, a homeomorphism and fulfills the (S+)-property, that is,

un ⇀ u in W1,H
0 (Ω) and lim sup

n→∞
〈A(un), un − u〉 ≤ 0,

imply un → u in W1,H
0 (Ω).
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Next, we recall the definition of the (PS)-condition.

Definition 2.3. Let X be a real and reflexive Banach space and J ∈ C1(X). The functional J is said to
satisfy the (PS)c-condition if, for c ∈ R, any sequence {un}n∈N in X such that

J(un)→ c and J′(un)→ 0, (2.4)

admits a convergent subsequence. Any sequence satisfying (2.4) is called a (PS)c-sequence. The
functional J is said to satisfy the (PS)-condition if and only if it satisfies the (PS)c-condition for all
c ∈ R.

The main theoretical tool of this paper is the following critical point theorem due to Bonanno [48,
Theorem 2.1], see also the works by Ricceri [49, 50],

Theorem 2.4. Let X be a reflexive and separable real Banach space, and let I,K : X → R be two
Fréchet differentiable functionals satisfying the following conditions:

(i) there exists w0 ∈ X such that I(w0) = K(w0) = 0 and I(w) ≥ 0 for every w ∈ X;

(ii) there exist w1 ∈ X, ρ > 0 such that

I(w1) > ρ and
K(w1)
I(w1)

>

sup
I(w)<ρ

K(w)

ρ
;

(iii) the functional I − λK is sequentially weakly lower semicontinuous and satisfies the (PS)-
condition;

(iv) lim
‖w‖→+∞

(I(w) − λK(w)) = +∞, for each λ ∈ [0, b], where

b =
γρ

ρK(w1)
I(w1) − sup

I(w)<ρ
K(w)

with γ > 1.

Then, there exist an open interval Λ ⊂ [0, b] and a number M > 0 such that for each λ ∈ Λ the
equation I′(w) − λK′(w) = 0 admits at least three solutions in X having norm less than M.

3. Hopf’s Lemma and construction of a subsolution

In this section we give first a version of Hopf’s Lemma related to our problem and based on this,
we construct a subsolution to problem (1.3). To this end, for 0 ≤ h ∈ Lϑ(Ω) with ϑ > N, we consider
the problem

− div
(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
= h(x) in Ω, u = 0 on ∂Ω. (3.1)

We say that u ∈ W1,H (Ω) is a weak subsolution of problem (3.1) if u ≤ 0 on ∂Ω, and if∫
Ω

(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
· ∇v dx ≤

∫
Ω

h(x)v dx

is fulfilled for all v ∈ W1,H
0 (Ω) with v ≥ 0.

First, we prove the following Hopf’s Lemma.
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Proposition 3.1. Let hypothesis (H)(i) be satisfied and u be a solution of (3.1) such that u ≥ 0 a.e. in
Ω and u does not vanish identically on Ω. For x0 ∈ ∂Ω, assume u ∈ C1(Ω ∪ {x0}) and u(x0) = 0. Then

∂u
∂ν

(x0) > 0,

where ν is the interior unit normal of ∂Ω at x0.

Proof. First, we choose R > 0 small enough such that B(x1, 2R) ⊂ Ω and x0 ∈ ∂B(x1, 2R), where
x1 = x0 + 2Rν. Let Ω1 = {x ∈ Ω : R < |x− x1| < 2R} and κ = inf{u(x) : |x− x1| = R}. From Theorem 3.3
by [4] it follows that κ > 0. Note that if R→ 0, then x1 tends to x0. Thus, we have

κ → 0 and
κ

R
→ 0.

We define

M = sup{|∇µ(x)| : x ∈ Ω1}, ` = − ln
(
κ

R

)
+

N − 1
R

+ M

and

v(s) =
κ
(
e

`s
p−1 − 1

)
e

`R
p−1 − 1

, for all s ∈ [0,R].

We see at once that v(0) = 0, v(R) = κ,

v′(s) =

κ`
p−1 · e

`s
p−1

e
`R

p−1 − 1
, v′′(s) =

`

p − 1
v′(s) (3.2)

and

` > 0, 0 < v′(s) < 1, for all s ∈ (0,R) (3.3)

provided R is sufficiently small.
For simplicity, set x1 = 0. We write r = |x| and s = 2R − r. Obviously if r ∈ [R, 2R], then

s ∈ [0,R]. Setting

w(r) = v(2R − r) = v(s),

we can see that

w′(r) = −v′(s), w′′(r) = v′′(s).

Now we define

w(x) = w(r) for any x ∈ Ω1 and |x| = r.

Then it follows from (3.2) and (3.3) that

Electronic Research Archive Volume 33, Issue 11, 6720–6741.
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div
(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
= (p − 1) |w′(r)|p−2 w′′(r) +

N − 1
r
|w′(r)|p−2 w′(r)

+ µ(x)(q − 1) |w′(r)|q−2 w′′(r) + µ(x)
N − 1

r
|w′(r)|q−2 w′(r)

+ |w′(r)|q−2 w′(r)
N∑

i=1

∂µ

∂xi

xi

r

= (p − 1)
(
v′(s)

)p−2 v′′(s) −
N − 1

r
(
v′(s)

)p−1
+ µ(x)(q − 1)

(
v′(s)

)q−2 v′′(s)

− µ(x)
N − 1

r
(
v′(s)

)q−1
−

(
v′(s)

)q−1
N∑

i=1

∂µ

∂x1

xi

r

≥

(
` −

N − 1
r

)
(v′(s))p−1 + µ(x)

(
q − 1
p − 1

` −
N − 1

r

) (
v′(s)

)q−1
− M

(
v′(s)

)q−1

≥

(
` −

N − 1
r
− M

) (
v′(s)

)q−1
+ µ(x)

(
q − 1
p − 1

` −
N − 1

r

) (
v′(s)

)q−1

≥

(
− ln

κ

R

)
(1 + µ(x))

(
v′(s)

)q−1 > 0.

Therefore, we obtain

− div
(
|∇w|p−2∇w + µ(x)|∇w|q−2∇w

)
− h(x) < 0,

which implies that w is a subsolution of (3.1) in Ω1 satisfying w(x0) = 0 and ∂w
∂ν

(x0) > 0. Now we can
use Lemma 3.2 of [4] to conclude that u ≥ w in Ω1. Since u(x0) = w(x0) = 0, we have

lim
s→0+

u(x0 + s(x1 − x0)) − u(x0)
s

≥ lim
s→0+

w(x0 + s(x1 − x0)) − w(x0)
s

= ∇w(x0) · (x1 − x0)
= ∇w(x0) · 2Rν

= 2R
∂w
∂ν

(x0) > 0.

The left-hand side is equal to 2R∂u
∂ν

(x0) and so ∂u
∂ν

(x0) > 0. This completes the proof of the proposition.

Lemma 3.2. Let hypotheses (H)(i)–(iv) be satisfied. Then there exists a subsolution u ∈ W1,H (Ω)
of (1.3) such that u(x) > 0 for all λ ∈ (0,+∞), ξu−α ∈ Lϑ(Ω) with ϑ > N and ‖u‖∞ ≤ s0, where s0 > 0
is given by (H)(iv).

Proof. Using (H)(ii), we can get that the problem

− div
(
|∇v|p−2∇v + µ(x)|∇v|q−2∇v

)
= λξ(x) in Ω, v = 0 on ∂Ω.
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has a unique positive solution v ∈ W1,H
0 (Ω) since A : W1,H

0 (Ω) → W1,H
0 (Ω)∗ is a homeomorphism, see

Proposition 2.2. Furthermore, v ∈ C1,β(Ω) since W1,H
0 (Ω) ↪→ W1,p

0 (Ω) ↪→ C0,β(Ω) for p > N and
ξ ∈ C0,β(Ω), see (2.2). By Proposition 3.1, we know that ∂v

∂ν
> 0 on ∂Ω, where ν is the interior unit

normal on ∂Ω.
We claim that there exists a constant C such that

Cv(x) ≥ g0(x) for all x ∈ Ω,

where g0 is given in (H)(iii).
Let x0 ∈ ∂Ω and choose x ∈ Ω near x0 such that x − x0 is in the direction of ν. Since ∂v

∂ν
> 0 on ∂Ω

and ∂v
∂ν

is a continuous function on Ω, there exists a constant ε0 > 0 such that ∂v
∂ν

(x) ≥ ε0 for all x near
x0. By (H)(iii), it clear that there is a constant M > 0 such that ∂g0

∂ν
(x) ≤ M for all x ∈ Ω. Thus we can

find a constant C = (M + 1)/ε0 such that

C
∂v
∂ν

(x) >
∂g0

∂ν
(x),

for all x near x0. Combining the fact that v, g0 ∈ W1,H
0 (Ω) and v(x0) = g0(x0) = 0 for x0 ∈ ∂Ω, we

integrate the above inequality from x0 to x along ν, that is∫ x

x0

C
∂v
∂ν

dν >
∫ x

x0

∂g0

∂ν
dν.

This implies

Cv(x) > g0(x), for x ∈ Ω

and so

Cv(x) ≥ g0(x), for x ∈ Ω.

By this inequality and hypothesis (H)(iii), we have ξv−α ≤ Cαξg−α0 ∈ Lϑ(Ω), so ξv−α ∈ Lϑ(Ω). We
take ε > 0 small enough such that u = ε

1
p−1υ satisfies 0 < u(x) ≤ min{1, s0}. Thus ξu−α ∈ Lϑ(Ω). We

then get ∫
Ω

(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
· ∇g0 dx

= ε

(∫
Ω

(
|∇v|p−2∇v + ε

q−1
p−1µ(x)|∇v|q−2∇v

)
· ∇g0 dx

)
< ελξ(x).

Combining (H)(iv) with the fact ‖u‖∞ ≤ 1, we have

− div
(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
− λξ(x)u−α(x) − λ f (x, u(x))

≤ λξ(x)(ε − 1 − c0) ≤ 0

whenever λ ∈ [0,∞). Thus u is a subsolution of (1.3).

Corollary 3.3. Let hypotheses (H)(i)–(iv) be satisfied. If u is a solution of (1.3), then u(x) ≥ u(x) for
a.a. x ∈ Ω and for all λ ∈ (0,+∞), where u is given in Lemma 3.2.
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4. Three distinct solutions

In this section we are going to prove Theorem 1.1. First, we define

g(x, s) =

ξ(x)s−α + f (x, s), if s ≥ u(x),
0, if s < u(x)

and consider the problem

− div
(
|∇u|p−2∇u + µ(x)|∇u|q−2∇u

)
= λg(x, u) in Ω, u = 0 in ∂Ω. (4.1)

We denote by

I(u) =
1
p

∫
Ω

|∇u|p dx +
1
q

∫
Ω

µ(x)|∇u|q dx, K(u) =

∫
Ω

G(x, u) dx, (4.2)

where G(x, u) =
∫ u

u
g(x, t) dt, and write

Jλ(u) = I(u) − λK(u).

The definition of g(·, ·) and condition (H)(v) imply that for any ε > 0,

|g(x, s)| ≤ ξu−α + c1 + ε|s|p−1,

for a.a. x ∈ Ω, for all s ∈ R and for some c1 > 0. Consequently

|G(x, u)| ≤
∫ u

u
|g(x, s)| ds

≤

∫ u

u
(ξu−α + c1 + ε|s|p−1) ds

= ξu−α(u − u) + c1(u − u) +
ε

p
(|u|p − |u|p)

≤ ξu−αu + c1u +
ε

p
|u|p,

(4.3)

since u > 0. Using Lemma 3.2 and the embedding W1,H
0 (Ω) ↪→ Lr(Ω) for 1 ≤ r ≤ ∞, we can see that

G is integrable over Ω. Therefore Jλ is well-defined and of class C1. Furthermore, by Corollary 3.3,
any critical point of Jλ is a positive weak solution of problem (1.3).

We write

S = B(y0,R0) \ B(y0, θR0), µ0 = min
x∈S

µ(x), ρ =

(
1
p

+
µ0

q

)
RN

0 ωN , (4.4)

where y0 ∈ Ω and R0 are defined in (H)(vi).

Lemma 4.1. Let hypothesis (H)(i) be satisfied. Then ρ
/
I (u1) is continuous with respect to θ in the

interval [0, 1). Moreover, there exists θ0 ∈ [0, 1) such that

1
2
<

ρ

I(u1)
< 1. (4.5)
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Proof. By the definition of u1, we can deduce that

I(u1) =
1
p

∫
Ω

|∇u1|
p dx +

1
q

∫
Ω

µ (x) |∇u1|
q dx

=

(
1

p(1 − θ)p +
µ(y)

q(1 − θ)q

) (
1 − θN

)
RN

0 ωN

for some y ∈ B(y0,R0) \ B(y0, θR0). Thus

ρ

I (u1)
=

1
p +

µ0
q(

1
p(1−θ)p +

µ(y)
q(1−θ)q

)
(1 − θN)

.

This implies that ρ
/
I (u1) is continuous with respect to θ in the interval [0, 1). Moreover, one has

ρ

I (u1)
→ 0 as θ → 1 and

ρ

I (u1)
→

1
p +

µ0
q

1
p +

µ(y)
q

≤ 1 as θ → 0.

Hence there exists θ0 ∈ [0, 1) such that
1
2
<

ρ

I(u1)
< 1.

This completes the proof.

Lemma 4.2. Let hypotheses (H) be satisfied. Then the inequality

sup
I(u)<ρ

K(u) <
1
2

K(u1) <
ρ

I(u1)
K(u1) (4.6)

holds true.

Remark 4.3. Let

b =
(1 + ρ)ρ

ρK(w1)
I(w1) − supI(u)<ρ K(u)

.

Then it follows from (4.6) that

b ≤
(1 + ρ)ρ

ρK(w1)
I(w1) −

1
2 K(u1)

< +∞.

Proof of Lemma 4.2. By the definition of u1 in (H)(vi) we know that u1(x) > u(x) for all x ∈ Ω. Thus
by the embedding W1,p

0 (Ω) ↪→ C0,α(Ω), we get that

u(x) ≤ sup
x∈Ω
|u(x)| ≤ ‖u‖C0,α ≤ C ‖u‖W1,p

0
= C

(∫
Ω

|∇u|p dx
) 1

p

≤ C
(∫

Ω

(|∇u|p + µ(x)|∇u|q) dx
) 1

p

≤ C
(

q
p

∫
Ω

|∇u|p dx +
q
q

∫
Ω

µ(x)|∇u|q dx
) 1

p

= C (qI(u))
1
p < C (qρ)

1
p ≤ u1(x)
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for all u ∈ {u ∈ W1,H
0 (Ω) : I(u) < ρ}. Moreover, by the definition of g and (H)(iv), we have

sup
I(u)<ρ

K(u) = sup
I(u)<ρ

∫
Ω

∫ u

u
g(x, s) ds dx ≤

∫
Ω

∫ C(qρ)
1
p

u
g(x, s) ds dx. (4.7)

Again (H)(vi) yields

1
2

∫
Ω

∫ C(qρ)
1
p

u
g(x, s) ds dx <

1
2

∫
B(y0,R0)

∫ u1

C(qρ)
1
p

g(x, s) ds dx. (4.8)

By the additivity of the integral over the domain, we obtain

∫
Ω

∫ C(qρ)
1
p

u
g(x, s) ds dx =

∫
Ω\B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx

+

∫
B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx

(4.9)

and ∫
B(y0,R0)

∫ u1

C(qρ)
1
p

g(x, s) ds dx

=

∫
B(y0,R0)

∫ u1

u
g(x, s) ds dx −

∫
B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx.

(4.10)

From (4.8)–(4.10), we get that

1
2

∫
Ω\B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx +

1
2

∫
B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx

<
1
2

∫
B(y0,R0)

∫ u1

u
g(x, s) ds dx −

1
2

∫
B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx,

which implies

1
2

∫
Ω\B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx +

∫
B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx <

1
2

∫
B(y0,R0)

∫ u1

u
g(x, s) ds dx.

Hence ∫
Ω\B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx +

∫
B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx

<
1
2

∫
B(y0,R0)

∫ u1

u
g(x, s) ds dx +

1
2

∫
Ω\B(y0,R0)

∫ C(qρ)
1
p

u
g(x, s) ds dx.
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Consequently

∫
Ω

∫ C(qρ)
1
p

u
g(x, s) ds dx <

1
2

∫
Ω

∫ u1

u
g(x, s) ds dx. (4.11)

From (4.5), (4.7) and (4.11) we see that (4.6) holds true.

Lemma 4.4. Let hypotheses (H) be satisfied. Then, for all λ > 0, the functional Jλ is sequentially
weakly lower semicontinuous and satisfies the (PS)-condition. Furthermore, it is coercive for all λ ∈
(0, b], where b is given in Remark 4.3.

Proof. The proof is divided into four steps.
Step 1: K is weakly continuous, i.e., if un ⇀ u, then K(un)→ K(u).

Let un ⇀ u in W1,H
0 (Ω). The embedding W1,H

0 (Ω) ↪→ W1,p
0 (Ω) is continuous (see (2.2)) and

W1,p
0 (Ω) ↪→ C(Ω) is compact since p > N. Thus un → u in C (Ω). This implies that un converges

uniformly to u in Ω as n→ ∞.
Using Lemma 3.2 and the embedding W1,H

0 (Ω) ↪→ Lr(Ω) for 1 ≤ r ≤ ∞, we can see that the
right-hand side of (4.3) is integrable over Ω and thus G(x, un) has equi-absolutely continuous integrals.
From Vitali’s convergence theorem it follows that

K(un) =

∫
Ω

G(x, un) dx→
∫

Ω

G(x, u) dx = K(u).

Step 2: Jλ is sequentially weakly lower semicontinuous.
Clearly, I is sequentially weakly lower semicontinuous by Fatou’s lemma. This together with Step 1

implies that Jλ is sequentially weakly lower semicontinuous as well.
Step 3: Jλ satisfies the (PS)-condition.

For every c ∈ R, let {un}n∈N ⊂ W1,H
0 (Ω) be a (PS)c-sequence, see Definition 2.3. We claim that

{un}n∈N is bounded in W1,H
0 (Ω). Indeed, if ‖un‖ ≤ 1, we are done. Let ‖un‖ > 1. Then, from (4.3) and

Proposition 2.1(iv) we have that

c + o(1) ≥ Jλ(un)

=
1
p

∫
Ω

|∇un|
p dx +

1
q

∫
Ω

µ(x)|∇un|
q dx − λ

∫
Ω

G(x, un) dx

≥
1
q
‖un‖

p − λ

∫
Ω

(
c1un + ξu−αun +

ε

p
|un|

p

)
dx

≥

(
1
q
−

c2λε

p

)
‖un‖

p − c1λ‖un‖1 − λ‖ξu−α‖m‖un‖m′

≥

(
1
q
−

c2λε

p

)
‖un‖

p − c3λ‖un‖ − c4λ‖un‖

= ‖un‖

((
1
q
−

c2λε

p

)
‖un‖

p−1 − c3λ − c4λ

)
.

(4.12)

Taking ε < p
/

(qc2λ) gives us the boundedness of {un}n∈N in W1,H
0 (Ω). Then, for a subsequence if

necessary, not relabeled, we can assume un ⇀ u in W1,H
0 (Ω). As in the proof of Step 1, we can
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show that K′ is completely continuous. This means that if un ⇀ u, then K′(un) → K′(u). Since
J′λ(un) = I′(un) − K′(un) → 0, one has that I′(un) → K′(u). Therefore, it follows that un → u because
I′ is a mapping of type (S+), see Proposition 2.2.
Step 4: Jλ is coercive for 0 < λ ≤ b.

From (4.12) we can easily conclude that Jλ is coercive.

Now we can give the proof of Theorem 1.1.

Proof of Theorem 1.1. We take w0 = 0 ∈ W1,H
0 (Ω) and the hypothesis (i) in Theorem 2.4 is satisfied.

We come to verify hypothesis (ii) in Theorem 2.4 and choose a subset Ωn = {x ∈ Ω : dist(x, ∂Ω) ≥
1/n} ⊂ Ω for n ≥ 1. Then, for all ε > 0 we can find n0 > 0 such that for n > n0 we have m(Ω \Ωn) < ε,
where m denotes the Lebesgue measure on RN . Let

un
1(x) =

u1(x), if x ∈ Ωn,

0, if x ∈ Ω \Ωn
, ϕ(x) =

c exp
(

1
|x|2−1

)
, if |x| ≤ 1,

0, if |x| > 1,

where

c =
1∫

|x|≤1
exp

(
1

|x|2−1

)
dx
.

We define

ϕn(x) = nNϕ(nx), for x ∈ RN and
(
ϕn ∗ un

1
)

(x) =

∫
Ω

ϕn(x − y)un
1(y) dy.

Then supp(ϕn ∗ un
1) = {x : (ϕn ∗ un

1)(x) , 0} ⊂ Ω, (ϕn ∗ un
1) ∈ C∞0 (Ω) and (ϕn ∗ un

1)(x)→ u1(x) as n→ ∞
for a.a. x ∈ Ω. By Lebesgue’s dominated convergence theorem and (4.3), we have

K(ϕn ∗ un
1) =

∫
Ω

G(x, ϕn ∗ un
1) dx→

∫
Ω

G(x, u1) dx = K(u1). (4.13)

By the properties of the mollification and the definition of un
1, we can get that

1
p

∫
Ω\Ωn

∣∣∣∇ (
ϕn ∗ un

1
)

(x)
∣∣∣p dx +

1
q

∫
Ω\Ωn

µ(x)
∣∣∣∇ (

ϕn ∗ un
1
)

(x)
∣∣∣q dx

=
1
p

∫
Ω\Ωn

∣∣∣(ϕn ∗ ∇un
1
)

(x)
∣∣∣p dx +

1
q

∫
Ω\Ωn

µ(x)
∣∣∣(ϕn ∗ ∇un

1
)

(x)
∣∣∣q dx

≤

∫
Ω\Ωn

∣∣∣∣∣ 1
1 − θ

∣∣∣∣∣p dx + ‖µ‖∞

∫
Ω\Ωn

∣∣∣∣∣ 1
1 − θ

∣∣∣∣∣q dx

= (1 − θ)−p m(Ω \Ωn) + ‖µ‖∞ (1 − θ)−q m(Ω \Ωn)
≤

(
(1 − θ)−p + ‖µ‖∞ (1 − θ)−q) ε

whenever n > n0. Therefore, we have

I(ϕn ∗ un
1)→ I(u1). (4.14)
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From (4.13) and (4.14), for every ε > 0, we can choose n0 sufficiently large such that∣∣∣∣∣∣K(ϕn ∗ un
1)

I(ϕn ∗ un
1)
−

K(u1)
I(u1)

∣∣∣∣∣∣ < ε

ρ
, for n > n0.

So if

ε =
ρ

I(u1)
K(u1) − sup

I(u)<ρ
K(u),

then

ρ
K(u1)
I(u1)

− ρ
K(ϕn ∗ un

1)
I(ϕn ∗ un

1)
< ε =

ρ

I(u1)
K(u1) − sup

I(u)<ρ
K(u).

This implies

sup
I(u)<ρ

K(u) < ρ
K(ϕn ∗ un

1)
I(ϕn ∗ un

1)
, for n > n0.

In Theorem 2.4 we choose w1 = ϕn ∗ un
1 ∈ W1,H

0 (Ω) for some n > n0. This together with Lemma 4.1,
we can deduce that hypothesis (ii) is satisfied.

According to Lemma 4.4, assumptions (iii) and (iv) of Theorem 2.4 also hold. Thus there exist
an open interval Λ ⊂ [0, b] and a number M > 0 such that for each λ ∈ Λ, the equation J′λ(u) =

I′(u)−λK′(u) = 0 admits at least three solutions in W1,H
0 (Ω) having W1,H

0 (Ω)-norms less than M. From
Corollary 3.3, it follows that the three solutions are positive. This concludes the proof.

Finally, we give an example in order to verify the applicability of Theorem 1.1.

Example 4.5. Let Ω = (−2, 2), ξ(x) = 5x4 + 1, p = 2, q = 4, µ(x) = x2 and let f : Ω × R → R be
defined as

f (x, s) =

93es, if s ≤ 6,
√

s + 93e6 −
√

6, if s > 6.

We consider the problem

−
(
u′ + x2|u′|2u′

)′
= λ

[
(5x4 + 1)u−α + f (x, u)

]
, x ∈ (−2, 2),

u > 0 x ∈ (−2, 2),
u = 0, x ∈ {−2, 2}.

(4.15)

Let c0 = 1 and s0 = 1 be as in condition (H)(iv). From the definition of f , we have

f (x, s) = 93es ≥ c0ξ(x) > 0, for s ∈ [0, 1] .

Obviously, f satisfies the condition (H)(v). Next, we will show that f satisfies the condition (H)(vi).
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Consider

−
(
u′ + x2|u′|2u′

)′
= 5x4 + 1, x ∈ (−2, 2),

u > 0, x ∈ (−2, 2),
u = 0, x ∈ {−2, 2}.

(4.16)

We can show that v = 4−x2

2 is the solution of (4.16) with ‖v‖∞ = 2. If we choose ε ≤ 1/4 and u = εv,
we obtain

‖u‖∞ = ε‖v‖∞ = 2ε ≤
1
2
< 1.

So let ε = 1/4. From the result of Lemma 3.2, i.e., ξ(x)u−α ∈ Lϑ((−2, 2)) with ϑ > 1, and ξ(x) = 5x4 +1,
if we let ϑ = 2, we have u−α ∈ L2((−2, 2)). Considering this fact and u = 4−x2

8 , we can choose α < 1
2

such that
∫ 2

−2
|(5x4 + 1)u−α|2 dx < ∞. Indeed, this is possible since∫ 2

−2
|(5x4 + 1)u−α|2 dx ≤ 81

∫ 2

−2

82α

(4 − x2)2α dx = 81 × 41−2α82α
∫ π

2

0

dη
(cos η)4α−1

and we can choose 4α − 1 < 1 such that∫ π
2

0

dη
(cos η)4α−1 < +∞.

Now we choose α = 1/8, and denote

g(x, s) =

(5x4 + 1)s−
1
8 + 93es, if u ≤ s ≤ 6,

(5x4 + 1)s−
1
8 +
√

s + 93e6 −
√

6, if s > 6,

G(x, u) =
∫ u

u
g(x, s) ds, K(u) =

∫ 2

−2
G(x, u) dx and

I(u) =
1
2

∫ 2

−2
|u′|2 dx +

1
4

∫ 2

−2
x2|u′|4 dx.

Note that

2u(x) =

∫ x

−2
u′(s) ds −

∫ 2

x
u′(s) ds ≤

∫ x

−2
|u′(s)| ds +

∫ 2

x
|u′(s)| ds

=

∫ 2

−2
|u′(s)| ds ≤

(∫ 2

−2
dt

) 1
2
(∫ 2

−2
|u′(t)|2 dt

) 1
2

= 2
(∫ 2

−2
|u′(t)|2 dt

) 1
2

.

Thus we have

‖u‖C(−2,2) ≤ ‖u‖1,2 .

This implies that C = 1 in (H)(vi). Taking R0 = 3/2 and θ = 1/4 in (H)(vi), we obtain that

ρ =

(
1
p

+
µ0

q

)
R1

0ω1 =

1
2

+

(
3
8

)2

4

 × 3
2
× 3 =

1233
512

.
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Consequently

u1(x) =



3
16

√
274, if x ∈

(
−2,−3

2

)
∪

(
3
2 , 2

)
,

4
3 (x + 3

2 ) + 3
16

√
274, if x ∈

(
−3

2 ,−
3
8

)
,

−4
3 (x − 3

2 ) + 3
16

√
274 if x ∈

(
3
8 ,

3
2

)
,

3
16

√
274 + 3

2 , if x ∈
(
−3

8 ,
3
8

)
and

I(u1) =
1
2

∫
Ω

|u′1|
2 dx +

1
4

∫
Ω

x2|u′1|
4 dx

=
1
2

∫ − 3
8

− 3
2

(
4
3

)2

dx +
1
4

∫ − 3
8

− 3
2

(
4
3

)4

x2 dx

+
1
2

∫ 3
2

3
8

(
−

4
3

)2

dx +
1
4

∫ 3
2

3
8

(
−

4
3

)4

x2 dx

=
15
4
.

Hence

1 >
ρ

I (u1)
=

411
640

>
1
2
.

Additionally, we can calculate that∫ 3
2

− 3
2

∫ u1

3
16

√
274

[
(5x4 + 1)s−

1
8 + 93es

]
ds dx

=

∫ 3
2

− 3
2

8
7

(5x4 + 1)u
7
8
1 + 93eu1 −

8
7

(
3

16

√
274

) 7
8

(5x4 + 1) − 93e
3

16

√
274

 dx

=

∫ − 3
8

− 3
2

8
7

(
4
3

(
x +

3
2

)
+

3
16

√
274

) 7
8

(5x4 + 1) + 93e
4
3 (x+ 3

2 )+ 3
16

√
274

 dx

+

∫ 3
8

− 3
8

8
7

(
3
2

+
3

16

√
274

) 7
8

(5x4 + 1) + 93e
3
2 + 3

16

√
274

 dx

+

∫ 3
2

3
8

8
7

(
−

4
3

(x −
3
2

) +
3
16

√
274

) 7
8

(5x4 + 1) + 93e−
4
3 (x− 3

2 )+ 3
16

√
274

 dx

−

∫ 3
2

− 3
2

8
7

(
3

16

√
274

) 7
8

(5x4 + 1) + 93e
3
16

√
274

 dx

≈ 11576.45

(4.17)
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and ∫ 2

−2

∫ 3
16

√
274

u

[
(5x4 + 1)s−

1
8 + 93es

]
ds dx

=

∫ 2

−2

8
7

(
3

16

√
274

) 7
8

(5x4 + 1) + 93e
3

16

√
274 −

8
7

(5x4 + 1)u
7
8 − 93eu

 dx

≈ 7958.02.

(4.18)

From (4.17) and (4.18), we have∫ 3
2

− 3
2

∫ u1

3
16

√
274

(
(5x4 + 1)s−

1
8 + f (x, s)

)
ds dx

>

∫ 2

−2

∫ 3
16

√
274

u
((5x4 + 1)s−

1
8 + f (x, s)) ds dx,

which implies that the condition (H)(vi) holds. Therefore, according to Theorem 1.1, problem (4.15)
has at least three bounded positive solutions for λ < b. Furthermore, we can calculate

K(u1) =

∫ 2

−2
G(x, u1) dx

=

∫ 2

−2

∫ u1

u

[
(5x4 + 1)s−

1
8 + 93es

]
ds dx

=

∫ 2

−2

[
8
7

(5x4 + 1)s
7
8 + 93es

] ∣∣∣∣∣∣u1

u

dx

=

∫ 2

−2

8
7

(5x4 + 1)u
7
8
1 + 93eu1 −

8
7

(5x4 + 1)
(
4 − x2

8

) 7
8

− 93e
4−x2

8

 dx

=

∫ − 3
2

−2

8
7

(5x4 + 1)
(

3
16

√
274

) 7
8

+ 93e
3
16

√
274

 dx

+

∫ − 3
8

− 3
2

8
7

(5x4 + 1)
(
4
3

(
x +

3
2

)
+

3
16

√
274

) 7
8

+ 93e
4
3 (x+ 3

2 )+ 3
16

√
274

 dx

+

∫ 3
8

− 3
8

8
7

(5x4 + 1)
(
3
2

+
3
16

√
274

) 7
8

+ 93e
3
2 + 3

16

√
274

 dx

+

∫ 3
2

3
8

8
7

(5x4 + 1)
(
−

4
3

(
x −

3
2

)
+

3
16

√
274

) 7
8

+ 93e−
4
3 (x− 3

2 )+ 3
16

√
274

 dx

+

∫ 2

3
2

8
7

(5x4 + 1)
(

3
16

√
274

) 7
8

+ 93e
3

16

√
274

 dx

−

∫ 2

−2

8
7

(5x4 + 1)
(
4 − x2

8

) 7
8

− 93e
4−x2

8

 dx ≈ 19534.48.
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Consequently

b =
(1 + ρ)ρ

ρK(u1)
I(u1) − supI(u)<ρ K(u)

<
(1 + ρ)ρ

ρK(u1)
I(u1) −

1
2 K(u1)

≈ 0.00296.

This means that our results are valid only when λ is sufficiently small.
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