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Abstract. In this paper, we study problems with critical and sandwich-type

growth represented by

− div
(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
= λw(x)|u|s−2u+ θB (x, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω, 1 < p <

s < q < N , q
p
< 1 + 1

N
, 0 ≤ a(·) ∈ C0,1(Ω), λ, θ are real parameters, w is a

suitable weight, and B : Ω× R → R is given by

B(x, t) := b0(x)|t|p
∗−2t+ b(x)|t|q

∗−2t,

where r∗ := Nr/(N − r) for r ∈ {p, q}. Here, the right-hand side combines
the effect of a critical term given by B(·, ·) with a sandwich-type perturbation

with exponent s ∈ (p, q). Under different values of the parameters λ and θ,
we prove the existence and multiplicity of solutions to the problem above. For

this, we mainly exploit different variational methods combined with topologi-

cal tools, like a new concentration-compactness principle, a suitable truncation
argument, and the Krasnoselskii’s genus theory, by considering very mild as-
sumptions on the data a(·), b0(·), and b(·).
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1. Introduction and main results. In the last decade, the double phase operator
has gained interest in many different research areas. This operator is defined by

div
(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
, 1 < p < q, (1.1)

and arises from the study of general reaction-diffusion equations with nonhomo-
geneous diffusion and transport aspects. Applications can be found in biophysics,
plasma physics, and chemical reactions with double phase features, where the func-
tion u corresponds to the concentration term, and the differential operator rep-
resents the diffusion coefficient. The related integral functional to (1.1) has the
form

J(u) =

∫
Ω

(
|∇u|p

p
+ a(x)

|∇u|q

q

)
dx, (1.2)

for a bounded domain Ω ⊂ RN . It appeared for the first time in the work of Zhikov
[45] and is useful in the context of homogenization and elasticity theory. In this
setting, the coefficient a(·) is associated with the geometry of composites made of
two materials of hardness p and q. Functionals of the form (1.2) can be regarded as
particular instances of the seminal contributions by Marcellini [38, 39], which ad-
dress issues concerning nonstandard growth and (p, q)-growth conditions. In fact,
the regularity theory in [38] also applies to double phase integrals. In this regard, we
also cite the recent works on u-dependence by Cupini–Marcellini–Mascolo [16] and
Marcellini [37]. For further reading on this topic, we also recommend reading the
paper by Marcellini [36], which presents recent results on problems with nonstan-
dard growth. Subsequent to this, the regularity results obtained by Marcellini for
the special case of the double phase setting have been refined by a series of papers
by Baroni–Colombo–Mingione [4, 5, 6] and Colombo–Mingione [13, 14]. In contrast
to [38], in which a(·) must be Lipschitz for the double phase setting, the papers
by Baroni, Colombo, and Mingione only require Hölder continuity of the weight
function a(·). As previously indicated, double phase problems appear in various ap-
plications. We refer to the papers by Bahrouni–Rădulescu–Repovš [2] on transonic
flows, Benci–D’Avenia–Fortunato–Pisani [7] on quantum physics, Cherfils–Il’yasov
[9] for reaction diffusion systems, and Zhikov [46, 47] on the Lavrentiev gap phe-
nomenon, the thermistor problem, and the duality theory.

In this paper, we examine the existence and multiplicity of solutions to problems
with critical and sandwich-type growth represented by

−divA (x,∇u) = λw(x)|u|s−2u+ θB (x, u) in Ω, u = 0 on ∂Ω, (1.3)

where Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω, λ, θ are real
parameters, w is a suitable weight, while A : Ω×RN → RN and B : Ω×R → R are
given by

A(x, ξ) := |ξ|p−2ξ + a(x)|ξ|q−2ξ, B(x, t) := b0(x)|t|p
∗−2t+ b(x)|t|q

∗−2t, (1.4)

where r∗ := Nr/(N − r) for r ∈ {p, q}. Denoting

Ω+ := {x ∈ Ω: a(x) > 0},

we assume the following structure conditions on the data of problem (1.3):

(H1) 1 < p < s < q < N ,
q

p
< 1 +

1

N
, 0 ≤ a(·) ∈ C0,1(Ω) and Ω+ ̸= ∅.
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(H2) 0 < b0(·) ∈ L∞(Ω) and 0 ≤ b(·) ∈ L∞(Ω) such that b(x) ≤ Ca(x)
q∗
q for

a.a.x ∈ Ω and∥∥b 1
q∗ u
∥∥
q∗

≤ C
∥∥a 1

q ∇u
∥∥
q
, for any u ∈ C∞

c (Ω), (1.5)

with some C > 0.
(H3) w : Ω → R is a measurable function such that |{x ∈ Ω+ : w(x) > 0}| > 0,

wχ{b=0}b
− s

p∗

0 ∈ L
p∗

p∗−s (Ω), wχ{b>0}b
− s

q∗ ∈ L
q∗

q∗−s (Ω) and∫
Ω

w(x)|u|s dx ≤ Cw

(∫
Ω

a(x)|∇u|q dx
) s

q

, (1.6)

for any u ∈ C∞
c (Ω) with some Cw > 0. Here, χE denotes the characteristic

function of E and χ{b>0}b
− s

q∗ := 0 on the set {b = 0}.

Remark 1.1. When Ω+ = ∅, problem (1.3) under hypotheses (H1)–(H3) reduces to
a superlinear p-Laplace problem with critical growth, which was studied by Ho–Sim
[29] in the setting of a generalized p(·)-Laplacian. Note that if supp (b) ⊂ Ω+ as in
the paper by Colasuonno–Perera [11], then (1.5) in condition (H2) holds true, see
[11, Proposition 4.11]. We also point out that condition (1.6) in (H3) is satisfied if

b(x) > 0 for a.a.x ∈ Ω and wb−
s
q∗ ∈ L

q∗
q∗−s (Ω). Indeed, by Hölder’s inequality and

(H2), we have for u ∈ C∞
c (Ω)∫

Ω

w(x)|u|s dx ≤
∥∥∥wb− s

q∗
∥∥∥

q∗
q∗−s

∥∥∥b 1
q u
∥∥∥s
q∗

≤ Cs
∥∥∥wb− s

q∗
∥∥∥

q∗
q∗−s

(∫
Ω

a(x)|∇u|q dx
) s

q

.

The main feature of problem (1.3) is the combination of the double phase op-
erator with a right-hand side, which consists of a sandwich-type nonlinearity t 7→
λw(x)|t|s−2t with an indefinite weight w(·) and exponent s ∈ (p, q), along with a
critical growth term B(·, ·) given in (1.4). Note that the solutions of (1.3) shall

belong to the Musielak-Orlicz Sobolev space W 1,H
0 (Ω), which arises from the gen-

eralized N -function H : Ω× [0,∞) → [0,∞) given by

H(x, t) := tp + a(x)tq for (x, t) ∈ Ω× [0,∞).

From this definition, we see that the double phase operator given in (1.1) is a
generalization of the p-Laplacian and of the (p, q)-Laplacian for p < q, by setting
a(·) ≡ 0 or inf a(·) > 0, respectively. Here, we point out that the critical term B(·, ·)
defined by

B(x, t) := b0(x)|t|p
∗
+ b(x)|t|q

∗
for (x, t) ∈ Ω× R

is also of double phase type and appears to have the natural critical growth in re-
lation to the operator. However, this term further complicates the study of (1.3).
Indeed, in our variational approach, we have to overcome the lack of compactness of

the embedding W 1,H
0 (Ω) ↪→ LB(Ω). In order to do so, we exploit a new concentra-

tion and compactness argument inspired by the work of Ha–Ho [22, Theorem 2.1]

taking care of the Luxemburg norms of the Musielak-Orlicz spaces W 1,H
0 (Ω) and

LB(Ω). In this direction, we provide a suitable compactness threshold for the en-
ergy functional associated with (1.3), which allows us to handle the sandwich-type
perturbation with exponent s ∈ (p, q) by (H1). This sandwich-type situation for
(1.3) is more interesting and delicate, since it is strictly related to the double phase
growth of the main operator in (1.3). In fact, when a(·) ≡ 0 in (1.3) and (1.4), the
sandwich case with s ∈ (p, q) cannot occur.
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Recently, problem (1.3) has been studied by Colasuonno–Perera [11] and Farkas–
Fiscella–Winkert [18] in case θ = 1. In [18, Theorem 1.1], the authors covered the
sublinear situation with s ∈ (1, p), proving the existence of infinitely many solutions
of (1.3) with negative energy. For this, they exploited the Krasnoselskii’s genus
theory combined with a truncation argument, by assuming very mild hypotheses
for the terms in (1.4). On the other hand, in [11, Theorems 2.1 and 2.6], the
authors considered (1.3) in the regime s ∈ [p, q∗), employing a Brézis–Nirenberg-
type approach [8] to establish the existence of a mountain-pass solution. They
first showed that there exists a threshold β∗ > 0 such that, for any β ∈ (0, β∗),
every (PS)β sequence for the energy functional admits a subsequence that converges

weakly to a nontrivial weak solution of problem (1.3). Subsequently, they proved
that the critical mountain-pass energy level lies below this threshold. For this, they
required very restrictive assumptions on the dimension N , the exponent p, and
the weights a(·) and b(·) of (1.4), see [11, Theorems 2.1 and 2.6]. In particular,
they required that either a(·) ≡ 0 on a suitable ball Br(x0), or a(·) ≡ a0 > 0 and
b(·) ≡ b∞ > 0 are constant on Br(x0).

Motivated by the papers of Colasuonno–Perera [11] and Farkas–Fiscella–Winkert
[18], we want to provide existence and multiplicity results for solutions of (1.3) with
negative energies under the sandwich case s ∈ (p, q). In order to state our first main
result, we note that the assumption (H3) implies that

W+ :=

{
ϕ ∈W 1,H

0 (Ω): supp (ϕ) ⊂ Ω+ and

∫
Ω

w(x)ϕs+ dx > 0

}
̸= ∅,

where ϕ+ := max{ϕ, 0}, see Kawohl–Lucia–Prashanth [31, Proposition 4.2]. We
can therefore define

λ0 := inf
ϕ∈W+

C0

(∫
Ω
a(x)|∇ϕ|q dx

q

) s−p
q−p

(∫
Ω
|∇ϕ|p dx
p

) q−s
q−p s∫

Ω
w(x)ϕs+ dx

, (1.7)

where C0 = C0(p, q, s) is given as

C0 :=

(
q − p

s− p

) s−p
q−p

(
q − p

q − s

) q−s
q−p

. (1.8)

Our first result reads as follows.

Theorem 1.2. Let hypotheses (H1)–(H3) be satisfied. Then, for any given λ > λ0
with λ0 as in (1.7), there exists θ∗ = θ∗(λ) > 0 such that for any θ ∈ (0, θ∗),
problem (1.3) has a nontrivial nonnegative solution with negative energy.

Theorem 1.2 generalizes the (p, q)-Laplacian situation studied by Ho–Sim [27,
Theorem 1.1] in a nontrivial way. Indeed, in [27, Theorem 1.1], they presented their

problem in the trivial intersection space W 1,p
0 (Ω)∩W 1,q

0 (Ω) =W 1,q
0 (Ω) with p < q.

In this way, they minimized their energy functional on the ball

Br =
{
u ∈W 1,q

0 (Ω): ∥∇u∥q ≤ r
}
,

disregarding the norm ∥∇u∥p. In Theorem 1.2, we still apply a minimization argu-
ment, combined with Ekeland’s variational principle, but taking care of the Luxem-

burg type norm of the Musielak-Orlicz Sobolev space W 1,H
0 (Ω). For this, we need

a suitable compactness threshold for the validity of the Palais-Smale condition of
our energy functional.
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Our second result is devoted to the multiplicity of solutions to problem (1.3)
stated in the following theorem.

Theorem 1.3. Let hypotheses (H1)–(H3) be satisfied and assume that there exists
a ball B ⊂ Ω+ such that w(x) > 0 for a.a.x ∈ B. Then, there exists {θj}j∈N with
0 < θj < θj+1, such that for any j ∈ N and with θ ∈ (0, θj), there exist λ⋆, λ

⋆ > 0
with λ⋆ < λ⋆ and possibly depending on θ, such that for any λ ∈ (λ⋆, λ

⋆), problem
(1.3) admits at least j pairs of distinct solutions with negative energy.

The proof of Theorem 1.3 relies on a careful combination of variational and topo-
logical tools, such as truncation techniques and Krasnoselskii’s genus theory, similar
to the work by Farkas–Fiscella–Winkert [18, Theorem 1.1] under the sublinear situ-
ation. However, the sandwich perturbation with exponent s ∈ (p, q) does not allow
us to provide the existence of infinitely many solutions for (1.3). Indeed, as in [18,
Theorem 1.1], we can construct a monotone and non-decreasing sequence {cj}j∈N of
critical values by the genus theory. However, we can only guarantee that the values
c1 ≤ c2 ≤ . . . ≤ cj are negative when θ < θj and λ > λ∗, with possibly θj → 0
and λ∗ = λ∗(θj) → ∞ as j → ∞. This is the crucial difference with respect to
the sublinear case in Theorem 1.1 of [18], where the {cj}j∈N are all negative when
λ < λ∗ is sufficiently small.

We emphasize that Theorem 1.3 completes the picture of the paper by Farkas–
Fiscella–Winkert [18, Theorem 1.1] and generalizes the multiplicity results obtained
by Baldelli–Brizi–Filippucci [3, Theorem 1] and by Ho–Sim [29, Theorem 1.3]. In-
deed, in [3, Theorem 1], they dealt with a (p, q)-Laplacian situation, i.e., with
inf a(·) > 0, while in [29, Theorem 1.3], they considered a more general operator that
involves two sides: one given by the p(·)-Laplacian and the other one given by an op-
erator set on a suitable ball B. Then, in [29, Theorem 1.3], they covered a sandwich-
type case with s < p− := min p(x) and s > qB , where qB is the exponent of the
second side. Thus, they did not cover a truly sandwich case for the p(·)-Laplacian,
i.e., with min p(x) =: p− < s < p+ := max p(x). In Theorem 1.3, even work-
ing with Luxemburg norms, we can cover a complete sandwich perturbation with
s ∈ (p, q) in (1.3). Finally, we mention related papers dealing with critical growth
for double phase problems; see the works by Arora–Fiscella–Mukherjee–Winkert
[1], Farkas–Winkert [19], Feng–Bai [20], Ho–Kim–Zhang [25], Kumar–Rădulescu–
Sreenadh [32], Liu–Papageorgiou [35], Papageorgiou–Vetro–Winkert [40, 41], and
Papageorgiou–Zhang [43], and also the paper by Ho–Perera–Sim [26] on the Brézis-
Nirenberg problem for the (p, q)-Laplacian. Note that the methods and techniques
used in these papers are different from the ones applied in our work.

The paper is organized as follows: In Section 2, we introduce the notation used
along the paper and some technical properties of the Musielak-Orlicz spaces. In
Section 3, we prove the compactness property of the energy functional related to
(1.3), while in Sections 4 and 5, we prove Theorems 1.2 and 1.3, respectively.

2. Preliminaries and notation. In this section, we recall the main properties of
Musielak-Orlicz and Musielak-Orlicz Sobolev spaces as well as those of the double
phase operator. Most of the results are taken from the papers by Colasuonno–
Squassina [12], Crespo-Blanco–Gasiński–Harjulehto–Winkert [15], Ho–Winkert [30],

and Liu–Dai [34]; see also the monographs by Chlebicka–Gwiazda–Świerczewska-
Gwiazda–Wróblewska-Kamińska [10], Diening–Harjulehto–Hästö–Růžička [17],
Harjulehto–Hästö [23], and Papageorgiou–Winkert [42].
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First, we want to introduce the underlying generalized N -functions describing
the behavior of the function A : Ω × RN → RN and B : Ω × R → R given in (1.4).
For this purpose, let 1 < α < β, 0 < c(·) ∈ L1(Ω) and 0 ≤ d(·) ∈ L1(Ω). We define
the N -function Φ: Ω× [0,∞) → [0,∞) as

Φ(x, t) := c(x)tα + d(x)tβ for (x, t) ∈ Ω× [0,∞),

while the associated modular ρΦ to Φ is given by

ρΦ(u) :=

∫
Ω

Φ(x, |u|) dx. (2.1)

Denoting by M(Ω) the set of all measurable functions on Ω, the corresponding
Musielak-Orlicz space LΦ(Ω) is defined by

LΦ(Ω) := {u ∈M(Ω): ρΦ(u) <∞} ,

endowed with the Luxemburg norm

∥u∥Φ := inf
{
τ > 0: ρΦ

(u
τ

)
≤ 1
}
.

The following proposition gives the relation between the modular ρΦ(·) and its
norm ∥·∥Φ; see Crespo-Blanco–Gasiński–Harjulehto–Winkert [15, Proposition 2.13]
for a detailed proof.

Proposition 2.1. Let 1 < α < β, 0 < c(·) ∈ L1(Ω), 0 ≤ d(·) ∈ L1(Ω), λ > 0, and
u ∈ LΦ(Ω) while ρΦ(·) is as in (2.1). Then, the following hold:

(i) If u ̸= 0, then ∥u∥Φ = λ if and only if ρΦ(
u
λ ) = 1.

(ii) ∥u∥Φ < 1 (resp.> 1, = 1) if and only if ρΦ(u) < 1 (resp.> 1, = 1).

(iii) If ∥u∥Φ < 1, then ∥u∥βΦ ⩽ ρΦ(u) ⩽ ∥u∥αΦ.
(iv) If ∥u∥Φ > 1, then ∥u∥αΦ ⩽ ρΦ(u) ⩽ ∥u∥βΦ.
(v) ∥u∥Φ → 0 if and only if ρΦ(u) → 0.
(vi) ∥u∥Φ → ∞ if and only if ρΦ(u) → ∞.

Next, we assume that (H1) and (H2) are fulfilled, so that we can set

H(x, t) := tp + a(x)tq for (x, t) ∈ Ω× [0,∞),

B(x, t) := b0(x)|t|p
∗
+ b(x)|t|q

∗
for (x, t) ∈ Ω× R.

We define the Musielak-Orlicz Sobolev space W 1,H(Ω) as

W 1,H(Ω) =
{
u ∈ LH(Ω): |∇u| ∈ LH(Ω)

}
equipped with the norm

∥u∥1,H = ∥u∥H + ∥∇u∥H,

where ∥∇u∥H = ∥ |∇u| ∥H. Furthermore, we denote by W 1,H
0 (Ω) the completion

of C∞
c (Ω) in W 1,H(Ω). In view of Colasuonno–Squassina [12, Proposition 2.14],

we know that LH(Ω), W 1,H(Ω), and W 1,H
0 (Ω) are separable and reflexive Banach

spaces. In addition, the Poincaré inequality, namely

∥u∥H ≤ C∥∇u∥H for any u ∈W 1,H
0 (Ω),

holds true, see Colasuonno–Squassina [12, Proposition 2.18 (iv)] or Crespo-Blanco–
Gasiński–Harjulehto–Winkert [15, Proposition 2.19] under the weaker assumption
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q < p∗ instead of q
p < 1 + 1

N . Based on this, we can equip the space W 1,H
0 (Ω) with

the equivalent norm

∥ · ∥ := ∥∇ · ∥H.

We have the following embedding results; see Colasuonno–Squassina [12, Proposi-
tion 2.15].

Proposition 2.2. Let hypothesis (H1) be satisfied. Then, the following hold:

(i) W 1,H
0 (Ω) ↪→W 1,p

0 (Ω) is continuous;

(ii) W 1,H
0 (Ω) ↪→ Lp∗

(Ω) is continuous.

(iii) W 1,H
0 (Ω) ↪→ Lr(Ω) is continuous and compact for all 1 ≤ r < p∗.

The next proposition can be found in the work by Ho–Winkert [30, Proposition
3.7] and plays a key role to handle the critical Sobolev term in problem (1.3).

Proposition 2.3. Let hypothesis (H1) be satisfied and

G(x, t) := |t|k + a(x)
m
q |t|m for (x, t) ∈ Ω× R,

where 1 ≤ k ≤ p∗ and 1 ≤ m ≤ q∗. Then, we have the continuous embedding

W 1,H(Ω) ↪→ LG(Ω). (2.2)

Furthermore, if k < p∗ and m < q∗, then the embedding in (2.2) is compact. In
particular, it holds

W 1,H(Ω) ↪→ LH(Ω) compactly.

Let us define the operator L : W 1,H
0 (Ω) →

(
W 1,H

0 (Ω)
)∗

by

⟨L(u), v⟩ :=
∫
Ω

(
|∇u|p−2 + a(x)|∇u|q−2

)
∇u · ∇v dx (2.3)

for any u, v ∈ W 1,H
0 (Ω), where

(
W 1,H

0 (Ω)
)∗

denotes the dual space of W 1,H
0 (Ω)

and ⟨ · , · ⟩ is the related duality pairing. The following result is taken from Liu–Dai
[34, Proposition 3.1 (ii)].

Proposition 2.4. Let hypothesis (H1) be satisfied. Then, the mapping L : W 1,H
0 (Ω)

→
(
W 1,H

0 (Ω)
)∗

given in (2.3) is of type (S+), that is, if un ⇀ u in W 1,H
0 (Ω) and

lim sup
n→∞

⟨L(un)− L(u), un − u⟩ ≤ 0, then un → u in W 1,H
0 (Ω).

The next compactness result is needed for the sandwich perturbation. It can be
proved in a similar way as Lemma 4.1 by Ho–Kim–Sim [24] via Vitali’s convergence
theorem.

Proposition 2.5. Let hypothesis (H3) be satisfied and let {un}n∈N ⊆ W 1,H
0 (Ω) be

a sequence with un ⇀ u. Then, it holds∫
Ω

w(x)|un|s dx→
∫
Ω

w(x)|u|s dx and

∫
Ω

|w(x)||un − u|s dx→ 0

as n→ ∞.
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Next, we want to recall further notations that will be used in the sequel. First,
we mainly work with terms set as

∥u∥d,m :=

(∫
Ω

d(x)|u|m dx

)1/m

, ∥u∥m :=

(∫
Ω

|u|m dx

)1/m

,

∥u∥Lm(d,E) :=

(∫
E

d(x)|u|m dx

)1/m

, ∥u∥Lm(E) :=

(∫
E

|u|m dx

)1/m

,

while |E| indicates the Lebesgue measure of a measurable set E ⊂ RN . Also, for
any r > 0, we denote the sets

B(y, r) := {x ∈ RN : |x− y| < r},

Br := {u ∈W 1,H
0 (Ω): ∥u∥ < r},

∂Br := {u ∈W 1,H
0 (Ω): ∥u∥ = r}.

Meanwhile, in the next section, we denote byM(Ω) the space of the Radon measures
on Ω.

Considering the notation above, note that under assumption (H2), we have

Sp := inf
ϕ∈C∞

c (Ω)\{0}

∥∇ϕ∥p
∥ϕ∥b0,p∗

> 0 and Sq := inf
ϕ∈C∞

c (Ω)\{0}

∥∇ϕ∥a,q
∥ϕ∥b,q∗

> 0 if b ̸≡ 0.

Thus, there exists a constant Ce > 1 such that

∥u∥B ≤ Ce∥u∥, ∥u∥b0,p∗ ≤ Ce∥∇u∥p and ∥u∥b,q∗ ≤ Ce∥∇u∥a,q (2.4)

for any u ∈W 1,H
0 (Ω).

In order to determine (nonnegative) solutions of problem (1.3), we introduce the

energy functionals J , J+ : W 1,H
0 (Ω) → R given by

J(u) :=

∫
Ω

A (x,∇u) dx− λ

s

∫
Ω

w(x)|u|s dx− θ

∫
Ω

B̂ (x, u) dx,

J+(u) :=

∫
Ω

A (x,∇u) dx− λ

s

∫
Ω

w(x)us+ dx− θ

∫
Ω

B̂ (x, u+) dx,

where u+ := max{u, 0} and

A(x, ξ) :=
1

p
|ξ|p + a(x)

q
|ξ|q for (x, ξ) ∈ Ω× RN ,

B̂(x, t) :=
1

p∗
b0(x)|t|p

∗
+

1

q∗
b(x)|t|q

∗
for (x, t) ∈ Ω× R.

It is clear that J , J+ are of class C1(W 1,H
0 (Ω),R) and a critical point of J (resp. J+)

is a solution (resp. nonnegative solution) to problem (1.3).

3. A compactness result. In this section, we prove an important lemma that
provides a compactness result regarding the functionals J and J+. For this, we recall

that a sequence {un}n∈N ⊂ W 1,H
0 (Ω) is a Palais-Smale sequence for a functional

I ∈ C1(W 1,H
0 (Ω),R) at level c ∈ R ((PS)c sequence for short), if

I(un) → c and I ′(un) → 0 in
(
W 1,H

0 (Ω)
)∗

as n→ ∞. (3.1)

We say that I satisfies the Palais-Smale condition at level c ∈ R ((PS)c condition

for short), if any (PS)c sequence admits a convergent subsequence in W 1,H
0 (Ω).
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With a new concentration-compactness principle inspired by the work of Ha–
Ho [22, Theorem 2.1], we study (PS)c sequences under an important threshold
defined below in (3.2). Such a threshold can be derived by applying a concentra-

tion–compactness principle in the spaceW 1,H
0 (Ω). However, applying [22, Theorem

2.1] would yield a threshold involving powers of θ and λ that depend on both p and
q, which would complicate later estimates due to the presence of the intermediate
exponent s ∈ (p, q). For this reason, we establish a new concentration–compactness
principle to obtain the desired threshold in (3.2).

Lemma 3.1. Let hypotheses (H1)–(H3) be satisfied and let λ, θ > 0. Then, any
bounded (PS)c sequence of the functionals J and J+ admits a convergent subsequence

in W 1,H
0 (Ω), provided that

c < C1 min
{
θ−

p
p∗−p , θ−

q
q∗−q

}
− C2λ

q
q−s − C3λ

q∗
q∗−s θ−

s
q∗−s , (3.2)

where C1 := C1(N, p, q), C2 := C2(N, p, q, s, w), and C3 := C3(N, p, q, w, b) are
three suitable positive constants. If b ≡ 0, then any bounded (PS)c sequence of the

functionals J and J+ admits a convergent subsequence in W 1,H
0 (Ω), provided that

c < C1θ
− p

p∗−p − C2λ
q

q−s . (3.3)

Proof. We only prove the assertion for J since the situation for J+ can be proved
similarly. Also, we only consider the case b ̸≡ 0, as the case b ≡ 0 is similar and
easier to show.

Fix λ > 0, θ > 0 and let c ∈ R satisfy (3.2) with C1, C2, and C3 to be specified

later. Let {un}n∈N ⊆ W 1,H
0 (Ω) be a bounded (PS)c sequence of the functional J .

Taking Proposition 2.3 into account, there exists u ∈ W 1,H
0 (Ω) such that up to a

subsequence, not relabeled, we have

un ⇀ u in W 1,H
0 (Ω), un → u in LH(Ω),

un(x) → u(x) for a.a.x ∈ Ω,
(3.4)

as n → ∞. Furthermore, by virtue of Fonseca–Leoni [21, Proposition 1.202], we
can find bounded Radon measures µ, ν, µ, ν ∈ M(Ω) such that

|∇un|p
∗
⇀ µ in M(Ω), b0(x)|un|p

∗ ∗
⇀ ν in M(Ω),

a(x)|∇un|q
∗
⇀ µ in M(Ω), b(x)|un|q

∗ ∗
⇀ ν in M(Ω),

(3.5)

as n → ∞. Since W 1,H
0 (Ω) ↪→ W 1,p

0 (Ω) by Proposition 2.2 (i), we can apply the
concentration–compactness principle by Lions [33, Lemma I.1], considering b0(·) ∈
L∞(Ω) by (H2). Besides, thanks to (H1) and (H2), we can argue as in Ha–Ho [22,
Theorem 2.1] so that, taking also Lions [33, Lemma I.1] into account, there exist
five families of distinct points {xi}i∈I ⊂ Ω, and of nonnegative numbers {νi}i∈I ,
{µi}i∈I , {νi}i∈I , {µi}i∈I , with I being an at most countable index set, such that
we have

µ ≥ |∇u|p +
∑
i∈I

µiδxi
, ν = b0(x)|u|p

∗
+
∑
i∈I

νiδxi
, Spν

1/p∗

i ≤ µ
1/p
i , (3.6)

for any i ∈ I and

µ ≥ a(x)|∇u|q +
∑
i∈I

µiδxi
, ν = b(x)|u|q

∗
+
∑
i∈I

νiδxi
, Sqν

1/q∗

i ≤ µ
1/q
i , (3.7)
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for any i ∈ I, where δxi is the Dirac mass at xi. Then, we proceed with the next
steps.

Step 1. µi + µi ≤ θ (νi + νi) for any i ∈ I.
To this end, fix i ∈ I and let ϕ be in C∞

c (RN ) such that

0 ≤ ϕ ≤ 1, ϕ ≡ 1 on B

(
0,

1

2

)
and ϕ ≡ 0 outside of B(0, 1).

For ε > 0, set ϕi,ε(x) := ϕ(x−xi

ε ) for x ∈ RN . Fix such an ε and note that∫
Ω

ϕi,ε|∇un|p dx+

∫
Ω

ϕi,εa(x)|∇un|q dx

= θ

∫
Ω

ϕi,εb0(x)|un|p
∗
dx+ θ

∫
Ω

ϕi,εb(x)|un|q
∗
dx

+ λ

∫
Ω

ϕi,εw(x)|un|s dx−
∫
Ω

A(x,∇un) · ∇ϕi,εun dx+ ⟨J ′(un), ϕi,εun⟩.

(3.8)

Let δ > 0 be arbitrary. By Young’s inequality, we have∫
Ω

|A(x,∇un) · ∇ϕi,εun| dx

≤ δ
(
∥∇un∥pp + ∥∇un∥qa,q

)
+ Cδ

(∫
Ω

|∇ϕi,εun|p dx+

∫
Ω

a(x)|∇ϕi,εun|q dx
)

≤ δC∗ + Cδ

(∫
Ω

|∇ϕi,εun|p dx+

∫
Ω

a(x)|∇ϕi,εun|q dx
)
,

with C∗ > 0 given by the boundedness of {un}n∈N and Cδ = δ1−p + δ1−q. Thus,
(3.8) rewrites as∫

Ω

ϕi,ε|∇un|p dx+

∫
Ω

ϕi,εa(x)|∇un|q dx

≤ θ

∫
Ω

ϕi,εb0(x)|un|p
∗
dx+ θ

∫
Ω

ϕi,εb(x)|un|q
∗
dx

+ λ

∫
Ω

ϕi,εw(x)|un|s dx+ δC∗

+ Cδ

(∫
Ω

|∇ϕi,εun|p dx+

∫
Ω

a(x)|∇ϕi,εun|q dx
)
+ ⟨J ′(un), ϕi,εun⟩.

Hence, letting n → ∞, by considering (3.1) with I = J , (3.4) and (3.5), as well as
Propositions 2.3 and 2.5, we get∫

Ω

ϕi,ε dµ+

∫
Ω

ϕi,ε dµ ≤ θ

∫
Ω

ϕi,ε dν + θ

∫
Ω

ϕi,ε dν

+ λ

∫
Ω

ϕi,εw(x)|u|s dx+ δC∗

+ Cδ

(∫
Ω

|∇ϕi,εu|p dx+

∫
Ω

a(x)|∇ϕi,εu|q dx
)
.

(3.9)

Since by Proposition 2.3 we know that u ∈ LG(Ω) with

G(x, t) := |t|p
∗
+ a(x)

q∗
q |t|q

∗
,
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we can apply Hölder’s inequality to obtain∫
Ωi,ε

|u∇ϕi,ε|p dx+

∫
Ωi,ε

a(x)|u∇ϕi,ε|q dx

≤ ∥u∥p
Lp∗ (Ωi,ε)

∥∇ϕi,ε∥pLN (B(xi,ε))
+ ∥u∥q

Lq∗ (aq∗/q,Ωi,ε)
∥∇ϕi,ε∥qLN (B(xi,ε))

,

(3.10)

where Ωi,ε = Ω ∩B(xi, ε). By a simple change of variable, we get

∥∇ϕi,ε∥LN (B(xi,ε)) = ∥∇ϕ∥LN (B(0,1)). (3.11)

Thus, by sending ε→ 0 in (3.10) and considering (3.11), it follows that

lim
ε→0

(∫
Ω

|u∇ϕi,ε|p dx+

∫
Ω

a(x)|u∇ϕi,ε|q dx
)

= 0. (3.12)

On the other hand, by sending ε → 0 in (3.9), using (3.6), (3.7), and (3.12), we
obtain

µi + µi ≤ θ (νi + νi) + δC∗.

Since δ > 0 was chosen arbitrarily, the proof of Step 1 is completed.

Step 2. νi = νi = 0 for any i ∈ I.
Let us assume by contradiction that there exists i ∈ I such that νi + νi > 0.

From (3.6) and (3.7), we have µi + µi > 0 and

νi + νi ≤ S∗

(
µ
p∗/p
i + µ

q∗/q
i

)
, (3.13)

where S∗ := max
{
S−p∗

p , S−q∗

p

}
. Now, we claim that there exists C̃1 := C̃1(N, p, q) >

0 such that

θ (νi + νi) ≥ µi + µi ≥ C̃1 min
{
θ−

p
p∗−p , θ−

q
q∗−q

}
. (3.14)

For this, we distinguish the following cases:

Case 1: Let µi ≥ 1.
Then, combining Step 1 and (3.13), we get

θ−1 (µi + µi) ≤ νi + νi ≤ S∗

(
µ
q∗/q
i + µ

q∗/q
i

)
≤ S∗ (µi + µi)

q∗/q
.

This yields

θ (νi + νi) ≥ µi + µi ≥ S
− q

q∗−q
∗ θ−

q
q∗−q .

Case 2: Let µi < 1 and µi ≥ 1.
Then, from Step 1 and (3.13) again, we obtain

θ−1 (µi + µi) ≤ νi + νi ≤ 2S∗µ
q∗/q
i ≤ 2S∗ (µi + µi)

q∗/q
.

This gives

θ (νi + νi) ≥ µi + µi ≥ (2S∗)
− q

q∗−q θ−
q

q∗−q .

Case 3: Let µi < 1 and µi < 1.
Again from Step 1 and (3.13), it follows that

θ−1 (µi + µi) ≤ νi + νi ≤ S∗

(
µ
p∗/p
i + µ

p∗/p
i

)
≤ S∗ (µi + µi)

p∗/p
.

This and the fact that µi + µi > 0 lead to

θ (νi + νi) ≥ µi + µi ≥ S
− p

p∗−p
∗ θ−

p
p∗−p .
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In summary, we arrive at the statement (3.14) by taking

C̃1 := min
{
(2S∗)

− q
q∗−q , S

− p
p∗−p

∗

}
.

On the other hand, putting q̃ = (q + p∗)/2, by (3.1) we have

c = J(un)−
1

q̃
⟨J ′(un), un⟩+ on(1)

≥
(
1

q
− 1

q̃

)
∥∇un∥qa,q − λ

(
1

s
− 1

q̃

)∫
Ω

w(x)|un|s dx

+ θ

(
1

q̃
− 1

p∗

)[∫
Ω

b0(x)|un|p
∗
dx+

∫
Ω

b(x)|un|q
∗
dx

]
+ on(1),

as n→ ∞. Passing to the limit as n→ ∞ in the last estimate and using (3.4)–(3.7)
and Proposition 2.5, we obtain

c ≥
(
1

q
− 1

q̃

)
∥∇u∥qa,q − λ

(
1

s
− 1

q̃

)∫
Ω

w(x)|u|s dx

+ θ

(
1

q̃
− 1

p∗

)(
∥u∥p

∗

b0,p∗ + ∥u∥q
∗

b,q∗ + νi + νi

)
.

(3.15)

By (H3) we have∫
{b=0}

w(x)|u|s dx ≤
∫
{b>0}

|w(x)||u|s dx+ Cw

(∫
Ω

a(x)|∇u|q dx
) s

q

.

Thus, using Hölder’s inequality and Young’s inequality gives

λ

(
1

s
− 1

q̃

)∫
Ω

w(x)|u|s dx

≤ 2λ

(
1

s
− 1

q̃

)∫
Ω

|w(x)|χ{b>0}|u|s dx+ Cwλ

(
1

s
− 1

q̃

)
∥∇u∥sa,q

≤ 2

(
1

s
− 1

q̃

)
∥wχ{b>0}b

− s
q∗ ∥

L
q∗

q∗−s (Ω)
λ∥u∥sb,q∗

+
1

2

(
1

q
− 1

q̃

)
∥∇u∥qa,q + C2λ

q
q−s ,

with a suitable C2 := C2(N, p, q, s, w) > 0. From (3.14), (3.15) and the last estimate,
we deduce

c ≥− 2

(
1

s
− 1

q̃

)
∥wχ{b>0}b

− s
q∗ ∥

L
q∗

q∗−s (Ω)
λ∥u∥sb,q∗ + θ

(
1

q̃
− 1

p∗

)
∥u∥q

∗

b,q∗

+ C1 min
{
θ−

p
p∗−p , θ−

q
q∗−q

}
− C2λ

q
q−s ,

where C1 :=

(
1

q̃
− 1

p∗

)
C̃1. That is, we get

c ≥ hλ,θ (∥u∥b,q∗) + C1 min
{
θ−

p
p∗−p , θ−

q
q∗−q

}
− C2λ

q
q−s , (3.16)

where

hλ,θ(t) := θd1t
q∗ − λd2t

s for t ≥ 0,

with

d1 :=

(
1

q̃
− 1

p∗

)
and d2 := 2

(
1

s
− 1

q̃

)
∥wχ{b>0}b

− s
q∗ ∥

L
q∗

q∗−s (Ω)
.
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Since

min
t≥0

hλ,θ(t) = hλ,θ

((
λd2s

θd1q∗

) 1
q∗−s

)
= −q

∗ − s

q∗

(
s

q∗

) s
q∗−s

(λd2)
q∗

q∗−s (θd1)
− s

q∗−s ,

we derive from (3.16) that

c ≥ C1 min
{
θ−

p
p∗−p , θ−

q
q∗−q

}
− C2λ

q
q−s − C3λ

q∗
q∗−s θ−

s
q∗−s ,

with a suitable C3 := C3 (N, p, q, s, w, b) > 0, which contradicts (3.2). This proves
Step 2.

Step 3. un → u in W 1,H
0 (Ω) as n→ ∞.

By Step 2, νi = νi = 0 for any i ∈ I and so by (3.6) and (3.7), we obtain∫
Ω

b0(x)|un|p
∗
dx→

∫
Ω

b0(x)|u|p
∗
dx and

∫
Ω

b(x)|un|q
∗
dx→

∫
Ω

b(x)|u|q
∗
dx.

From this and (3.4), we conclude that∫
Ω

b0(x)|un − u|p
∗
dx→ 0 and

∫
Ω

b(x)|un − u|q
∗
dx→ 0 (3.17)

in view of the Brézis-Lieb lemma (see e.g., Ho–Sim [28, Lemma 3.6]). From (3.1),
we have ⟨J ′(un), un − u⟩ → 0 as n→ ∞, which yields

on(1) =

∫
Ω

A(x,∇un) · ∇(un − u) dx− λ

∫
Ω

w(x)|un|s−2un(un − u) dx

+ θ

∫
Ω

B(x, un)(un − u) dx.

From this, by Hölder’s inequality combined with Proposition 2.5 and (3.17), we get

lim
n→∞

∫
Ω

A(x,∇un) · ∇(un − u) dx = 0. (3.18)

Then, combining (3.4), (3.18), and Proposition 2.4, we deduce that un → u in

W 1,H
0 (Ω). The proof is complete.

4. Proof of Theorem 1.2. For the proof of Theorem 1.2, we employ the idea by
Ho–Sim [27]. However, we minimize the functional J+ on a suitable ball

Br =
{
u ∈W 1,H

0 (Ω): ∥u∥ < r
}
,

working with the Luxemburg norm ∥ · ∥.
Before we prove Theorem 1.2, we first need the following lemma.

Lemma 4.1. Let hypotheses (H1)–(H3) be satisfied and let λ > λ0 with λ0 as

defined in (1.7). Then, there exists θ̃∗ = θ̃∗(λ) > 0 such that for any θ ∈
(
0, θ̃∗

)
,

there exist r, β > 0 such that

inf
u∈∂Br

J+(u) ≥ β > 0 > inf
u∈Br

J+(u).

Proof. Fix λ > λ0. Thus, there exists ψ ∈ W+ such that

C0

(∫
Ω
a(x)|∇ψ|q dx

q

) s−p
q−p

(∫
Ω
|∇ψ|p dx
p

) q−s
q−p s∫

Ω
w(x)ψs

+ dx
< λ. (4.1)



14 C. FARKAS, A. FISCELLA, K. HO AND P. WINKERT

Now, for t > 0, we have

J+(tψ) = tpgλ(t)− θξ(t),

where

gλ(t) := α1 − α2λt
s−p + α3t

q−p

with

α1 :=
1

p
∥∇ψ∥pp > 0, α2 :=

1

s

∫
Ω

w(x)ψs
+ dx > 0 and α3 :=

1

q
∥∇ψ∥qa,q > 0,

and

ξ(t) :=
1

p∗

(∫
Ω

b0(x)ψ
p∗

+ dx

)
tp

∗
+

1

q∗

(∫
Ω

b(x)ψq∗

+ dx

)
tq

∗
.

Due to (4.1) and considering (1.8), we have

min
t>0

gλ(t) = gλ

((
s− p

q − p
α2α

−1
3 λ

) 1
q−s

)

= α1 −
q − s

q − p

(
s− p

q − p

) s−p
q−s

α
− s−p

q−s

3 α
q−p
q−s

2 λ
q−p
q−s < 0.

Thus, by setting t0 = t0(λ) > 0 as

t0 :=

(
s− p

q − p
α2α

−1
3 λ

) 1
q−s

,

we conclude that gλ(t0) < 0, and so

J+(t0ψ) = [t0]
pgλ(t0)− θξ(t0) < 0. (4.2)

We take r = r(λ) > 0 as

r := max

{
1 + t0∥ψ∥,

(
2qCwλ

s

) pq
q−s

}
, (4.3)

where Cw is given in (H3). Then, for ∥u∥ = r > 1, by (H3), and Propositions 2.1
and (2.4), it follows that

J+(u) ≥
1

p
∥∇u∥pp +

1

q
∥∇u∥qa,q −

Cwλ

s
∥∇u∥sa,q −

θ

p∗
max

{
∥u∥p

∗

B , ∥u∥
q∗

B

}
≥ 1

p
∥∇u∥pp +

1

q
∥∇u∥qa,q −

Cwλ

s
∥∇u∥sa,q −

θCq∗

e

p∗
∥u∥q

∗
.

(4.4)

We claim that there exist θ̃∗ = θ̃∗(λ) > 0 such that, for any θ ∈
(
0, θ̃∗

)
, we have

J+(u) ≥ β, for any u ∈ ∂Br, (4.5)

with a suitable β = β(λ, θ) > 0. For this, we distinguish the following two cases:

Case 1: Let
1

q
∥∇u∥qa,q ≤ 2Cwλ

s
∥∇u∥sa,q, i.e., ∥∇u∥a,q ≤

(
2qCwλ

s

) 1

q − s
.

From (4.3), we have

Cwλ

s
∥∇u∥sa,q ≤ Cwλ

s

(
2qCwλ

s

) s
q−s

≤ 1

2q
rp =

1

2q
∥u∥p.
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Using these estimates, we derive from Proposition 2.1 and (4.4) that

J+(u) ≥
1

q
∥u∥p − 1

2q
∥u∥p − θCq∗

e

p∗
∥u∥q

∗

=
Cq∗

e rq
∗

p∗

(
p∗

2qCq∗
e

rp−q∗ − θ

)
.

Case 2: Let
1

q
∥∇u∥qa,q ≥ 2Cwλ

s
∥∇u∥sa,q.

In this case, we easily derive from Proposition 2.1 and (4.4) that

J+(u) ≥
1

p
∥∇u∥pp +

1

2q
∥∇u∥qa,q −

θCq∗

e

p∗
∥u∥q

∗

≥ 1

2q
∥u∥p − θCq∗

e

p∗
∥u∥q

∗

=
Cq∗

e rq
∗

p∗

(
p∗

2qCq∗
e

rp−q∗ − θ

)
.

In any case, by taking

θ̃∗ :=
p∗

2qCq∗
e

rp−q∗ and β :=
Cq∗

e rq
∗

p∗
(θ̃∗ − θ),

the statement (4.5) holds true for any θ ∈
(
0, θ̃∗

)
.

Finally, note that t0ψ ∈ Br by (4.3). Hence, (4.2) yields

inf
u∈Br

J+(u) ≤ J+(t0ψ) < 0.

This and (4.5) complete the proof.

Proof of Theorem 1.2. Note that for θ ∈ (0, 1), the right-hand side of (3.2) can be
rewritten as

cλ,θ := C1θ
− q

q∗−q − C3λ
q∗

q∗−s θ−
s

q∗−s − C2λ
q

q−s .

For the case b ≡ 0, we take cλ,θ := C1θ
− p

p∗−p − C2λ
q

q−s , which is the right-hand

side of (3.3). For a fixed λ > 0, since s < q, there exists θ̂∗ = θ̂∗(λ) > 0 sufficiently

small such that cλ,θ > 0 for any θ ∈
(
0, θ̂∗

)
. Thus, let us fix λ > λ0, with λ0 as

defined in (1.7). Next, let us fix θ ∈ (0, θ∗) with θ∗ := min
{
θ̂∗, θ̃∗, 1

}
, where θ̃∗ is as

in Lemma 4.1. Thanks to Lemma 4.1, we can apply Ekeland’s variational principle
to J+, which provides a minimizing sequence {un}n∈N ⊂ Br such that

J+(un) → mr and J ′
+(un) → 0,

where

mr := inf
u∈Br

J+(u).

Furthermore, since mr < 0 < cλ,θ due to Lemma 4.1, we can apply Lemma 3.1

for the sequence {un}n∈N, so that there exists u ∈ W 1,H
0 (Ω) such that un → u in

W 1,H
0 (Ω). Hence

J ′
+(u) = 0 and J+(u) = mr < 0. (4.6)
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Thus, we have

0 = ⟨J ′
+(u), u−⟩ =

∫
Ω

A (x,∇u−) dx = 0,

where u− := max{−u, 0}. It follows that u− = 0 a.e. in Ω and so u ≥ 0 a.e. in Ω.
From this and (4.6), we obtain

J ′(u) = 0 and J(u) = mr < 0.

Therefore, u is a nontrivial nonnegative solution to problem (1.3). This proves the
assertion of the theorem.

5. Proof of Theorem 1.3. The proof of Theorem 1.3 is inspired by Ho–Sim [29,
Theorem 1.3]. However, unlike the case of the (p, q)-Laplacian, ∥∇·∥a,q is no longer

an equivalent norm on W 1,H
0 (Ω), and this makes the situation for the double phase

operator much more complicated. Furthermore, we require the existence of a ball
B ⊂ Ω+ as set in Theorem 1.3, in order to get the technical result of Lemma 5.1.

Let θ > 0 and λ > 0. We easily observe that the functional J is not bounded

from below in W 1,H
0 (Ω) because of the presence of the critical Sobolev term. For

this, we mainly work with a truncated functional. Let 1 < t1 < t2 and choose a
cut-off function ϕ ∈ C∞

c (R) being non-increasing with 0 ≤ ϕ(·) ≤ 1 such that

ϕ(t) = 1 for |t| ≤ t1 and ϕ(t) = 0 for |t| ≥ t2. (5.1)

Now we can define the truncated functional Jϕ : W
1,H
0 (Ω) → R as

Jϕ(u) :=

∫
Ω

A(x,∇u) dx− λ

s

∫
Ω

w(x)|u|s dx+ ϕ(∥u∥) θ
∫
Ω

B̂(x, u) dx. (5.2)

Obviously, Jϕ ∈ C1(W 1,H
0 (Ω),R) by the definition of ϕ and by Colasuonno–Squassina

[12, Proposition 3.2].
In order to prove the existence of multiple solutions for (1.3), we need the Kras-

noselskii’s genus theory. For this, we first recall the definition of the genus and
denote

Σ =
{
A ⊂W 1,H

0 (Ω) \ {0} : A is closed and symmetric
}
.

The genus γ(A) of A ∈ Σ is defined as the smallest positive integer d such that
there exists an odd continuous map from A to Rd \ {0}. If such d does not exist,
then we set γ(A) = ∞. Also, we define γ(∅) = 0. We refer to Rabinowitz [44] for
more details on this topic.

We get a suitable property for sublevels of functional Jϕ.

Lemma 5.1. Let hypotheses (H1)–(H3) be satisfied. Then, for any j ∈ N, there
exists dj > 0 such that for any λ > dj and any θ > 0, there exists εj > 0 such that

Jϕ
−εj ∈ Σ and

γ(Jϕ
−εj ) ≥ j,

with Jϕ
−εj := {u ∈W 1,H

0 (Ω): Jϕ(u) ≤ −εj}.

Proof. Fix θ > 0 and let B ⊂ Ω+ be as in Theorem 1.3. For any j ∈ N, we define

Xj := span {φ1, φ2, . . . , φj} ,
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where φj is an eigenfunction corresponding to the j-th eigenvalue of the following
problem

−∆u = µu in B, u = 0 in ∂B,

which can be extended to Ω by putting φj(x) = 0 for x ∈ Ω \B. Since all norms on
Xj are mutually equivalent, noticing that supp (u) ⊂ B for u ∈ Xj and w(x) > 0
for a.a.x ∈ B, we can find δj > 1 such that

δ−1
j max

{
∥∇u∥Lp(B), ∥∇u∥Lq(a,B)

}
≤ ∥u∥ ≤ δj∥u∥Ls(w,B), (5.3)

for any u ∈ Xj . Without any loss of generality, we can choose {δj}j∈N such that
δj < δj+1 for any j ∈ N. We have

Jϕ(u) ≤
1

p
∥∇u∥pLp(B) +

1

q
∥∇u∥qLq(a,B) −

λ

s
∥u∥sLs(w,B), for any u ∈ Xj .

From this and (5.3), for any τ > 0, we infer that

Jϕ(u) ≤
1

p
(δjτ)

p +
1

q
(δjτ)

q − λ

s
(δ−1

j τ)s = τp hλ(τ), (5.4)

for any u ∈ ∂Bτ ∩Xj , where

hλ(τ) := αjτ
q−p + βj − γjλτ

s−p

with

αj := q−1δqj , βj := p−1δpj , γj := s−1δ−s
j .

Let us set T ∗
j = T ∗

j (λ) > 0 as

T ∗
j :=

[
(s− p)γj λ

(q − p)αj

] 1
q−s

.

Then, for

dj :=

(
q − p

q − s

) q−s
q−p

(
q − p

s− p

) s−p
q−p

α
s−p
q−p

j β
q−s
q−p

j γ−1
j = C4δ

2s
j (5.5)

with C4 = C4(p, q, s), it holds that

hλ(T
∗
j ) = βj −

q − s

q − p

(
s− p

q − p

) s−p
q−s

α
− s−p

q−s

j γ
q−p
q−s

j λ
q−p
q−s < 0, for any λ > dj . (5.6)

Thus, for any λ > dj , we get

Jϕ(u) ≤ (T ∗
j )

phλ(T
∗
j ) =: −εj < 0, for any u ∈ ∂BT∗

j
∩Xj

in view of (5.4) and (5.6). Hence, ∂BT∗
j
∩Xj ⊂ Jϕ

−εj . Clearly, ∂BT∗
j
∩Xj ∈ Σ and

Jϕ
−εj ∈ Σ. Therefore, by standard properties of the genus as in Rabinowitz [44,

Proposition 7.7], we obtain

γ(Jϕ
−εj ) ≥ γ(∂BT∗

j
∩Xj) = j.

The proof is complete.

Now, we are going to construct an appropriate minimax sequence of negative
critical values for the truncated functional Jϕ. For any j ∈ N, define the minimax
values cj = cj(λ, θ) as

cj := inf
A∈Σj

sup
u∈A

Jϕ(u), where Σj := {A ∈ Σ: γ(A) ≥ j}. (5.7)
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This definition is well defined since ∂(Xj ∩Bτ ) ∈ Σj for any τ > 0. Clearly, for any
j ∈ N, it holds that cj+1 ≤ cj .

We have the following properties for {cj}j∈N.

Lemma 5.2. Let hypotheses (H1)–(H3) be satisfied and let θ > 0, λ > dj with dj
as given in (5.5), and let {cj}j∈N be defined as in (5.7). Then, for any j ∈ N, we
have that

−∞ < cj < 0.

Proof. Fix θ > 0 and λ > dj . By Lemma 5.1, there exists εj > 0 such that

Jϕ
−εj ∈ Σj and so

cj = inf
A∈Σj

sup
u∈A

Jϕ(u) ≤ sup
u∈Jϕ

−εj

Jϕ(u) ≤ −εj < 0.

On the other hand, by (5.2) with ϕ ∈ C∞
c (R) satisfying (5.1) and the fact that

s < q, we easily see that Jϕ is bounded from below, which yields

cj > −∞.

This completes the proof.

In order to get solutions of (1.3), we need to go back to the main functional J .
Thus, we properly choose t1 and t2 in (5.1). For this, using (H3) and (2.4), we have

J(u) ≥ 1

p
∥∇u∥pp +

1

q
∥∇u∥qa,q − λk̃1∥∇u∥sa,q − θk2∥u∥q

∗
(5.8)

for any u ∈W 1,H
0 (Ω) with ∥u∥ ≥ 1, where k̃1 := Cw/s and k2 := Cq∗

e /p∗.
Fix m ∈ (1, p) and let δ ∈ (0, 1) be such that

s = δm+ (1− δ)q i.e., δ =
q − s

q −m
. (5.9)

By Young’s inequality, we have

λk̃1∥∇u∥sa,q = (2q(1− δ))δ−1∥∇u∥(1−δ)q
a,q (2q(1− δ))1−δλk̃1∥∇u∥δma,q

≤ 1

2q
∥∇u∥qa,q + δ(2q(1− δ))

1−δ
δ (λk̃1)

1
δ ∥∇u∥ma,q.

(5.10)

Combining Proposition 2.1, (5.8), and (5.10), we get

J(u) ≥ 1

2q
∥u∥p − λ

1
δ k1∥u∥m − θk2∥u∥q

∗
for any u ∈W 1,H

0 (Ω) with ∥u∥ ≥ 1,

where

k1 := δ(2q(1− δ))
1−δ
δ (k̃1)

1
δ , (5.11)

that is,

J(u) ≥ fλ,θ(∥u∥) for any u ∈W 1,H
0 (Ω) with ∥u∥ ≥ 1, (5.12)

where

fλ,θ(t) :=
1

2q
tp − λ

1
δ k1t

m − θk2t
q∗ , t ≥ 0.

Now, we will check the location of critical points of fλ,θ. For this, we set

fλ,θ(t) = k1t
m f̃λ,θ(t), with f̃λ,θ(t) := −λ 1

δ + a0t
p−m − θb0t

q∗−m,

where
a0 := (2qk1)

−1 > 0, b0 := k2k
−1
1 > 0. (5.13)
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Clearly, f̃ ′
λ,θ(t) > 0 for t ∈ (0, T∗) and f̃ ′

λ,θ(t) < 0 for t ∈ (T∗,∞), where T∗ =

T∗(θ) > 0 is set as

T∗ :=

[
a0(p−m)

θb0(q∗ −m)

] 1
q∗−p

> 0,

Thus, if f̃λ,θ(T∗) > 0, then there exist T1, T2 > 0 such that

T1 < T∗ < T2 and f̃λ,θ(t)

{
< 0, t ∈ (0, T1) ∪ (T2,∞),

> 0, t ∈ (T1, T2).

For this, we observe that

f̃λ,θ(T∗) = −λ 1
δ + a

q∗−m
q∗−p

0 b
m−p
q∗−p

0

(
p−m

q∗ −m

) p−m
q∗−p q∗ − p

q∗ −m
θ

m−p
q∗−p > 0,

if we assume λ < λ̃, with λ̃ = λ̃(θ) given as

λ̃ := cδ0 θ
δ(m−p)
q∗−p , (5.14)

where

c0 := a
q∗−m
q∗−p

0 b
m−p
q∗−p

0

(
p−m

q∗ −m

) p−m
q∗−p q∗ − p

q∗ −m
> 0.

Furthermore, from f̃λ,θ(T1) = 0, we easily get

T1 >
(
a−δ
0 λ

) 1
δ(p−m) (5.15)

and we observe that T1 > 1 if λ > aδ0. For this, we need

λ̃ > aδ0,

which holds true whenever θ ∈ (0, θ0) with

θ0 := (c0a
−1
0 )

q∗−p
p−m . (5.16)

Thus, from the analysis above, if we consider θ ∈ (0, θ0) and λ ∈
(
aδ0, λ̃

)
, then

fλ,θ(T1) = fλ,θ(T2) = 0, with 1 < T1 < T∗ < T2, and

fλ,θ(t)

{
< 0, t ∈ (0, T1) ∪ (T2,∞),

> 0, t ∈ (T1, T2).
(5.17)

Let θ ∈ (0, θ0) and let λ ∈
(
aδ0, λ̃

)
. Then, from now on, we take t1 = T1 and t2 = T2

in (5.1), so that by (5.2), we have

Jϕ(u) ≥ J(u), for any u ∈W 1,H
0 (Ω), (5.18)

Jϕ(u) = J(u), for any u ∈W 1,H
0 (Ω) with ∥u∥ ≤ T1, (5.19)

and

Jϕ(u) =

∫
Ω

A(x,∇u) dx− λ

s

∫
Ω

w(x)|u|s dx (5.20)

for any u ∈W 1,H
0 (Ω) with ∥u∥ ≥ T2.

This ensures that we can always return to J when Jϕ reaches negative values, as
shown in the next lemma.
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Lemma 5.3. Let hypotheses (H1)–(H3) be satisfied, let θ ∈ (0, θ0) and λ ∈
(
aδ0, λ̃

)
,

with δ, a0, λ̃ and θ0 as defined in (5.9), (5.13), (5.14), and (5.16), respectively.
Then, Jϕ(u) < 0 implies that ∥u∥ < T1, and so Jϕ(u) = J(u) and Jϕ

′(u) = J ′(u).

Proof. Fix θ ∈ (0, θ0), λ ∈
(
aδ0, λ̃

)
and let Jϕ(u) < 0. Thus, J(u) < 0 due to (5.18).

Suppose by contradiction that ∥u∥ ≥ T1 > 1. Then, it follows from (5.12) that
fλ,θ(∥u∥) < 0. By (5.17), we have ∥u∥ > T2 > 1. Hence, we conclude from (5.20)
that

Jϕ(u) =

∫
Ω

A(x,∇u) dx− λ

s

∫
Ω

w(x)|u|s dx < 0.

From this, using (H3), Proposition 2.1, and (5.10), we obtain

1

2q
∥u∥p − k1λ

1
δ ∥u∥m < 0,

with k1 as given in (5.11). This, along with (5.13), yields

T1 ≤ ∥u∥ ≤
(
2qk1λ

1
δ

) 1
p−m

=
(
a−δ
0 λ

) 1
δ(p−m) ,

which contradicts (5.15). Thus, ∥u∥ < T1 and so Jϕ(u) = J(u) and Jϕ
′(u) = J ′(u)

due to (5.19). This shows the assertion.

Considering Lemmas 5.3 and 3.1, the validity of the compactness condition of Jϕ
for negative levels can be established if the positivity of the right-hand side of (3.2)
(or (3.3) if b ≡ 0) is guaranteed. To this end, we observe that for θ ∈ (0, 1), we can
rewrite the right-hand side of (3.2) as

cλ,θ := C1θ
− q

q∗−q − C3λ
q∗

q∗−s θ−
s

q∗−s − C2λ
q

q−s

= θ−
q

q∗−q

[
1

2
C1 − C3λ

q∗
q∗−s θ

q∗(q−s)
(q∗−q)(q∗−s)

]
+

1

2
C1θ

− q
q∗−q − C2λ

q
q−s .

Observe that cλ,θ > 0 provided that

λ < C5θ
− q−s

q∗−q =: λ (5.21)

with

C5 := min


(
1

2
C1C

−1
3

) q∗−s
q∗

,

(
1

2
C1C

−1
2

) q−s
q

 .

For the case b ≡ 0, we just take cλ,θ := C1θ
− p

p∗−p −C2λ
q

q−s and C5 :=
(
C1C

−1
2

) q−s
q .

Thus, we set

λ∗ := min
{
λ̃, λ

}
. (5.22)

Lemma 5.4. Let hypotheses (H1)–(H3) be satisfied, and let θ ∈ (0,min{θ0, 1})
satisfy aδ0 < λ∗, where a0, θ0, and λ∗ are given in (5.13), (5.16), and (5.22), respec-
tively. Then, for any λ ∈

(
aδ0, λ

∗), the functional Jϕ satisfies the (PS)c condition
for any c < 0.

Proof. Fix θ ∈ (0,min{θ0, 1}) such that aδ0 < λ∗. Let λ ∈
(
aδ0, λ

∗), and let {un}n∈N
be a (PS)c sequence for the functional Jϕ with c < 0, that is, (3.1) with I = Jϕ
holds. Then, there exists n0 ∈ N large enough such that Jϕ(un) < 0 for any n > n0.
Consequently, by Lemma 5.3, we get ∥un∥ < T1, and so Jϕ(un) = J(un) and
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Jϕ
′(un) = J ′(un) for n > n0. This fact implies that {un}n∈N is a bounded (PS)c

sequence for the functional J . By the choice of λ∗ as given in (5.22), the sequence

{un}n∈N admits a convergent subsequence in W 1,H
0 (Ω) in view of Lemma 3.1. The

proof is complete.

Summarizing, we observe that, once j ∈ N is fixed, the functional Jϕ verifies
Lemmas 5.2–5.4 if θ ∈ (0,min {1, θ0}) satisfying max

{
aδ0, dj

}
< λ∗ and if λ ∈(

max
{
aδ0, dj

}
, λ∗
)
. Hence, we need to guarantee that

max
{
aδ0, dj

}
< λ∗, when θ < min {1, θ0} . (5.23)

In this direction, from the sequence {δj}j∈N given in (5.3), we define {λj}j∈N as

λj := C6δ
2s
j , for any j ∈ N, (5.24)

where C6 := aδ0+C4 with a0 and C4 as given in (5.13) and (5.5), respectively. Since
1 < δj < δj+1 for any j ∈ N, we have

max
{
aδ0, dj

}
< λj < λj+1, for any j ∈ N. (5.25)

Note that with λ̃ given by (5.14), we have

λj = λ̃ = cδ0θ
δ(m−p)
q∗−p ⇐⇒ θ =

(
c−δ
0 C6

) q∗−p
δ(m−p) δ

− 2s(q∗−p)
δ(p−m)

j .

We also observe that considering λ given in (5.21), it follows that

λj = λ = C5θ
− q−s

q∗−q ⇐⇒ θ =
(
C−1

5 C6

) q−q∗
q−s δ

− 2s(q∗−q)
q−s

j .

Thus, let us set

θj := min

{
1, θ0,

(
c−δ
0 C6

) q∗−p
δ(m−p) ,

(
C−1

5 C6

) q−q∗
q−s

}
δ−κ
j (5.26)

with κ := max
{

2s(q∗−p)
δ(p−m) ,

2s(q∗−q)
q−s

}
. We derive from (5.14) and (5.21) that θj > 0

is independent of λ and for any θ ∈ (0, θj), we have

θ < min {1, θ0} and λj < λ∗,

with λ∗ as given in (5.22). Hence, considering also (5.25), we have the validity of
(5.23) whenever θ ∈ (0, θj). Now, we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3. Let j ∈ N be fixed and let us set λj and θj as in (5.24) and
(5.26), respectively. Let θ ∈ (0, θj), so that λj < λ∗, with λ∗ given in (5.22). Then,
let λ ∈ (λj , λ

∗) and let us consider the minimax sequence {cj}j∈N given in (5.7).
By Lemma 5.2, we know that

−∞ < ci < 0, for any i = 1, . . . , j.

Thus, Lemma 5.4 yields that Jϕ satisfies the (PS)ci condition, for any i = 1, . . . , j

and so, ci are critical values for Jϕ (see Rabinowitz [44] for the details). Setting

Kc :=
{
u ∈W 1,H

0 (Ω) \ {0} : Jϕ(u) = c and J ′
ϕ(u) = 0

}
,

we infer that Kci are compact, for any i = 1, . . . , j.
Now, we distinguish two situations. Either {ci : i = 1, . . . , j} are j distinct

critical values of Jϕ or cn = cn+1 = . . . = cj = c for some n ∈ {1, . . . , j − 1}.
In the second situation, since Kc is compact, by a deformation lemma, standard
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properties of the genus (see again Rabinowitz [44, Proposition 7.7]), and arguing as
in Farkas–Fiscella–Winkert [18, Lemma 3.6], we get

γ(Kc) ≥ j − n+ 1 ≥ 2.

Thus, Kc has infinitely many points, see Rabinowitz [44, Remark 7.3], which are
infinitely many critical values for Jϕ. Consequently, Jϕ admits at least j negative
critical values, which represent at least j negative critical values for J thanks to
Lemma 5.3.
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