CORRIGENDUM TO "A PRIORI BOUNDS FOR WEAK SOLUTIONS TO ELLIPTIC EQUATIONS WITH NONSTANDARD GROWTH" [DISCRETE CONTIN. DYN. SYST. SER. S 5 (2012), 865–878.]

PATRICK WINKERT

Technische Universität Berlin, Institut für Mathematik Straße des 17. Juni 136 10623 Berlin, Germany

RICO ZACHER

Universität Ulm, Institut für Angewandte Analysis Helmholtzstraße 18 89069 Ulm, Germany

In this corrigendum we correct a lemma concerning the geometric convergence of sequences of numbers which was used in [2] as Lemma 2.1. As a consequence the statement in the main result changes a bit and the corresponding proof needs some minor different arguments to be fitted.

(a) First, we replace Theorem 1.1 in [2] by the following one:

Theorem 1.1. Let the assumptions in (H) be satisfied. Then there exist positive constants $\alpha = \alpha(p, q_0, q_1)$ and $C = C(p, q_0, q_1, a_3, a_4, a_5, b_0, b_1, b_2, c_0, c_1, N, \Omega)$ such that the following assertions hold.

(i) If $u \in W^{1,p(\cdot)}(\Omega)$ is a weak subsolution of (1.1), then both $\operatorname{ess\,sup}_{\Omega} u$ and $\operatorname{ess\,sup}_{\Gamma} u$ are bounded from above by

$$C\left[1+\int_{\Omega}u_{+}^{q_{0}(x)}dx+\int_{\Gamma}u_{+}^{q_{1}(x)}d\sigma\right]^{\alpha}.$$

(ii) If $u \in W^{1,p(\cdot)}(\Omega)$ is a weak supersolution of (1.1), then both $\operatorname{ess\,inf}_{\Omega} u$ and $\operatorname{ess\,inf}_{\Gamma} u$ are bounded from below by

$$-C \left[1 + \int_{\Omega} (-u)_{+}^{q_{0}(x)} dx + \int_{\Gamma} (-u)_{+}^{q_{1}(x)} d\sigma \right]^{\alpha}.$$

(b) Next, we replace Corollary 1.2 in [2] by the following one:

Corollary 1.2. Let the assumptions (H) be satisfied and let $u \in W^{1,p(\cdot)}(\Omega)$ be a weak solution of (1.1). Then $u \in L^{\infty}(\Omega), L^{\infty}(\Gamma)$ and the estimates in (i) and (ii) from Theorem 1.1 are valid.

- (c) Replace reference [32] on page 868, line 5 from bottom by the new reference [1].
- (d) Now, we replace Lemma 2.1 in [2] by the following one:

Lemma 2.1. Let $\{Y_n\}$, n = 0, 1, 2, ..., be a sequence of positive numbers, satisfying the recursion inequality

$$Y_{n+1} \le Kb^n \left(Y_n^{1+\delta_1} + Y_n^{1+\delta_2} \right), \quad n = 0, 1, 2, \dots,$$

for some b > 1, K > 0 and $\delta_2 \ge \delta_1 > 0$. If

$$Y_0 \le \min\left(1, (2K)^{-\frac{1}{\delta_1}} b^{-\frac{1}{\delta_1^2}}\right)$$

or

$$Y_0 \le \min\left((2K)^{-\frac{1}{\delta_1}} b^{-\frac{1}{\delta_1^2}}, (2K)^{-\frac{1}{\delta_2}} b^{-\frac{1}{\delta_1 \delta_2} - \frac{\delta_2 - \delta_1}{\delta_2^2}} \right),$$

then $Y_n \leq 1$ for some $n \in \mathbb{N} \cup \{0\}$. Moreover,

$$Y_n \le \min\left(1, (2K)^{-\frac{1}{\delta_1}} b^{-\frac{1}{\delta_1^2}} b^{-\frac{n}{\delta_1}}\right), \quad \text{ for all } n \ge n_0,$$

where n_0 is the smallest $n \in \mathbb{N} \cup \{0\}$ satisfying $Y_n \leq 1$. In particular, $Y_n \to 0$ as $n \to \infty$.

We note that Lemma 2.1 stated in [2] would have been correct if K > 1 instead of K > 0. However, we need in our treatment such a result for arbitrary positive K.

Now, at two places in the proof of Theorem 1.1, we need some minor changes.

(e) At the beginning of page 872 in [2] we add the following paragraph:

"Here, $(p_i^-)^*$ and $(p_i^-)_*$ are defined by, for all $i=1,\ldots,m$,

where $q_0^+ = \max_{x \in \overline{\Omega}} q_0(x)$ and $q_1^+ = \max_{x \in \Gamma} q_1(x)$ (see Section 2)."

(f) Replace the paragraph on page 876 from formula (3.23) until line 4 from bottom by the following paragraph:

$$Y_{0} = \int_{\Omega} (u - k)_{+}^{q_{0}(x)} dx + \int_{\Gamma} (u - k)_{+}^{q_{1}(x)} d\sigma$$

$$\leq \min \left[\left(\frac{16K}{k^{q_{0}^{-}(1-\hat{\eta})}} \right)^{-\frac{1}{\delta_{1}}} b^{-\frac{1}{\delta_{1}^{2}}}, \left(\frac{16K}{k^{q_{0}^{-}(1-\hat{\eta})}} \right)^{-\frac{1}{\delta_{2}}} b^{-\frac{1}{\delta_{1}\delta_{2}} - \frac{\delta_{2} - \delta_{1}}{\delta_{2}^{2}}} \right].$$
(3.23)

Relation (3.23) is clearly satisfied if

$$\int_{\Omega} u_{+}^{q_{0}(x)} dx + \int_{\Gamma} u_{+}^{q_{1}(x)} d\sigma
\leq \min \left[\left(\frac{16K}{k^{q_{0}^{-}(1-\hat{\eta})}} \right)^{-\frac{1}{\delta_{1}}} b^{-\frac{1}{\delta_{1}^{2}}}, \left(\frac{16K}{k^{q_{0}^{-}(1-\hat{\eta})}} \right)^{-\frac{1}{\delta_{2}}} b^{-\frac{1}{\delta_{1}\delta_{2}} - \frac{\delta_{2} - \delta_{1}}{\delta_{2}^{2}}} \right].$$
(3.24)

Hence, if we choose k such that

$$k = \left(1 + (16K)^{\frac{1}{q_0^-(1-\hat{\eta})}} b^{\frac{1}{\delta_1 q_0^-(1-\hat{\eta})} + \frac{\delta_2 - \delta_1}{\delta_2 q_0^-(1-\hat{\eta})}}\right) \times \left(1 + \int_{\Omega} u_+^{q_0(x)} dx + \int_{\Gamma} u_+^{q_1(x)} d\sigma\right)^{\frac{\delta_2}{q_0^-(1-\hat{\eta})}},$$
(3.25)

then (3.24) and in particular (3.23) are satisfied. Since $k_n \to 2k$ as $n \to \infty$ we obtain

$$\mathop{\operatorname{ess\,sup}}_\Omega u \leq 2k \quad \text{and} \quad \mathop{\operatorname{ess\,sup}}_\Gamma u \leq 2k$$

with k given in (3.25). "

REFERENCES

- K. Ho and I. Sim, Corrigendum to "Existence and some properties of solutions for degenerate elliptic equations with exponent variable" [Nonlinear Anal. 98 (2014), 146–164], Nonlinear Anal., 128 (2015), 423–426.
- [2] P. Winkert and R. Zacher, A priori bounds for weak solutions to elliptic equations with nonstandard growth, Discrete Contin. Dyn. Syst. Ser. S 5, 4 (2012), 865–878.

Received for publication September 2015.

E-mail address: winkert@math.tu-berlin.de E-mail address: rico.zacher@uni-ulm.de