
Chapter 28
The Fučík Spectrum for the Negative
p-Laplacian with Different Boundary
Conditions

Dumitru Motreanu and Patrick Winkert

Abstract This chapter represents a survey on the Fučík spectrum of the negative
p-Laplacian with different boundary conditions (Dirichlet, Neumann, Steklov, and
Robin). The close relationship between the Fučík spectrum and the ordinary spec-
trum is briefly discussed. It is also pointed out that for every boundary condition
there exists a first nontrivial curve C in the Fučík spectrum which has important
properties such as Lipschitz continuity, being decreasing and a certain asymptotic
behavior depending on the boundary condition. As a consequence, one obtains a
variational characterization of the second eigenvalue λ2 of the negative p-Laplacian
with the corresponding boundary condition. The applicability of the abstract results
is illustrated to elliptic boundary value problems with jumping nonlinearities.
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28.1 Introduction

Given a bounded domain Ω ⊂ R
N , let T be a selfadjoint linear operator on L2(Ω)

with compact resolvent and eigenvalues

0 < λ0 < λ1 < · · · < λk < · · · .

Dedicated to Professor Themistocles M. Rassias on the occasion of his 60th birthday.

D. Motreanu (�)
Département de Mathématiques, Université de Perpignan, Avenue Paul Alduy 52,
66860 Perpignan Cedex, France
e-mail: motreanu@univ-perp.fr

P. Winkert
Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin,
Germany
e-mail: winkert@math.tu-berlin.de

P.M. Pardalos et al. (eds.), Nonlinear Analysis, Springer Optimization and Its
Applications 68, In Honor of Themistocles M. Rassias on the Occasion of his 60th Birthday,
DOI 10.1007/978-1-4614-3498-6_28, © Springer Science+Business Media, LLC 2012

471

mailto:motreanu@univ-perp.fr
mailto:winkert@math.tu-berlin.de
http://dx.doi.org/10.1007/978-1-4614-3498-6_28


472 D. Motreanu and P. Winkert

The so-called Fučík spectrum1 Σ of T is defined as the set of all pairs (a, b) ∈ R
2

such that the equation

T u = au+ − bu− (28.1)

has a nontrivial solution. Here we denoted u+ = max(u,0) (the positive part of u)
and u− = max(−u,0) (the negative part of u). Fučík [20] and Dancer [15] were the
first authors who recognized that the set Σ plays an important part in the study of
semilinear equations of type

T u = g(x,u),

where g : Ω × R → R is a Carathéodory function with jumping nonlinearities sat-
isfying

g(x, s)

s
→ a as s → +∞,

g(x, s)

s
→ b as s → −∞.

Initially, a systematic study of this spectrum was developed by Fučík [21] in the case
of the negative Laplacian in one-dimension, i.e., for N = 1, with periodic boundary
condition. He proved that this spectrum is composed of two families of curves in R

2

emanating from the points (λk, λk) determined by the eigenvalues λk of the negative
periodic Laplacian in one-dimension. Afterwards, many authors studied the Fučík
spectrum Σ2 for the negative Laplacian −Δ with Dirichlet boundary condition on a
bounded domain Ω ⊂ R

N (see [2, 5, 14, 24, 25, 28, 29, 34, 35], and the references
therein). In this respect, we mention that Dancer [15] proved that the lines R× {λ1}
and {λ1} × R are isolated in Σ2, while de Figueiredo and Gossez [16] constructed
a first nontrivial curve in Σ2 passing through (λ2, λ2) and characterized it varia-
tionally. Here λ1 and λ2 respectively denote the first and second eigenvalue of −Δ

with Dirichlet boundary condition. The next step in this direction was to investigate
the Fučík spectrum Σp of the negative p-Laplacian (or p-Laplace operator) −Δp

aiming to extend the results known for −Δ. We recall that −Δp is given by

−Δpu = −div
(|∇u|p−2∇u

)
, 1 < p < +∞,

which is a nonlinear operator if p �= 2. If p = 2, it reduces to the negative Laplacian
−Δ. First, Drábek [18] has shown for p �= 2 and in one-dimension that Σp has
similar properties as in the linear case, i.e., for p = 2.

The aim of this chapter is to give an overview about the Fučík spectrum of the
negative p-Laplacian −Δp with 1 < p < +∞ and different boundary conditions on
a bounded domain Ω in R

N .
Let V be a closed subspace of the Sobolev space W 1,p(Ω) such that W

1,p

0 (Ω) ⊆
V ⊆ W 1,p(Ω) and let V ∗ denote the dual space with the duality pairing 〈·, ·〉 be-
tween V and V ∗. It is well known that the operator −Δp : V → V ∗ is bounded,

1Svatopluk Fučík (21st October 1944 – 18th May 1979) was a Czech mathematician.
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continuous, pseudomonotone, and has the (S+)-property (i.e., from un ⇀ u in V

and lim supn→+∞〈−Δpun,un − u〉 ≤ 0 it follows that un → u in V ). Note that on
W 1,p(Ω) we have

〈−Δpu,v〉 =
∫

Ω

|∇u|p−2∇u · ∇v dx, v ∈ W 1,p(Ω).

We refer to [6] for various nonlinear boundary problems involving −Δp .
The Fučík spectrum of −Δp depends strongly on the choice of the boundary

condition related to Ω . Specifically, the set Σp (resp., Θp) is called the Fučík spec-
trum of −Δp with homogeneous Dirichlet (resp., Neumann) boundary condition if
for all pairs (a, b) ∈ Σp (resp., Θp) the equation

−Δpu = a
(
u+)p−1 − b

(
u−)p−1 in Ω (28.2)

with the boundary condition

u = 0 on ∂Ω

(
resp.,

∂u

∂ν
= 0 on ∂Ω

)
(28.3)

has a nontrivial weak solution. In (28.3), ∂u/∂ν stands for the conormal derivative
on ∂Ω . If we replace (28.3) by

∂u

∂ν
= −β|u|p−2u on ∂Ω

with fixed β ≥ 0, we speak of the Fučík spectrum of −Δp with Robin boundary
condition denoted by Σ̂p . Finally, we write Σ̃p for the Fučík spectrum of −Δp

with Steklov boundary condition, which is formed by all (a, b) ∈R
2 provided

−Δpu = −|u|p−2u in Ω,
∂u

∂ν
= a

(
u+)p−1 − b

(
u−)p−1 on ∂Ω

is solved nontrivially.
These spectra have intensively been studied in the last years. We will present in

Sects. 28.2 through 28.5 some of their basic properties. Namely, it will be shown
that there exists a close relationship between these spectra and the ordinary spec-
trum of −Δp subject to different boundary conditions. A fundamental fact is that
every Fučík spectrum introduced above contains a first nontrivial curve C which
is Lipschitz continuous and decreasing. However, the asymptotic behavior of these
curves is different relative to the imposed boundary condition. Furthermore, we will
indicate some applications of these spectra to certain nonlinear elliptic problems
with jumping nonlinearities. Subtle phenomena can occur due to the interaction of
the involved nonlinearities with these spectra, in particular resonance to spectral el-
ements can appear. We emphasize that these problems and results can be considered
beyond the setting of quasilinear elliptic equations. For instance, the field of varia-
tional inequalities, as those describing obstacle problems, offers a rich and flexible
framework which is highly interesting for its applicability. For different classes of



474 D. Motreanu and P. Winkert

variational inequalities and their applications, we refer to the volume by Pardalos,
Rassias, and Khan [33].

28.2 Dirichlet Boundary Condition

The Fučík spectrum of the negative p-Laplacian −Δp with homogeneous Dirichlet
boundary condition is defined as the set Σp of those (a, b) ∈R

2 such that

−Δpu = a
(
u+)p−1 − b

(
u−)p−1 in Ω,

u = 0 on ∂Ω
(28.4)

has a nontrivial (weak) solution u, which means that u ∈ W
1,p

0 (Ω),u �≡ 0, and it
satisfies the equation

∫

Ω

|∇u|p−2∇u · ∇v dx =
∫

Ω

(
a
(
u+)p−1 − b

(
u−)p−1)

v dx, ∀v ∈ W
1,p

0 (Ω).

We note that if a = b = λ, problem (28.4) reduces to

−Δpu = λ|u|p−2u in Ω,

u = 0 on ∂Ω,
(28.5)

which is called the Dirichlet eigenvalue problem with respect to the negative p-
Laplacian −Δp . It is known that the first eigenvalue λ1 of (28.5) is positive, sim-
ple, and its corresponding eigenfunctions have constant sign (see Anane [1] and
Lindqvist [23]). In fact, the spectrum σ(−Δp) of the negative p-Laplacian −Δp

associated to (28.5) includes an unbounded sequence of eigenvalues (λk), k ∈ N,
called the variational eigenvalues, which fulfills

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · → +∞.

The variational eigenvalues satisfy min–max characterizations.
The Fučík spectrum Σp of the negative p-Laplacian −Δp with homogeneous

Dirichlet boundary condition contains the two lines λ1 ×R and R×λ1. Additionally,
Σp contains the sequence of points (λk, λk), k ∈ N, as can be easily seen from (28.4)
and (28.5) by writing u = u+ − u−. The Fučík spectrum Σp has been intensively
studied by Cuesta, de Figueiredo, and Gossez [13] in the general case of 1 < p <

+∞ through a variational approach using the mountain-pass theorem. In order to
give a brief overview of their results, let us set for every s ≥ 0,

Js(u) =
∫

Ω

|∇u|p dx − s

∫

Ω

(
u+)p

dx, u ∈ W
1,p

0 (Ω).
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The function Js is of class C1 on W
1,p

0 (Ω). Denote J̃s = Js |S , with S given by

S =
{
u ∈ W

1,p

0 (Ω) :
∫

Ω

|u|p = 1

}
.

Since S is a C1-submanifold of W
1,p

0 (Ω), it follows that J̃s is of class C1 on S in
the sense of manifolds. Then the curve s ∈ R

+ �→ (s + c(s), c(s)) ∈ R
2 described

by the min–max values

c(s) = inf
γ∈Γ

max
u∈γ [−1,+1]

J̃s(u),

where

Γ = {
γ ∈ C

([−1,1], S) : γ (−1) = −ϕ1 and γ (1) = ϕ1
}
, (28.6)

is contained in Σp (see [13, Theorem 2.10]). In (28.6), ϕ1 denotes the eigenfunction
of (28.5) corresponding to λ1 satisfying ϕ1 > 0 in Ω and ‖ϕ1‖p = 1. Taking into
account that Σp is symmetric with respect to the diagonal of the plane, it turns out
that the curve

C := {(
s + c(s), c(s)

)
,
(
c(s), s + c(s)

) : s ≥ 0
}

(28.7)

is contained in Σp . It is shown in [13, Theorem 3.1] that C given in (28.7) is indeed
the first nontrivial curve in Σp , which means that the first point in Σp belonging
to the parallel to the diagonal drawn through a point of (R+ × {λ1}) × ({λ1} × R)

must be on C (see Fig. 28.1). As a consequence, we infer that the curve C passes
through (λ2, λ2). In conjunction with the description of C in (28.7) and the min–
max formula for c(s), this yields that λ2 can be variationally characterized as follows

λ2 = inf
γ∈Γ

max
u∈γ [−1,+1]

∫

Ω

|∇u|p dx, (28.8)

with Γ introduced in (28.6). Moreover, the curve C in (28.7) is Lipschitz continuous
and decreasing as shown in [13, Proposition 4.1]. Finally, we mention that the limit
of c(s) as s → +∞ is equal to the first eigenvalue λ1 of (28.5), which is proven in
[13, Proposition 4.4].

The work of Cuesta, de Figueiredo, and Gossez [13] was the first paper that gave
a complete study of the beginning of the Fučík spectrum of −Δp with homogeneous
Dirichlet boundary condition and their variational approach was the starting point
for investigating the Fučík spectrum under other boundary conditions (Neumann,
Steklov, Robin, see the sections below). The knowledge of the properties of Σp ,
especially the existence of the first nontrivial curve C and its representation, has
demonstrated to be very useful in obtaining multiple solutions results for elliptic
equations involving the negative p-Laplacian −Δp and jumping nonlinearities.
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Fig. 28.1 The first nontrivial
curve C of the Fučík
spectrum of the negative
p-Laplacian with Dirichlet
boundary condition. Problem
(28.9) has multiple solutions
if the pair (a, b) is above the
curve C

In order to illustrate the applicability of the Fučík spectrum Σp , we consider the
following equation with homogeneous Dirichlet boundary condition

−Δpu = a
(
u+)p−1 − b

(
u−)p−1 + g(x,u) in Ω, (28.9)

where g : Ω ×R →R is a Carathéodory function satisfying

lim
t→0

g(x, t)

|t |p−1
= 0 uniformly for a.a. x ∈ Ω.

In Carl and Perera [12], it is proven that problem (28.9) has at least three nontrivial
solutions provided the point (a, b) ∈R

2 lies above the first nontrivial curve C in Σp

constructed in (28.7). Moreover, a complete sign information for the three solutions
is available: two solutions have opposite constant sign and the third one is sign-
changing (nodal solution). This information is obtained by means of the method of
sub-supersolution whose application to problem (28.9) strongly relies on the hy-
pothesis that the point (a, b) ∈ R

2 is situated above the first nontrivial curve C in
Σp . The graphic in Fig. 28.1 marks the position of the point (a, b) ∈ R

2 entering
(28.9) and demonstrates the qualitative behavior of the curve C .

Multiple solutions results concerning problems of type (28.9) and using the rep-
resentation of the first nontrivial curve C , in particular the characterization of the
second eigenvalue λ2 of −Δp on W

1,p

0 (Ω) as stated in (28.8), can be found in nu-
merous publications; see, for example, [7, 10, 30]. We also refer to versions of such
results in the case of nonsmooth potential associated to (28.9) (see, e.g., [8, 9, 11]).
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28.3 Neumann Boundary Condition

In this section, we give a brief overview of the Fučík spectrum of the negative p-
Laplacian −Δp with Neumann boundary condition. In order to avoid misunder-
standings, we point out that a Neumann boundary condition stands in this context
for a homogeneous Neumann condition. Inhomogeneous Neumann boundary con-
ditions are treated in Sect. 28.4 (Steklov boundary condition) and Sect. 28.5 (Robin
boundary condition). Let us first give the relevant definition of this spectrum. The
Fučík spectrum of −Δp with Neumann boundary condition, denoted by Θp , con-
sists of all pairs (a, b) ∈R

2 such that

−Δpu = a
(
u+)p−1 − b

(
u−)p−1 in Ω,

∂u

∂ν
= 0 on ∂Ω,

(28.10)

is solved nontrivially, meaning that u ∈ W 1,p(Ω),u �≡ 0, and verifies the equality

∫

Ω

|∇u|p−2∇u · ∇v dx =
∫

Ω

(
a
(
u+)p−1 − b

(
u−)p−1)

v dx, ∀v ∈ W 1,p(Ω).

In (28.10), ∂u/∂ν denotes the conormal derivative, that is, ∂u/∂ν = |∇u|p−2∇u · ν,
where ν is the unit outward normal to ∂Ω . Problem (28.10) is a special case of
the Robin Fučík spectrum that will be introduced in Sect. 28.5. Clearly, in case
where a = b = λ, problem (28.10) becomes the Neumann eigenvalue problem of
the negative p-Laplacian given by

−Δpu = λ|u|p−2u in Ω,

∂u

∂ν
= 0 on ∂Ω.

(28.11)

As proved in [22], the first eigenvalue λ1 = 0 of (28.11) is simple with the corre-
sponding eigenspace R, so all eigenfunctions associated to λ1 do not change sign in
Ω , which does not happen for the higher order eigenvalues. It is easily seen that Θp

contains in particular (0,0), (λ2, λ2) (λ2 is the second eigenvalue of (28.11)) and
the two lines 0 ×R and R× 0. The nontrivial part of Θp is denoted by Θ̃p , that is,
Θ̃p = Θp \ ((0 ×R) ∪ (R× 0)), which is obviously contained in R

+ ×R
+.

The basic paper dealing with the Fučík spectrum of the negative Neumann p-
Laplacian is due to Arias, Campos, and Gossez [4]. The construction of a first non-
trivial curve in Θ̃p can be done similarly to the Dirichlet Fučík spectrum. To this
end, for every s ≥ 0, let Js : W 1,p(Ω) → R be the functional given by

Js(u) =
∫

Ω

|∇u|p dx − s

∫

Ω

(
u+)p

dx
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and let J̃s be its restriction to

S =
{
u ∈ W 1,p(Ω) :

∫

Ω

|u|p = 1

}
.

Notice that S is a C1-submanifold of W 1,p(Ω), so J̃s is of class C1 on S in the
sense of manifolds. This enables us to consider the notions of critical points and
critical values for the functional J̃s . Then, the first nontrivial curve C of Θp can be
determined as in (28.7), whereas

c(s) = inf
γ∈Γ

max
u∈γ [−1,+1]

J̃s(u),

Γ = {
γ ∈ C

([−1,1], S) : γ (−1) = −ϕ1 and γ (1) = ϕ1
}
.

Here we have ϕ1 = 1/|Ω|1/p , so ‖ϕ1‖p = 1, with |Ω| denoting the measure of Ω .
Arguing as in the case of the Dirichlet Fučík spectrum Σp , we see that C passes
through (λ2, λ2) (λ2 denotes the second eigenvalue of (28.11)). Consequently, we
get a variational expression of λ2 as

λ2 = inf
γ∈Γ

max
u∈γ [−1,+1]

∫

Ω

|∇u|p dx,

with Γ introduced above. An important difference between the Dirichlet Fučík spec-
trum Σp and the Neumann Fučík spectrum Θp consists in the asymptotic behavior
of the first nontrivial curve C . In the Neumann case, to describe the asymptotic
properties of the curve C it is required to consider the situations p ≤ N and p > N

separately. In [4, Theorem 2.3 and Theorem 2.6], it is shown that

lim
s→∞ c(s) =

{
λ1 = 0 if p ≤ N,

λ if p > N,
(28.12)

where

λ = inf

{∫

Ω

|∇u|p dx : u ∈ W 1,p(Ω),‖u‖Lp(Ω) = 1, u vanishes somewhere in Ω

}
.

The definition of λ is meaningful because for p > N the elements u ∈ W 1,p(Ω) are
continuous functions on Ω .

An extension of the previous results to the Fučík spectrum of the negative Neu-
mann p-Laplacian with weights has been achieved by Arias, Campos, Cuesta, and
Gossez [3]. Therein, for the weights given by the measurable functions m(x) and
n(x) on Ω , the authors consider the set Σ of all pairs (a, b) ∈R

2 such that

−Δpu = am(x)
(
u+)p−1 − bn(x)

(
u−)p−1 in Ω,

∂u

∂ν
= 0 on ∂Ω,

(28.13)
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has a nontrivial solution. Under suitable assumptions on the data it is shown that Σ

contains a first nontrivial curve.
Recently, Motreanu and Tanaka [31] used the results presented in the first part of

this section to study quasilinear elliptic equations of the form

−divA(x,∇u) = f (x,u) in Ω,

∂u

∂ν
= 0 on ∂Ω,

(28.14)

where, in the principal part of the equation, one has an operator A ∈ C0(Ω ×
R

N,RN) ∩ C1(Ω × (RN \ {0}),RN) of the form A(x,y) = a(x, |y|)y, with
a(x, t) > 0 for all (x, t) ∈ Ω × (0,+∞), which is strictly monotone with re-
spect to the second variable and fulfills some further regularity assumptions, while
f : Ω ×R → R is a Carathéodory function having a representation similar to (28.9).
They prove existence results for multiple solutions to (28.14), the properties of the
solution set depending on conditions related to the first nontrivial curve C in the
Neumann Fučík spectrum Θp . These results apply in particular to the case of the
Neumann p-Laplacian in (28.14), i.e., when divA(x,∇u) = Δpu.

28.4 Steklov Boundary Condition

Now we focus on the Steklov Fučík spectrum of −Δp which addresses −Δp with
a special nonhomogeneous boundary condition, known as Steklov boundary condi-
tion. This spectrum is defined as the set Σ̃p of all pairs (a, b) ∈R

2 such that

−Δpu = −|u|p−2u in Ω,

∂u

∂ν
= a

(
u+)p−1 − b

(
u−)p−1 on ∂Ω,

(28.15)

has a weak solution u �≡ 0. Let us recall that u ∈ W 1,p(Ω) is a weak solution of
(28.15) if it satisfies the equality

∫

Ω

|∇u|p−2∇u · ∇v dx = −
∫

Ω

|u|p−2uv dx +
∫

∂Ω

(
a
(
u+)p−1 − b

(
u−)p−1)

v dσ

for all v ∈ W 1,p(Ω). Here the notation dσ stands for the (N − 1)-dimensional sur-
face measure. The name of this spectrum comes from the fact that if a = b = λ,
(28.15) becomes the so-called Steklov eigenvalue problem, namely

−Δpu = −|u|p−2u in Ω,

∂u

∂ν
= λ|u|p−2u on ∂Ω.

(28.16)
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The fundamental difference with respect to the Dirichlet and Neumann Fučík spectra
is that in the Steklov case a boundary integral is involved, a fact that substantially
modifies the analysis regarding the relevant values a and b. The Steklov eigen-
value problem (28.16) was first studied by Martínez and Rossi [26] (see also Lê
[22]). They showed that the first eigenvalue is positive, simple, and every eigen-
function corresponding to the first eigenvalue does not change sign in Ω . Actu-
ally, we may find an eigenfunction associated to the first eigenvalue λ1 belong-
ing to int(C1(Ω)+), where int(C1(Ω)+) denotes the interior of the positive cone
C1(Ω)+ = {u ∈ C1(Ω) : u(x) ≥ 0, ∀x ∈ Ω} in the Banach space C1(Ω), which is
nonempty and given by

int
(
C1(Ω)+

) = {
u ∈ C1(Ω) : u(x) > 0,∀x ∈ Ω

}
.

Furthermore, in [19] it is established that there exists a sequence of eigenvalues λn

of (28.16) such that λn → +∞ as n → +∞. The Steklov Fučík spectrum defined
in (28.15) has been studied by Martínez and Rossi [27]. Their approach is mainly
based on the ideas of Cuesta, de Figueiredo, and Gossez [13]. Precisely, for each
s ≥ 0, one defines a C1 functional Js : W 1,p(Ω) → R by

Js(u) =
∫

Ω

|∇u|p dx +
∫

Ω

|u|p dx − s

∫

∂Ω

(
u+)p

dσ.

Restricting Js to

S =
{
u ∈ W 1,p(Ω) :

∫

∂Ω

|u|p dσ = 1

}
,

one obtains a C1-functional J̃s on the C1-submanifold S of W 1,p(Ω). Then, the
first nontrivial curve in Σ̃p is expressed as

C = {(
s + c(s), c(s)

)
,
(
c(s), s + c(s)

) : s ≥ 0
}
,

where

c(s) = inf
γ∈Γ

max
u∈γ [−1,+1]

J̃s(u),

Γ = {
γ ∈ C

([−1,1], S) : γ (−1) = −ϕ1 and γ (1) = ϕ1
}

(cf. [27, Theorem 2.1]), where ϕ1 ∈ int(C1(Ω)+) with ‖ϕ1‖p = 1. In particular, we
derive the following variational characterization of the second eigenvalue λ2 of the
Steklov eigenvalue problem (28.16) which results in

λ2 = inf
γ∈Γ

max
u∈γ [−1,+1]

∫

Ω

(|∇u|p + |u|p)
dx. (28.17)

As before, the first nontrivial curve C is Lipschitz continuous and decreasing (cf.
[27, Proposition 4.1]). Similar to the Neumann Fučík spectrum, in order to state
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the asymptotic properties of C , which means, in fact, determining the limit of c(s)

as s → +∞, it is needed to take into account two cases, p ≤ N and p > N . The
following holds (see [27, Theorem 4.1])

lim
s→∞ c(s) =

{
λ1 if p ≤ N,

λ > λ1 if p > N,

where

λ = inf
u∈L

max
r∈R

‖rϕ1 + u‖p

W 1,p(Ω)

‖rϕ1 + u‖p

Lp(∂Ω)

with

L = {
u ∈ W 1,p(Ω) : u vanishes somewhere on ∂Ω

}
.

As an application of the results in [27], consider the following nonlinear elliptic
equation subject to Steklov-type boundary condition with perturbation

−Δpu = f (x,u) − |u|p−2u in Ω,

∂u

∂ν
= a

(
u+)p−1 − b

(
u−)p−1 + g(x,u) on ∂Ω,

(28.18)

for Carathéodory functions f : Ω ×R→ R and g : ∂Ω ×R →R which are bounded
on bounded sets and satisfy

(A) lim
s→0

f (x, s)

|s|p−1
= 0 uniformly for a.a. x ∈ Ω ,

(B) lim
s→0

g(x, s)

|s|p−1
= 0 uniformly for a.a. x ∈ ∂Ω ,

(C) lim|s|→∞
f (x, s)

|s|p−2s
= −∞ uniformly for a.a. x ∈ Ω ,

(D) lim|s|→∞
g(x, s)

|s|p−2s
= −∞ uniformly for a.a. x ∈ ∂Ω .

(E) There exists δf > 0 such that f (x,s)

|s|p−2s
≥ 0 for all 0 < |s| ≤ δf and for a.a. x ∈ Ω .

(F) g satisfies the condition
∣∣g(x1, s1) − g(x2, s2)

∣∣ ≤ L
[|x1 − x2|α + |s1 − s2|α

]
,

for all pairs (x1, s1), (x2, s2) in ∂Ω × [−M0,M0], where M0 is a positive con-
stant and α2 ∈ (0,1].

If the point (a, b) is above the first nontrivial curve C in Σ̃p , problem (28.18) pos-
sesses three nontrivial solutions: one solution with positive sign, one solution with
negative sign, and the third one being sign-changing (cf. Winkert [38], see also [36]
if a = b = λ > λ2 using the representation in (28.17)). An extension of this result
for a nonsmooth problem corresponding to (28.18) can be found in Winkert [37].
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28.5 Robin Boundary Condition

Finally, we discuss the Fučík spectrum of −Δp with a Robin boundary condition.
To this end, we consider weak solutions u ∈ W 1,p(Ω) of the problem

−Δpu = a
(
u+)p−1 − b

(
u−)p−1 in Ω,

∂u

∂ν
= −β|u|p−2u on ∂Ω,

(28.19)

meaning that
∫

Ω

|∇u|p−2∇u · ∇v dx + β

∫

∂Ω

|u|p−2uv dσ =
∫

Ω

(
a
(
u+)p−1 − b

(
u−)p−1)

v dx

for all v ∈ W 1,p(Ω). In the formulation of (28.19), the parameter β is supposed to be
a fixed, nonnegative constant. The Fučík spectrum of the negative p-Laplacian with
Robin boundary condition is defined as the set Σ̂p of all pairs (a, b) ∈R

2 for which
a nontrivial solution u ∈ W 1,p(Ω) of (28.19) exists. Clearly, if β = 0, it reduces to
the Fučík spectrum Θp of the negative Neumann p-Laplacian (see Sect. 28.3). As
before, the special case a = b = λ leads to

−Δpu = λ|u|p−2u in Ω,

∂u

∂ν
= −β|u|p−2u on ∂Ω,

(28.20)

which is the Robin eigenvalue problem of the negative p-Laplacian.
Problem (28.20) was studied in the important publication of Lê [22] devoted to

the eigenvalue problems for the negative p-Laplacian. In the Robin case, he proved
similar results as they hold for the other eigenvalue problems. The first eigenvalue
in (28.20), denoted as usually by λ1, is simple, isolated, and can be variationally
characterized as follows:

λ1 = inf
u∈W 1,p(Ω)

{∫

Ω

|∇u|p dx + β

∫

∂Ω

|u|pdσ :
∫

Ω

|u|p dx = 1

}
.

It is also known that the eigenfunctions corresponding to λ1 are of constant sign and
belong to C1,α(Ω) for some 0 < α < 1.

Recently in [32], the authors of the present text investigated the Fučík spec-
trum introduced in (28.19) with the aim to complete the picture of the Fučík
spectrum involving the negative p-Laplacian by extending to the case of Robin
boundary condition the information previously known for Dirichlet problem (see
Sect. 28.2), Steklov problem (see Sect. 28.4), and homogeneous Neumann problem
(see Sect. 28.3).

The approach in [32] is variational relying on the C1-functional associated to
problem (28.19), which is expressed on W 1,p(Ω) by

J (u) =
∫

Ω

|∇u|p dx + β

∫

∂Ω

|u|p dσ −
∫

Ω

(
a
(
u+)p + b

(
u−)p)

dx.
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It is clear that the critical points of J are exactly the (weak) solutions of prob-
lem (28.19). In comparison with the corresponding functionals related to the Fučík
spectrum for the Dirichlet and Steklov problems, the functional J exhibits an es-
sential difference because its expression does not incorporate the norm of the space
W 1,p(Ω), and it is also different from the functional used to treat the Neumann
problem because it has the additional boundary term involving β .

The results in [32] can be summarized as follows. Applying various ideas and
techniques on the pattern of [4, 13, 27], it is shown that Σ̂p contains a first nontrivial
curve, denoted again by C , and expressed as

C = {(
s + c(s), c(s)

)
,
(
c(s), s + c(s)

) : s ≥ 0
}
,

where c(s) is given by

c(s) = inf
γ∈Γ

max
u∈γ [−1,+1]

J̃s(u),

Γ = {
γ ∈ C

([−1,1], S) : γ (−1) = −ϕ1 and γ (1) = ϕ1
}
,

(see [32, Theorem 3.3]), with ϕ1 standing for the eigenfunction of (28.20) associated
to λ1 which is normalized as ‖ϕ1‖Lp(Ω) = 1 and satisfies ϕ1 > 0 on Ω . In the above
formula of c(s), J̃s is equal to the restriction of the C1-functional Js : W 1,p(Ω) →
R given by

Js(u) =
∫

Ω

|∇u|p dx + β

∫

∂Ω

|u|p dσ − s

∫

Ω

(
u+)p

dx

to the C1-submanifold

S =
{
u ∈ W 1,p(Ω) :

∫

Ω

|u|p dx = 1

}

of W 1,p(Ω). It is shown in [32, Proposition 4.2] that the curve C is Lipschitz con-
tinuous and decreasing. The asymptotic behavior of C requires, as in the Neumann
and Steklov cases, some more considerations. In case p ≤ N , the following holds:

lim
s→+∞ c(s) = λ1

(see [32, Theorem 4.3]). If p > N , one can suppose that β > 0 (the case β = 0 is
included in Sect. 28.3, see (28.12)). In this respect, the key idea is to work with an
adequate equivalent norm on the space W 1,p(Ω). So, for β > 0 one introduces the
norm

‖u‖β = ‖∇u‖Lp(Ω) + β‖u‖Lp(∂Ω), (28.21)

which is an equivalent norm on W 1,p(Ω) (see also Deng [17, Theorem 2.1]). Then
in [32, Theorem 4.4] one obtains that the limit of c(s) as s → +∞ is

λ = inf
u∈L

max
r∈R

∫
Ω

|∇(rϕ1 + u)|p dx + β
∫
∂Ω

|rϕ1 + u|p dσ
∫
Ω

|rϕ1 + u|p dx
,
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where

L = {
u ∈ W 1,p(Ω) : u vanishes somewhere in Ω,u �≡ 0

}
.

Moreover, there holds λ > λ1.
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