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Abstract

In this paper we study logarithmic double phase problems with superlinear right-hand sides
and nonlinear Neumann boundary condition. In particular, we show that the problem under
consideration has a least energy sign-changing solution. The proof is based on the mini-
mization of the energy functional over the related nodal Nehari manifold along with the
Poincaré—Miranda existence theorem. As a result of independent interest, we prove the exis-
tence of a new and very general equivalent norm in the logarithmic Musielak—Orlicz Sobolev
space. In addition, we present a priori bounds for a large class of logarithmic double phase
problems involving convection terms for critical and subcritical situations.

Mathematics Subject Classification 35A01 - 35J20 - 35J25 - 35J62 - 35Q74

1 Introduction

In the last decade, the double phase operator has gained interest in many different research
areas. This operator is defined by

div (|VulP72Vu + p(x)|Vulf™>Vu), 1<p<gq, (1.1)
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and arises from the study of general reaction-diffusion equations with nonhomogeneous
diffusion and transport aspects. Applications can be found in biophysics, plasma physics
and chemical reactions, with double phase features, where the function u corresponds to
the concentration term, and the differential operator represents the diffusion coefficient. The
related integral functional to (1.1) has the form

[Vul? [Vul|?
J (1) :/ <7 +u(x)—> dx, (1.2)
Q p q

for a bounded domain ¢ RY, N > 2, with smooth boundary, and appeared for the first
time in a work by Zhikov [54] in order to describe models for anisotropic materials. A first
mathematical treatment of (1.2) concerning the regularity of local minimizers has been done
in the groundbreaking papers by Baroni—Colombo—Mingione [4, 6] and Colombo—Mingione
[14,15], see also the works by Marcellini [35, 36] concerning general (p, ¢)-growth as well as
the contributions by Beck—Mingione [7] and De Filippis—Mingione [17] for nonautonomous
integrals. We also refer to the overview article by Mingione—Réadulescu [37] about recent
developments in problems with nonstandard growth and nonuniform ellipticity. Furthermore,
other applications related to the double phase operator and in general for problems with non-
standard growth can be found in the works by Bahrouni—Rddulescu—Repovs [3] on transonic
flows, Benci—D’ Avenia—Fortunato—Pisani [8] on quantum physics, Cherfils—I1’yasov [13]
for reaction diffusion systems and Zhikov [55] on the Lavrentiev gap phenomenon, the ther-
mistor problem and the duality theory. In this direction we also refer to the recent paper
by Borowski—Chlebicka—De Filippis—Miasojedow [10] about the absence and presence of
Lavrentiev’s phenomenon for double phase functionals.

In a recent work by Arora—Crespo-Blanco—Winkert [2] a new double phase operator with
logarithmic perturbation of the form

div KC(u) = div (|Vu|1’<x)*2w

+u(x) [log(e + |Vu)) + ﬁ] |Vu|q(x)_2Vu) 4
q(x)(e+ |Vul) ’
has been introduced, while the corresponding energy functional is given by
IVMIP(“‘) |Vu|q(x)
U+ / — + ux) log(e + |Vul) | dx, (1.4)
e\ P& q(x)

where @ € RV, N > 2, is a bounded domain with Lipschitz boundary 9<2, e stands for
Euler’s number, p,g € C(Q) with 1 < p(x) < g(x) forall x € Q and u € L' (Q).
Here, u belongs to the Musielak—Orlicz Sobolev space W Tz () which is generated by
the generalized N-function

Hiog(x, 1) = 17 + ()19 log(e +1) forall (x,7) € @ x [0,00).  (L5)

If p = g are constant, then the functional (1.4) has the shape (we ignore the constants in
front)

W / [|Va)|p + u(x)|Vol? log(e + |Va)|)] dx. (1.6)
Q

The functional (1.6) has been studied by Baroni—-Colombo—Mingione [5] in order to prove
the local Holder continuity of the gradient of local minimizers of (1.6) provided 0 < u(-) €
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C%%(Q). Recently, De Filippis—Mingione [18] considered the functional
w.—>/ [IVollog(l + |Vo|) 4+ pu(x)|Vw|?] dx, (1.7)
Q

and proved the local Holder continuity of the gradients of local minimizers of (1.7) whenever
0<u()e Cor(@Q)and1 < g <1+ % ‘We point out that (1.7) has its origin in functionals
with nearly linear growth given by

u)l—)/ Vol log(1 + |Vol) dx, (1.8)
Q

which has been discussed as a particular case by Fuchs—Mingione [27]. The authors proved
that local minimizers of (1.8) have Holder continuous first derivatives. It should be noted that
functionals of the form (1.8) appear, for example, in the theory of plasticity with logarithmic
hardening, see, Seregin—Frehse [45] and Fuchs—Seregin [28].

In this paper we are interested in elliptic equations driven by the logarithmic double phase
operator (1.3) and with superlinear right-hand sides in the domain and on the boundary. In
addition, we also prove some results of independent interest related to the underlying function
space W17tz (Q2) as well as a priori bounds for related weak solutions of problems involving
(1.3). To be more precise, in the first part of the paper we are interested in an appropriate
norm in the Musielak-Orlicz Sobolev space W 170z (). Indeed, we are going to prove that

s , Vu a0 [Vl
2117 74,0 = inf JA > 0: - log | e+ T dx
Q

u u |52(x)
t[o@[f" o [ ot
Q A 90 A

is an equivalent norm on w L Hiog (Q) where we allow the exponents 1<), () e C()
to be critical with respect to thgexponent 1 < p()eC(Q),thatis 1 < j(x) < p*(x) and
1 < &(x) < pi(x) for all x € 2, where

p(x)
+ u(x)

Vu
A

¢1(x)

do < 1},

pre = [ TP <N SRR e <N )
400 ifpx)y=N" " +o00 if px) > N’ '
Note that if ¢j(x) = p*(x) for some x € €, then we have to suppose that p €
1

cE@Qnc 0. MTogr (), that is, p must be log-Holder continuous, see Section 2 for the details.
Similarly, if £ (x) = p.(x) for some x € Q, then p € C(Q) N W7 (Q) for some y > N.
These restriction in the critical cases are due to the Sobolev embedding theorem for variable
exponents for which these additional regularity conditions are needed. The equivalent norm
on W1 Hioz (Q) given above seems to be the most general form for spaces generated by (1.5).

In the second part of this paper we discuss the boundedness of weak solutions of nonlinear
Neumann problems in the general form

—divK(u) = B(x,u, Vu) in Q, K@) -v=C(x,u) ondS2, (1.10)

where div K denotes the logarithmic double phase operator (1.3) while B: Q x RxRY — R
and C: 02 x R — R are Carathéodory functions that fulfill general growth conditions. We
study both the critical and the subcritical case and prove that every weak solution of (1.10)
is bounded in both L°°(2) and L*°(92). In the subcritical case we can also give an explicit
dependence of the norms on the data. The proofs of these results are mainly based on an
appropriate version of De Giorgi’s iteration along with localization arguments. Such results
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can be applied to several other problems of similar type involving the logarithmic double
phase operator and general right-hand sides.

In the last part we are interested in the existence and multiplicity of solutions of nonho-
mogeneous Neumann problems involving the operator (1.3). Precisely, for a given bounded
domain @ C RV, N > 2, with Lipschitz boundary 92, we study the equation

—div K@) + |uPP%u = f(x,u) in Q,

(1.11)
K@) -v=gx,u)—[ul”PP 2y onas,

where div K denotes the logarithmic double phase operator with variable exponents given
in (1.3), v(x) is the outer unit normal of Q at x € 92, and f: @ x R — R as well as
g: 92 x R — R are Carathéodory functions with certain conditions which will be specified
below. For r € C(2), we define

r_=minr(x), rp=maxr(x), Ci(Q={reC@:1<r_}.
xe xeQ

We suppose the following conditions:

(Hy) p,q € C4(Q) with p(x) < g(x) < (p_)xforallx € Qand 0 < pu(-) € L®(Q).
Hy) f: 2xR — Rand g: 92 x R — R are Carathéodory functions such that the
following hold, whereby F(x, 1) = [y f(x,s)ds and G(x,1) = f; g(x, s)ds:

(i) there exists r,£ € C(Q) with r, < (p_)* and £, < (p_), and constants
K1, K> > 0 such that

|f(x,0)] < K (1 4 |z|’<x>—1) fora.a.x € Q,
lg(x, D] < K> (1 + |t|‘3<x>*1) fora.a.x € 9,

and for all r € R;

(i1)
F(x,t .
im __fxn = 400 uniformly for a.a.x € €,
=200 |14+ log(e + |1])
G(x,1) .
im ———————— = 400 uniformly for a.a.x € 9.
=00 |14+ log(e + |1])
(iii)
F(x,n) .
im =0 uniformly for a.a.x € €2,
=0 |t|PX)
G(x,t)

im =0 uniformly for a.a.x € 9L;
=0 [r|P)

(iv) there exista, B8, ¢, 0 € C4(Q) with

. N
min{a_, f-} € ((f+ - p’)?’ r+) .

. N -1
min{¢, 0} € ((M - pr-) ,5+> ;
p— —1
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and K3, K4 > 0 such that

fernr =gy (14 2) Fn

0 < K3 <liminf

t—+00 |[|04(X) ’

fenr—ar (14 £) Fen

0 < K3 <liminf ;
t——00 |[|.3(X)

uniformly for a.a.x € 2 and

glx, Nt —qy (l + qL_) G(x,1)

0 < K4 <liminf

1—~+00 |[|§(X) ’

gCr.nr —qp (14 £) Geen)

0 < K4 <liminf ,
t——00 ]

uniformly for a.a.x € 92, where k = e¢/(e + tp) with 7y being the only positive
solution of 7o = elog(e + 1y), see Lemma 2.4;

Our first result is the following one.

Theorem 1.1 Let hypotheses (H,) and (H») be satisfied. Then there exist nontrivial weak
solutions ug, vo € WHMee(Q) N L% (2) of problem (1.11) such that ug > 0 and vy < 0
a.e.in Q.

In order to get a least energy sign-changing solution, we have to strengthen our hypotheses
as follows.

(Hy’) p,g € C4(RQ) with p(x) < q(x) < gy +1 < (p_)sforallx € Qand 0 < u() €
L% ().
Hy’) f: QxR — Randg: dQ2xR — R are Carathéodory functions that fulfill hypotheses
(H»)(), (iii), (iv) (now denoted as (H»’)(i’), (iii’), (iv’), respectively), and
(ii”) the functions

feD 4 86D

t—
|£]9+ |£]9+

are increasing in (—oo, 0) and in (0, oo0) for a.a.x € € and for a.a.x € 9%,
respectively.

Remark 1.2 Note that hypothesis (H,*)(ii’) implies (Hp)(ii).
Our main result concerning the existence of a sign-changing solution reads as follows.

Theorem 1.3 Let hypotheses (H\’) and (H3’) be satisfied. Then there exists a nontrivial weak
solution wg € WhHioe (Q) N L>®(Q) of problem (1.11) which turns out to be a least energy
sign-changing solution.

The idea in the proof of Theorem 1.3 is to minimize the corresponding energy functional
¢(+) of (1.11) over the nodal Nehari manifold

No = {u e Whee(Q): £u* e N},
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where u® = max{=u, 0} and V is the classical Nehari manifold defined by
N = {u e WThoe (@) \ {0}: (¢ (), u) =0} .

It is easy to see that all sign-changing solutions of (1.11) belong to Aj. Thus, the global
minimizer of ¢ over Ay must be a least energy sign-changing solution of (1.11). In contrast
to the work by Arora—Crespo-Blanco—Winkert [2], we do not need a monotonicity condition
on the exponent p in the following sense: there exists a vector y € RY \ {0} such that for all
x € 2 the function

hy(t) = p(x+1ty) withyel, ={teR:x+1ry e Q}

is monotone. We overcome this fact by using the new equivalent norm obtained in Sect. 3 and
the appearance of the terms |u|”®) =2y in © and 9%, respectively, in problem (1.11). To the
best of our knowledge, this is the first work for the logarithmic double phase operator given
in (1.3) with a nonhomogeneous Neumann boundary condition. But also for homogeneous
Dirichlet problem, only a few papers exist. Recently, Lu—Vetro—Zeng [34] introduced the
operator

M), (x, [Vul)

U+ Ay, u=div
T < V]

w), ue whhi(Q), (1.12)

where Hy, : @ x [0, o0) — [0, 00) is given by
Hi(x, 1) = [1PY + u(@)r?™]log(e + at),

with > 0 as well as p, g € C(Q) suchthat 1 < p(x) < N and p(x) < g(x) forall x € Q,
and 0 < u(-) € L'(€2). Note that (1.12) is a different operator than the one in this paper.
Moreover, the work by Lu—Vetro—Zeng [34] can be seen as the extension of Vetro—Zeng [47]
from the constant exponent case to the variable one, see also the recent work by Cen—Lu—
Vetro—Zeng [11] for multivalued problems with such operator. We also mention the work by
Vetro—Winkert [46] who obtained the existence of a solution to the logarithmic problem with
convection term of the form

—divku) = f(x,u,Vu) inQ, u=0 ona<, (1.13)

where divK is as in (1.3) and f: Q x Rx R¥Y — Risa Carathéodory function sat-
isfying a general growth condition. The authors prove the boundedness, closedness and
compactness of the related solution set to (1.13). Furthermore, appropriate conditions are
supposed in order to show the uniqueness of the solution of (1.13). Finally, we also men-
tion some works dealing with double phase operators without logarithmic perturbation but
with Neumann or Robin boundary condition. We refer to the papers by Amoroso—Crespo-
Blanco—Pucci—Winkert [1], Borer—Pimenta—Winkert [9], El Manouni—-Marino—Winkert
[21], Farkas—Fiscella—Winkert [25], Fiscella-Marino—Pinamonti—Verzellesi [26], Gasifiski—
Winkert [29], Papageorgiou—Réddulescu— Repov§ [38], Papageorgiou—Vetro—Vetro [42],
Papageorgiou—Réadulescu—Zhang [40], Papageorgiou—Zhang [44], Zeng—Bai—Gasinski—
Winkert [51], Zeng—Radulescu—Winkert [52, 53], see also the very related works by
Chen—Qin—Radulescu-Tang [12], Fang—Radulescu—Zhang [24], Liu—Pucci [33] and Papa-
georgiou—Radulescu—Sun [41].

The paper is organized as follows. In Sect. 2 we recall the basic facts about the generalized
N-function (1.5) and the related logarithmic double phase operator following the work by
Arora—Crespo-Blanco—Winkert [2]. We also recall some tools which are needed in the sequel,
for example, the Poincaré-Miranda existence theorem. In Sect. 3 we prove the existence of
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a new and very general equivalent norm in W17t () while Sect. 4 presents boundedness
results in the critical and subcritical case for weak solutions of (1.11). Finally, in Sects. 5
and 6 we prove our existence results stated in Theorems 1.1 and 1.3.

2 Preliminaries

In this section we recall the basic facts about variable exponent Sobolev spaces and Musielak-
Orlicz Sobolev spaces. We also mention some tools which are needed later. We refer to the
monographs by Diening—Harjulehto—Hiast6—Razicka [20] and Harjulehto—Histo [30] as well
as the recent paper by Arora—Crespo-Blanco—Winkert [2]. To this end, for 1 < r < oo, we
denote by L" (€2) the usual Lebesgue spaces equipped with the norm || - ||, and by whr(Q)
the Sobolev spaces endowed with the norm || - |l1» = ||V - || + || - ||. Further, for r € R
we write t* = max{=£ts, 0}, ie.r = T — ¢~ and |t| = T 4+~ and so for any function
u: Q — R, we denote u®(x) = [u(x)]jE for all x € Q.

Letr € C(R) and let M (2) be the set of all equivalence classes of measurable functions
u:  — R which coincide almost everywhere. Then we denote by L") () the Lebesgue
space with variable exponent given by

L'OQ) = {u e M(Q): 0,y () < o0},

with the related modular
or()(u) = / u|"® dx
Q
and the norm
. u
lullriy = inf {2 > 0: 0,0 (5) < 1}

We know that L") (Q) is a separable, uniformly convex and reflexive Banach space with
dual space given by [L’(‘)(Q)]* = L"0(Q), where r’ € C4 (%) is the conjugate variable
exponent of 7 defined by r'(x) = r(x)/[r(x) — 1] for all x € Q. We also have a Holder type
inequality given by

/ luv[dx < [* ] lwllr-eylvlley < 2lullro vl
for all ue L™ () and forall v € L"’(')(Q). Also, if 71, € C(R) and r1 (x) < rp(x) for
all x € Q, we have the continuous embedding L") () < L")().

The following proposition shows the relation between the norm and the modular, see
Fan—Zhao [23, Theorems 1.2 and 1.3].

Proposition 2.1 Letr € CL(Q), A > 0, and u € L™ (), then the following hold:

(i) lully¢y = A ifand only if or(y (%) = 1 with u # 0;

(ii) lullyy <1 (resp. =1, > 1) ifand only if or(y(u) < 1 (resp. =1, > 1);
(i) f Nl < 1 then ) < 0rcy @) =< Nl
(iv) if lullrcy > 1, then ull’) < ory () < lullf,:

(v) llullr¢y = Oif and only if or()(u) — O;
(vi) llully.)y — +ooif and only if 0,y (u) — —+00.
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The related Sobolev space W'-")(Q) for r € C4(Q) is given by
WO Q) = {u e L'O(Q): |Vu| e L"(')(Q)},
with modular

o1,r(y(u) = or(y(u) + 0ry(Vu),

where ¢, (Vu) = 0,()(IVul), and with the norm

. u
il iy = inf {3 > 0: 01,00y (X) <1}.
The space W"’S (2) is a separable and reflexive Banach space.
For r € C4(2) we recall the critical Sobolev variable exponents r* and r, given by (1.9),
hence

Nr(x) if .
Py = | N T <N e,

+00 ifr(x) >N

W=bre) ¢ N -
re(x) = { N L) < , forallx € Q.

+00 ifr(x) >N

Furthermore, let o be the (N — 1)-dimensional Hausdorff measure on the boundary 02
and indicate by L” 0 (9Q) the boundary Lebesgue space endowed with the norm || - |- a0
and related modular o, () 3o (-), that is,

u

or(),00 1) =/ lu"do and |ull,()se = inf {)» > 0: 0,(),00 ()\> < 1]
90

whenever u € L") (3Q) forr € C 1 (). We can consider a trace operator, i.e., a continuous
linear operator 7: W0 (Q) — L"0(3Q) for all m € C(RQ) with 1 < m(x) < r.(x) for
every x € 2, such that

T(u) =ulyo forallu e WHO(Q) N C@Q).

If it also holds that » € W7 () with y > N, then we can take any m € C(Q) with
1 < m(x) < ry(x) for every x € Q. By the trace embedding theorem, it is known that y is
compact for any r € C(Q) with 1 < r(x) < ry(x) forall x € Q, see Fan [22, Corollary 2.4].
In this paper we avoid the notation of the trace operator and we consider all the restrictions
of Sobolev functions to the boundary d<2 in the sense of traces.

The following lemma can be proved similarly as Proposition 2.1.

Proposition 2.2 Letr € C(Q), A > 0, and u € L") (3Q), then the following hold:

(i) llullr(y.00 = A if and only if 0,(y.09 (%) = 1 withu # 0;

(ii) lullrey.o0 < 1(resp. =1, > 1) if and only if 0r(y 9 W) < 1 (resp. =1, > 1);
(iii) if lullr¢y.00 < 1, then llull)l) oo < 0r¢a0) < llull) so

- r( !
(iv) if Nullry.o@ > L then lully) a0 = 0r)@) = () hor

) Nullrcy,00 — 0 if and only if ory,00w) — 0;
i) llullrey,09 — oo if and only if or(,00 ) — +oo.
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= . = . ..
Moreover, the space C 0: Tog (£2) is the set of all functions #: 2 — R being log-Holder
continuous, i.e. there exists a constant C > 0 such that

C — 1
lh(x) —h(y)| < ——— forallx,y € Qwith |x — y| < —.
[log |x — yl| 2

Note that for a bounded domain 2 ¢ RY and y > N we have the following inclusions
0.1, 1 01-% = 0, e 5
CHP(QcCcwrQcC v (2) C C Mot (L2). 2.1
Now, we consider the nonlinear function Hjog : Q x [0, +00) — [0, +00) defined by

Hiog(x, 1) = 17 4 1 (x)19) log(e + 1),

where e stands for Euler’s number while we suppose hypotheses (Hj). Clearly, Hiog (-, #) is
measurable forall # > 0, Hiog(x, 0) = 0 and Hjog(x, 1) > Oforall# > 0. Also, H)g satisfies
the A,-condition, that is,

Hiog(x, 2t) < KHiog(x, 1)
fora.a.x € @, forall# > 0 and for some K > 2. Then, the Musielak-Orlicz space L Mog ()
is given by
L2 (Q) = {u € M(Q): 0, () < +00},

equipped with the Luxemburg norm

. u
llet]l#)oq := inf {ﬂ > 01 0Hypq (E) < 1},

where 0, () denotes the associated modular defined by

OHiog () 52/ Hiog (x, |u]) dx :/ (|M|p(x) + () u)4) log(e + Iul)) dx.
Q Q

Note that Loz (Q) is a separable, reflexive Banach space.
Next, we can define the Musielak—Orlicz Sobolev space W7tz (Q) by

Wl Tos(Q) = {u e L™ (Q): |Vu| € LT (Q)},
endowed with the norm
el 10 = Nl 10y + V2l 7410, 22)

where || Vil 7o, = Il 1Vtt] |74, We know that W7 (Q) is a separable, reflexive Banach
space.

The following embedding results can be found in the paper by Arora—Crespo-Blanco—
Winkert [2, Propositions 3.7 and 3.9].

Proposition 2.3 Let hypotheses (H{) be satisfied, then the following hold:

(i) WhHoe(Q) < WLPO(Q) is continuous;
1

(i) if p € C4(Q2) N CO ol (Q), then W Toe (Q) — LP*O(Q) is continuous;

(iii) W Mhee(Q) — L"O(Q) is compact for r € C(Q) with 1 < r(x) < p*(x) for all
x € Qy

(iv) if p € CL(Q) N W'Y (Q) for some y > N, then WhHos(Q) — LP<O(HQ) is
continuous,
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v) WLT"E(Q) — L"O@Q) is compact forr € C(Q) with 1 < r(x) < p«(x) for all
x € Q;
(vi) WhHie(Q) <> M2 (Q) is compact.

We equip the space W oz () with the following equivalent norm (see Proposition 3.1
in Section 3)

p(x)

. Vu Vu [ Vu
lu]| = inf {A > 0: — + pu(x) |— log e+ |— dx
al\l 2 A )
(2.3)
+/up(x)d+/ upe) <1}
u X u o<1t
QlA ae A
induced by the modular
o) = / (19617 + ()| Vup?™ log(e + | Vul)) dx
¢ (2.4)

+/ |u|p(x)dx+/ |u|p(x)do,
Q Q2

for all u € W!Huoe (Q).

The modular o(-) in (2.4) is closely related to the norm || - || in (2.3) as seen below. First, we
recall the following important lemma, see Arora—Crespo-Blanco—Winkert [2, Lemma 3.1].
Note that a function /#: (0, o00) — R is called almost increasing if there exists @ > 1 such
that h(s) < ah(t) forall0 < s < ¢.

Lemma 2.4 The function f.: [0, +00) — [0, +00) given by

&€

fe(t) = m

is increasing for € > « and almost increasing for 0 < & < « with constant a,, where
Kk = e/(e + tg), with ty being the only positive solution of to = e log(e + tp).
Proposition 2.5 Let hypotheses (Hy) be satisfied, then the following hold:

(i) lull = Xxifand only if o (%) = 1 foru # 0 and % > 0;

(ii) lull < 1 (resp.=1, > 1) ifand only ifo(u) < 1 (resp.= 1, > 1);

(iii) min { ]|~ ]9} < o) < max { =, )4+ )

(iv)
1
— min {[lu| =, ull* "¢} < o) < as max {[Jul|”~, [|u+¢}
dg

for 0 < & < k, where k and a; are the same as in Lemma 2.4;
(v) |lull = 0 if and only if o(u) — 0;
(vi) |lul| = oo if and only if o(u) — oo.

As shown in [2], the space Wl Hie (Q) is closed under truncation.

Proposition 2.6 Let hypotheses (Hy) be satisfied, then

(i) Ifu € WhThoe(Q), then ut € W-Toe (Q) with V(Zu) = Vulizy=o;
(ii) if uy — win WMo (Q), then ur — u® in WhToe(Q).

The following lemma will be used later.
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Lemma2.7 Let Q > 1 and h: [0, 00) — [0, 00) given by h(t) = m. Then h

attains its maximum value at ty and the value is %, where to and k are the same as in Lemma
2.4.

Now, let A: WMo () — Wl-Hiog(Q)* be the nonlinear operator defined by
(A(u), v)
= / [Vu|PO2Vy - Vo dx
Q

|Vu| (2.5)

q(x)(e+ [Vul)
+/ |u|”(x)72uvdx+/ lulPO 24y do
Q aQ

+/ /L(x)|:10g(e +|Vul) + ]|W|W>—2w -Vudx
Q

for all u, v € W1 Hie (Q). The following proposition is a direct consequence of Proposition
3.4, see also Arora—Crespo-Blanco—Winkert [2, Theorem 4.5].

Proposition 2.8 Let hypothesis (Hy) be satisfied. Then, the operator A given in (2.5) is
bounded (that is, it maps bounded sets into bounded sets), continuous, strictly monotone and
satisfies the (Sy )-property, that is,

up—u in WHTee(Q) and lim sup (A(up), up —u) <0,

n—-+00
imply u, — uin w - Hiog (Q).

We also recall some basic inequalities for the logarithmic. For s, > 0 and C > 1, we
have
log(e + st) <log(e + s) + log(e + 1), (2.6)

log(e + Cs) < Clog(e + s), 2.7
and for s, > 0 and ¢ > 1, one has
(s + )7 log(e + s + 1) < (25)9 log(e + 2s5) + (2t)? log(e + 21)
< 2015 Jog(e + 5) + 29717 log(e + 1). (28)

Finally, we present the main tools which are needed for the existence proofs. Given a
Banach space X, we say that a functional ¢: X — R satisfies the Cerami condition or
C-condition if every sequence {u,},eny € X such that {¢(u,)},en € R is bounded and

(1 + lug D@’ (up) — 0 asn — oo,

contains a strongly convergent subsequence. Furthermore, we say that ¢ satisfies the Cerami
condition at the level ¢ € R or the C.-condition if this compactness property holds for all
the sequences such that ¢(u,) — c as n — oo instead of for all the bounded sequences.

The following version of the mountain-pass theorem is taken from the book by
Papageorgiou—Radulescu—Repovs [39, Theorem 5.4.6].

Theorem 2.9 [Mountain-pass theorem] Let X be a Banach space and suppose that ¢ €
CY(X), ug, uy € X with |luy —ugl| > 8 >0,

max{g(uo), p(u1)} < inflp@): llu — uoll = 8} = ms,
¢.= inf_ max g(y () with T = {y € C(0, 11, X): y(0) = uo, (1) = )
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and that ¢ satisfies the C.-condition. Then ¢ > mg and c is a critical value of ¢. Moreover,
if ¢ = myg, then there exists u € 3 Bs(uo) such that ¢’ (u) = 0.

The quantitative deformation lemma given in the next result can be found in the book by
Willem [48, Lemma 2.3].

Lemma 2.10 [Quantitative deformation lemma] Let X be a Banach space, ¢ € C L(X: R),
B#SCX,ceR, e 6> 0besuchthat forallu go’l([c —2¢&,c+2¢e]) N Sas there holds
lo'(u)ll« > 8e/8, where S, = {u € X: d(u,S) = infyyes |lu — uoll < r} forany r > 0.
Then there exists n € C([0, 1] x X; X) such that
(i) n(t,u) =u, ift =0orifu ¢ o~ '([c — 2¢e,c+2¢]) N Sas;
(ii) p(n(1,u)) <c—¢forallu € (p_l((—oo, c+e)NS;
(iii) n(t,-) is an homeomorphism of X for all t € [0, 1];
(iv) In(t,u) —u|| <8 forallu e X andt € [0, 1];
(v) ¢(n(-, u)) is decreasing for allu € X;
(vi) o(n(t,u)) <cforallu e (p_]((—oo, chNSsandt € (0, 1].

Finally, we mention the Poincaré—Miranda existence theorem, see Dinca—Mawhin [19,
Corollary 2.2.15].

Theorem 2.11 [Poincaré-Miranda existence theorem] Let P = [—t1, t1] X --- X [—tn, IN]
witht; > Ofori € {1,..., N} and

d: P—> RY, a=(ay,...,ay) — d(a) = (di(a),...,dy(a))
be continuous. If for eachi € {1, ..., N} one has

di(a) <0 whena € P and a; = —t;,
di(a) >0 whena € P anda; = t;,

then d has at least one zero in P.

3 A new equivalent norm

In this section we are going to prove the existence of a new equivalent norm in the space
W - Hiog (). In order to do this, in addition to (H;), we also need the following hypotheses:

(H3) () &1,8 € C(Q) with1 < £1(x) < p*(x) and 1 < £o(x) < py(x) forall x € Q,
where

() pec@nc” Tog (Q), if £1(x) = p*(x) for some x € Q;
() pe C(QNWLY(Q) forsome y > N,if £2(x) = p.(x) for some
X eQ;
(i1) w; € L*°(R) with w;(x) > 0 fora.a.x € Q;
(iii) wp € L*°(92) with wy(x) > 0 for a.a.x € 9%2;
(iv) w1 #0orwy # 0.

Next, we define the seminormed spaces
LEO(Q) = {u e M(Q): / w1 () [u| dx < oo} ,
Q

L2O0Q) = {u e M(Q): / ()29 do < oo},
Q2
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equipped with the associated seminorms

g1(x)

dxsl},

$2(x)
do < 1} ,

. u
letllgy (.0 = inf {x > 0: / w1 (x) ’X
Q

. u
lttlery.p.0 = inf {A -~ 0: / w(x) ‘f
a0 A

respectively. We define

N1} 3410 = IV U 16 + Ntllziyon + 1l 050).00.0 (3.1
and
o
||M||1,7—¢]0g

inf |1 > 0 / vu ul" ALIRR
=in : — — o —_—

= o\ Y E\¢T (32
u |51(x) u |52(x)
+f wl(x)’*‘ dX-l—/ wz(x)‘*
Q A a0 A

which are norms on W7oz (). We are going to show that theses norms are both equivalent
to the usual one || - |17, givenin (2.2).

p(x)
+ p(x)

do < 1},

Proposition 3.1 Let hypotheses (H1) and (H3) be satisfied. Then, || - ”I,ng and || - ”Ll),ng
given in (3.1) and (3.2), respectively, are both equivalent norms on w L Hiog (Q).

Proof We will show the proof only in the case ¢1(x) = p*(x) and & (x) = ps(x) for
all x € Q. The remaining cases can be shown similarly. To this end, assume that p €

— — 1 —
C(Q) N WLY(Q) for some y > N which implies that p € C(Q) N CO’W(Q), see (2.1).
Then, for u € W1Toe(Q) \ {0} we have

|u p*(x) U
/ 01(x) ( ) dx < o1 lloe 2+ (—) — o110,
o Il Tl

|u P« (x) U
/ w7 (x) ( ) do < |lozlloo,89 0p.(),89 (7) = [[w2]lc0,85-
a0 llull p.c lull p,c

Therefore,

lull (), < max{l, [|o1lloo}luell p=(),
lull p,(),w,00 < max{l, |wz2llc,00} 14l p,(),00-
From these inequalities and Proposition 2.3 (ii), (iv), we obtain
lull$ 20, < 1Vl 210, + max{L, oo oo}l e

+max{L, |2 lco,02} 11l p,(),00

3.3)
S WVullr, + Crllull, Hi, + Collulli, Hyo,
=< Callullt, Hygg»
forall u € Wl Hiog (€2) with positive constants C1, C, and C3.
Now we will show that
a7 < Callel} .- (3.4)
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for some C4 > 0. Arguing indirectly and supposing that (3.4) is not satisfied, there exists a
sequence {u, }peny C W 1Mo (Q) such that

Nen 70 > ””“"”I,Hk,g foralln € N. (3.5)

Taking y, = , we have ||y, |7, = 1 and (3.5) can be rewritten as
g | log

Uy
|un”H10g
1 L]

s 19017 #10g - (3.6)

Therelations ||y, [ 74,, = 1and [[Vynll#,, < 1(see(3.6))imply that the sequence {y }nen C
wl-Hiog (Q) is bounded. Then, applying Proposition 2.3 (ii), (iv), we may assume, up to a
subsequence if necessary, that

yp—y in Whee(Q) and y,—y in LP (Q) and L7 (9Q). (3.7)

Since W1 Mg (Q) < L Mg (Q) is compact (see Proposition 2.3 (vi)), from (3.7), we obtain
yp — y in L™og(€2) and since 1ynll+, = 1, it follows that y # 0. Now using the weak
lower semicontinuity of the norm ||V - [|7,,, and of the seminorms || - [| p* (), 5 | | (). 02,092
together with the convergence properties in (3.7) , we get, by passing to the limit in (3.6) as
n — oo, that

0> 1311 74 = NV¥ 2005 + 13115001 + 17 py.00.00-
From this we conclude that y = L # 0 is a constant and so we have, by using (H3) (iv), that
0= [LIp=¢y.00 + LI poc)ian,02 > O,

which is a contradiction. Hence, (3.4) must hold, which implies

lll1 #10e = C71lS 2, - (3.8)
for some C7 > 0. From (3.3) and (3.8) we see that || - ||1,H10g and || - I} Higg 3T€ equivalent.
In the second part we will show that || - ”I,Hlog and || - ”T.ng are equivalent norms in

Wl Hiog (R2). Indeed, foru € WLH“’E(Q), one has

( (x)
wvu \" va " IVl
) +u@ ] logle+ ———] | dx
Q ||u||177-¢|0g ”"‘”1,7—[10g ”uHI,Hlog
o\ u\"
—I—/ 01(X) | —5— dx—i—/ (X)) | —— do
o 1211$ 74,0, 00 117 710
Vu u P
S0 \ o +/w1(x) <L> dx
E\ VUl #y, Q el p .01

|u| P (X)
[ (Y
P19 el p.),w,00

=3.
Hence, we have

1115 7y = 32l 31 (3.9)
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Next, we show the other direction. We have

@) )
val \" val \" |Vl
—_— +ux) | ——— logle+ ——F
o \ \lullf 4, 1115 7415 11 74105
ul p¥(x) lul Px(x)
+/ w1 (x) | —— dx+/ w2 (X) | 75— do (3-10)
Q 12119 34,0 Bl N1 34,0,
< 0° u
=0 M
PPl 4,

where Q?leog is the related modular to the norm || - ”(l);Hlng defined by

0 pg @0 = [ (17174 OOVl o e+ 9u)) i
@ (3.11)
+/ w1 () |ulP* ™ dx+/ w2 () |uP*™ do.
Q 02

Itis clear that the function A — of Hiog (Au) is continuous, convex and even and it is strictly

increasing when A € [0, 0o), whereby u € w1 Hiog (£2). Hence, from the definition, we have
o . . o u
””"LHlog = A if and only if 01 Hig (X> =1.
Therefore, from this fact and (3.10), it follows that
IViliro, < Null} 3y Ntllpr )0 < Ml 34, and Nl p,0).02.02 < Mullf 24, -

which implies

1 [ ] o

5”14”1,7—(log = ”u”l»Hlog' (3.12)
From (3.9) and (3.12) we obtain the last assertion of the proposition. ]

Now, we are going to state the relation between the modular o Hiog (-) and the associated
o
norm || - || 1 Hiog”

Proposition 3.2 Let hypotheses (H1) and (H3) be satisfied, u € W Moz(Q), 1 € R, and

ri=min{p_, ({1)—, ({2)-} aswellas ry:=max{gy + ¢, 1)+, (§2)+},

for 0 < & < k, where k and a; are the same as in Lemma 2.4. Then the following hold:

(i) ”””T,ng = A if and only ichl),Hlog (%) =1foru #0and )\ > 0;
(ii) ”u”T,Hlou < 1 (resp.= 1, > 1) if and only l‘fQi)»Hlog(M) <l (resp.=1, > 1);

r rn
(i) min { (11124, ) "+ (1005 g, ) )
,

1 n
= 0% g, 0 = max { (161, ) > (14026,,) " }:

(iv)
1 r r
4 o o
oo min (1) (el ) )

r r2
= 07 1 (0 = e max { (1l g, ) (Nl g, ) )
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(v) ||14||T,Hlog — 0 if and only ifQCl)»Hlog (1) = 0;
(vi) ||u||(f,71log — o0 if and only l:fQ(l)sHlog () = oo.

Proof The proof can be done similarly as the proofs of Propositions 3.4 and 3.6 as well as
Lemma 3.3 by Arora—Crespo-Blanco—Winkert [2]. O

Next we introduce the operator B: W 1. oz (Q) — W!-Hie (Q)* given by
(B(u), v) =
/ [Vu|PO2vy - Vo dx
Q

|Vul| (3.13)

q(x)(e+ |Vul)

—I—/ a)l(x)|u|§1(x)72uvdx+/ @ () |u2D 2y do,
Q aQ

+/ /L(x)|:log(e +|Vul) + ]IVulq(")_2Vu -Vudx
Q

for all u, v € WhHies(Q).
The next lemma is taken from Arora—Crespo-Blanco—Winkert [2, Lemma 4.3] which is
needed to show the (S;)-property of the operator B.

Lemma 3.3 [Young’s inequality for the product of a power-law and a logarithm] Lets,t > 0,
r > 1 then
r—

1
" log(e +t) + r(e—l—l):l.

p
st |:10g(e +1)+ ] << log(e +s) + 1" |:

re+1t) |~ r

We have the following properties for the operator B.

Proposition 3.4 Let hypotheses (H1) and (H3) be satisfied. Then, the operator B : WL e (Q)
— WHioe (Q)* given in (3. lé) is bounded, continuous and strictly monotone. If, in addition,
1 < 81(x), &a(x) forall x € Q, then B is of type (S4).

Proof As before, we only study the case when ¢ (x) = p*(x) and &2(x) = p«(x) for all
x € Q. Analogously to the proof of Theorem 4.4 by Arora—Crespo-Blanco—Winkert [2], we
are able to show that B is bounded, continuous and strictly monotone. We only need to prove
that B fulfills the (S..)-property. For this purpose, let {i, }neny € W12 (Q) be a sequence
such that

Up—u in WI’H“’E(SZ) and limsup (B(up),u, —u) <0. (3.14)

n—0o0

Taking Proposition 2.3 (ii), (iv) into account, yields, up to a subsequence if necessary, that
up—u in L (Q) and u,—u in L0 0Q). (3.15)
The strict monotonicity of B along with (3.14) and (3.15) imply that
0< linrgioréf (B(up) — B(u), up, —u) <limsup (B(u,) — B(u), u, —u)

n—oQ

= lim sup (B(up), un —u) <0.
n—oo

Therefore we have

nler;o (B(u,) — B(u), u, —u) =0. (3.16)
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Since all terms in (3.16) are nonnegative, we obtain

Jim (|Vu,,|p(x)_2Vu,, — |Vu|P(x)_2Vu) - (Viy — Vu) dx =0,
Q

n—oo

lim / w1 (x) (|u,,|f’*<x>*2u,, - |u|P*(x>*2u) (it — u)dx =0, (3.17)
Q

n—o0
nlgr;o/ w2 (x) (Iunlp*(x)_zun — Iul"*(")_zu) (n —u)do = 0.
Q2

We now claim that

lim / wl(x)|unlp*(x)dx=/ wi (o) ul? ™ dx, (3.18)
n—00 Q Q
lim/ a)z(x)|un|p*(x)da:/ @ (X)|u|P*™ do. (3.19)
=00 Jaq aQ

Indeed, due to Young’s inequality, we have
/ 01(X) p* ()t 1P 10 (1t — u) dx
Q
> / 01 (¥) p* () P dx — / 01 (¥) p* ()t PO ] dx
Q Q
z/wl(x)p*(x)mm*“) dx—f w1 () (p*(x) = Dy [P ™) dx
Q Q
—/ w1 (0) |l dx
Q
=/ w1 (0) |y |77 dx—f w1 () |u|P" @ dx,
Q Q
for all n € N. Consequently,
/ w1 () i) dx — / Wy ()" dx
Q Q
< / 1 ()P ()it l”” 210 (1 — )
Q
= [ orp* ) (11”2, = 1”2 Gy = )23
Q
4 / 010 p* ()lul” Oy — ) dx — 0,
Q
as n — 00, because of (3.15) and (3.17). On the other hand, we have
fw1(x)|u|p*(")dx—/ wi ()| dx
Q Q
< / w1 () p* ) el? O 2 — ) dx — 0,
Q

as n — oo due to (3.15). From these observations, we conclude that (3.18) holds. An
analogous argument allows us to get that (3.19) holds. Now, as it was done in the Claim of
Theorem 3.3 by Crespo-Blanco—Gasiniski—Harjulehto—Winkert [16], using (3.17) and (3.15),
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we can show in a very similar way that

Vu, — Vu in LPO(Q),
uy —u  in L2 O(Q), (3.20)
up — u  in L2V 0Q).

From (3.20) we conclude that

Vu, — Vu in measure in 2,

1 1 . .
w1 (X)) P ®Ou, - wp(x)”"®y  in measure in 2, (3.21)

1 1 .
Wy (x) POy, — wo(x) ™y in measure on 9€2.

Exactly as in the proof of Theorem 4.4 by Arora—Crespo-Blanco—Winkert [2] we have, by
using Young’s inequality and Lemma 3.3, that

/ IVun P92 Vu, - V(u, —u)dx
Q

[Vu,|
qg(x)(e+ |Vuyl)

1 1
zf —— |V, [P dx—/ —— |VulP® dx
o p) o px)

+/ w(x) |:10g(e + Vi) + ] IVun 9972 Vu, - V(u, — u) dx
Q

+/ wx) |V, Iq(x)log(e+|Vun|)dx—/ p )|v 199 Jog(e + |Vul) dx.
Q q(x) Q q(x)

Similarly, applying again Young’s inequality, we obtain

* 1 * 1 *
/ 0”210 (0 — ) dx z/ RIS dx—/ L,
Q Q p*(x) Q p*(x)

1 1
/ lit [P+ 2,y (1, — u) do z/ ——|up [P do — / —— |u|P¥) do.
a0 Q Px(x) a9 Px(X)

From the above considerations we obtain that

1
<B(un),un—u>z/ LGP dx - /7|W|p<x> dx
p(x) o p(x)
H(x) q()
+ Vi, |7 log(e + |Vuy,|) dx
Q q(x)
/ px )IV 19 log(e + |Vul) dx
Q q(x)
+/ A LCONTALES dx_/ @1 gy
Q p*(x) o pr(x)
J’_/ wZ(X)|un|p*(x) do _/ Lm|u|p*(x) do.
9 Px(x) 30 Px(X)
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Thus, using (3.14), (3.18) as well as (3.19), and letting n — oo, we get

!
/ mwuv’m dx—l—/ ZE )) IVul?% log(e + |Vul) dx
Q Q

+/ L‘(x)w’*(x) dx+/ @20 1p® g,
Q Gl

p*(x) Q Px(x)
: plx) wx) q(x)
> lim sup — |Vu,| dx + [Vu,| log(e + |Vuy|) dx
n—00 QP ( ) Q q(x)
+/ a)l(x)mlp*(x) dx—}—/ wZ(X)|u|”*(x) o
Q P*(x) aQ Px(x)

‘We have thus shown that

/ o) |Vu| P dx—i—/ :E ; |Vu|7% log(e + |Vul) dx
Q Q

> lim sup (/ —— |V, |P® dx +/ P )|w |q<x>1og(e+|wn|)dx>
n—o00o QP () Qq ()

But then, from Fatou’s Lemma, we get that the limes inferior fulfills the opposite inequalities
which gives at the end (see [16, (3.8), (3.9) and (3.10)] for a more detailed argument)

. |Vun|p(x) |V”n|q(x)
lim ——— + u(x)—————log(e + |Vuy,|) | dx
n—00 Jq p(x) q(x)

|Vu|p(x) |Vu|q(x)
= / — + ux) log(e + |Vul) | dx
e\ pw) q(x)

From the convergence in measure in (3.21), it follows that the left-hand side of (3.22) converge
in measure to the right-hand side. Applying the converse of Vitali’s theorem implies the
uniform integrability of the sequence of functions

Vit [P |Vt 7
———— + ux)———log(e + [Vuy|)
p(x) q(x)

This implies that the sequence

(3.22)

neN

A = {1V = VulP® + @) [V, = Vul® log(e + |Vu = Vub} .
ne
is uniformly integrable (use (2.8) in order to see it). Therefore, one has

0= lim A, dx.

n—oo Q

Hence, from (3.20), we get

. o
nlggo Ql,Hlog (up —u)

= lim ([ (|Vu,, —VulP® 4w (x) [Vitn — Vu 99 Tog(e + [V, — vu|)) dx
Q

n—o00

+/ w1 (x)|u, — ulp*(x) dx +f w2 () |y — u|P* da) =0,
Q Q2

see the definition in (3.11). But from Proposition 3.2 (v) together with Proposition 3.1 we
know that this is equivalent to |lu, — u|| 1 Mg > 0. Therefore, u,, — u in WhHee(Q). 0
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4 A priori bounds

This section is devoted to the boundedness of weak solutions of problem (1.11). We give the
result for more general problems than the one in (1.11) and consider the equation

—div K(u) = B(x, u, Vu) in 2,

4.1
K@) -v=C(x,u) on €2,

where div K is the logarithmic double phase operator givenin (1.3),and B: QxRxRY — R
aswellasC: 92 xR — R are Carathéodory functions fulfilling general structure conditions,
see below. We say that u € w1 Mg (Q) is a weak solution of (4.1) if

|Vu|

px)—2 _oowver
/Q(W”' Vit i) [log(e+|VM|)+ q(x)(e + |Vu|)

} |Vu|‘1<X>*2w) - Vv dx

= / B(x,u, Vu)vdx + / C(x,u)vdo.
Q a0
is satisfied for all v € W 1-Hioz (Q).
We study first the subcritical case and assume the following hypotheses.

(Hy) p,q € CL(Q) with p(x) < g(x) < ps(x) forallx € Q,0 < u(-) € L®(Q) while
B:QxRxRY - RandC: 3Q x R — R are Carathéodory functions such that
there exists r, £ € C(Q) with g(x) < r(x) < p*(x), g(x) < I(x) < p«(x) for all
x € C(Q) and

pL)
X, 1, < T 4" 41, foraa.x € Q,
1B, t, )] <b|1E]70 + [e"7 1], f Q
IC(x, 1) <c [Itlu")_1 + 1] fora.a.x € 9%2,

forall t € R and forall £ € RN with positive constants b, c.

Under (H4) along with Proposition 2.3 (iii), (v), it is clear that the definition of a weak
solution of (4.1) given above is well-defined. We have the following result.

Theorem 4.1 Let hypotheses (Hy) be satisfied and let u € WMot (Q) be a weak solution of
problem (4.1). Then, u € L*°(2) N L*°(02) and

o
lulloo + llutlloo00 < C |:1 +/ @ dx —|—/ Jua|£) d6i| ,
Q Ele}
where C, o > 0 are independent of u.
Proof Since W!Tog(Q) — W1 rO(Q) continuously by Proposition 2.3 (i) and because
K(E)-& > |€]PY)

fora.a.x € Q and for all € € RV, the result follows from Winkert—Zacher [49, 50], see also
Ho—Winkert [32]. m]

For the critical case we have to redefine the critical variable exponents to p € C(Q) as

p¥(x) if pT < N,

() N < pt forall x € Q

o]
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and

if pt < N _
:k(x)={p*(x) HPe =W porallx € Q,

g2(x) ifN < p™,

where g1, ¢» € C(Q) are arbitrarily chosen such that p(x) < g1(x) < p¥(x) and p(x) <
q2(x) < p«(x) for all x € Q. We suppose the following assumptions.

Hs) p € C+(§lﬂ WLy (Q) for some y > N, g € CL(Q) with p(x) < g(x) < p*(x)
forallx € Q,0 < u() € L®(Q) while B: @ x RxRY — RandC: QxR - R
are Carathéodory functions such that

p* (x) Ak
Bx,1,8)| < b [|s|"(">ﬁi<-*>fl PO 4 1} . foraaxeQ,
IC(x, 1) < ¢ [|z|f’*<x>—1 + 1] fora.a.x € 0%,
forallt € R and for all £ € RN with positive constants b, c.

Theorem 4.2 Let hypotheses (Hs) be satisfied. Then any weak solution of problem (4.1) is of
class u € L*°(2) N L*®(0R).

Proof From (Hs)and (2.1), we see that all embeddings in Proposition 2.3 hold true. Therefore,
with the same arguments as in the proof of Theorem 4.1, we obtain the required assertion
from the paper by Ho—Kim—Winkert—Zhang [31, Theorem 4.1]. O

5 Constant sign solutions

In this section we are concerned with the existence of constant sign solutions to problem
(1.11). First, we introduce the energy functional ¢ : W' oz (Q) — R related to (1.11) given

by
|Vu|”(x) |Vu|q(") |u|p(X)
pu) = / — 4+ u(x) log(e + |Vul) ) dx +/
e\ pW) q(x) e p(x)

u|P)
+/ do—/ F(x,u)dx—/ G(x,u)do.
e Px) Q IQ

We also need the following truncated energy functionals ¢ : W1z (Q) — R defined by

|Vu P& |V |7 u|P)
() = / o) log(e + [Vul) ) dx + / dx
Q Q

p(x) q(x) p(x)

|M|p(X)
+f do —/ F(x,:l:ui)dx—/ G(x, tu™) do,
i@ pX) Q IQ

where F(x, £1%) = [j f(x, £s%)ds and G(x, £1F) = [; g(x, £sF)ds. Note that the
functionals ¢ and @4 are of class C!.
We start by showing that the truncated functionals ¢ satisfy the C-condition.

Proposition 5.1 Let hypotheses (Hy) and (H3) be satisfied. Then the functionals ¢ satisfy
the C-condition.
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Proof We only prove the assertion for ¢, the proof for ¢_ is very similar. To this end, let
My > 0and {u, },en C Wl Hiog (£2) be a sequence such that

o4 (uy)| < M; foralln e N, 6D
(1 + lun D@ (un) — 0 in Wz (Q)*, (5.2)

From (5.2) we can find a sequence &, — 0% such that for all v € w1 Mg ()

‘/ [Vin P92 Vu, - Vodx
Q

[V |

q(x)(e + [Vuul)

—l—/ |un|”(x)72unvdx+/ |u,,|”(x)72u,,vdcr—/ e, uvdx
Q a0 Q

— / g(x, u;:')v do
Q2

+f n(x) |:log(e + |Vu,|) + :| Vit 9972 Vu, - Vo dx
Q

(5.3)

< M forall n € N.
L+ [lunll

With view to Proposition 2.6 we know that v € W17 (Q) whenever v € W1 e (Q).
Taking v = —u, € W!Toe(Q) as test function in (5.3) and using f(x, u;))u, = 0 for
aa.x € Qaswell as g(x, u;N)u, = 0 fora.a.x € Q2 we have
o(uy)
Vu,
< / <|w;|”°‘) + 1(x) |:log(e +|Vuy )+ |”|D} \w;]‘“”) dx
Q

@+ Vi
[ acs [ e do
Q Q2

<g, foralln eN,

q(x)%% is nonnegative. This implies that

where we have used that
—u; — 0 in WhHee(Q), (5.4)
see Proposition 2.5 (v).
Claim 1: {u;[},,cry is bounded in L%~ (€2) and in L%~ (3Q).
We take v = u," € W' oe(Q) in (5.3) and obtain

- (1 + i) o)) +/ O whu dx +/ g, u;u,y do
q— Q IR

=< —/ |Vu,ﬂp(x) dx
Q
Vit |

q(x)(e+ |Vu])

_/ |u;f|p(x)dx—/‘ |u;:_|p(x)da
Q Q2

+/ f(x, ujl')ujl' dx —l—/ g(x, u;f)u;l" do <e¢g, foralln e N.
Q aQ

- / 1(x) |:log(e +|Vut)) + } Vit dx  (5.5)
Q
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To see this we first use Lemma 2.7 to estimate

[V |

v +19(x) d
(e + !Vu,ﬂ)}’ [ dx

/ w(x) |:10g(e + |Vu,ﬂ) +
Q

’Vu,ﬂ +19(x) 4
= 1 \Y% I \Y% d
/QM(X) |: i q(x)(e + ’Vurﬂ)log(e + |Vurﬂ) | o | ogle t | o ‘) !

< (1 + f)/ w(x) |Vuﬂq(x) log(e + |Vu;:'|)dx.
— Q

Then, since (1 + q%) > 1, we have

(1 + i) o)
q-

3/ |w,j|f’<*>dx+<1+i>/ 1()IVu 190 Tog(e + Vi |) dx
Q q Q

+ [ e [ e o
Q 02
2/ |Vu,T|p(x)dx

Q

[Vul|
q()(e+|Vur)

+/ |un+|P<x)dx+/ u,"1P® do.
Q Q2

+/ w(x) <10g(e+|Vu|q(x))+ )m,ﬂqm dx
Q

Hence, we get (5.5).
On the other hand, from (5.1) and (5.4), it holds

K +
MZZ‘]+ 1+q7 (p+(un)

> (1 + L) o) —/ g+ (1 + i) F(x,ut)dx (5.6)
q Q q

K
—/ q+ (1 + —) G(x,u)do
Q q-

for all n € N and for some M, > 0. Adding (5.5) and (5.6) leads to

/ (f(x, u:[)u:[ —q+ (1 + L) F(x, u,f)) dx
Q q—

+/ (g(x, u,‘f)u;:' —q+ <1 + L) G(x, u,‘f)) do < M3,
Q2 q

5.7

for all n € N and for some M3 > 0. Note that we can assume in (Hp)(iv), without any loss
of generality, that «— < B_ and {_ < 6_. Therefore, applying hypothesis (H)(iv), we can
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find numbers 133, 123, 1%4, K4 > 0 such that

fx, 0t — gy (1 + L) F(x,t) > 123|t|°“ — 163 fora.a.x € Q,
q

glx, )t — g+ <1 + L) G(x,t) > I€4|t|§* — 134 fora.a.x € 092,
q,

for all # € R. Using this in (5.7) gives
Ks it o + Ka [l [ g < Ma,
and so

|uf|, <Ms and |u; ”g_,asz < Ms foralln € N, (5.8)

and for some M5, 11715 > 0. This shows Claim 1.
Claim 2: {u;},cn is bounded in W e ().
First, from hypotheses (H2)(i), (iv), it is clear that

a_ <rp < (p)* and - <y < (P_)s.
Therefore, we can find numbers s, T € (0, 1) such that

1 K 1—s 1 T 1—1

= + d = +
T LR T T W

(5.9)

Applying the interpolation inequality, see Papageorgiou—Winkert [43, Proposition 2.3.17], it
follows that

s 1—
(72 Y AR PSS [7A4 b
1—
|k “1@,39 < [t ”(Tp,)*,asz [ ”g,,rasz foralln € N.
Now we can use (5.8) and obtain
lu ], = Mo ][,y aswellas [ul],, aq < Me[ui |, ) 40 (5:10)

for all n € N and for some Mg, Mg > 0. For simplicity, we can assume that ||u,J[|| > 1 for
all n € N. We now use Proposition 2.5 (iii) followed by (5.3) with v = u;” € W1 toe(Q)
together with the growth in (H2)(i) as well as the embeddings

Wl (Q) — Whr-(Q) — L7 (Q), L+(Q) — L'(Q),
wlHee(Q) < WhP-(Q)  LP+(3Q), L% 0Q) — L'(39),
and (5.10) to obtain
g 1P~ < 0}
< e+ Kol I+ Il 17D + Kol o + ! 1" 50)
< en b My (1 1) 08 (14 15 o)

= My (14 Ty 17 + 17 )

(5.11)
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forall n € N and for some M7, M7, Mg > 0.From (5.9), the definition of (p_)* and (Hp)(iv)
we obtain

P (p-)*(ry —a-) _ Np_(ry —oa_)
T T —a.  Np_ —Na +pa
Np_(ry —a-) (5.12)
= p*'
Np— = Na_ + p_(ry — p-) 2~
Next, we see from (H»)(iv) that
- N -1
(o> —+ Uy —p)—.
P- p—
This along with the definition of (p_), and (5.9) implies that
e, = P =) (N Dp-(by —8)
T T -t (N—Dp_—-NL +p
(N—Dp_(ly—¢) (5.13)
< =p_.

(N—Dp-—N¢ +p- (%jL(K*_Pf)N,%I)

Therefore, combining (5.11), (5.12) and (5.13) we see that {u,‘f }nen is bounded in Wl Hiog (2).
This proves Claim 2.
Claim 3: u,, — u in W os(Q) up to a subsequence.

From (5.4) and Claim 2, we see that the sequence {u,},en is bounded in Wl Hios (Q).
Hence, we can find a subsequence of {u, },eN, not relabeled, such that

up—u in WhHoee(Q). (5.14)
Choosing v = u, —u € WhHoe(Q) in (5.3) gives
lim <¢/+(Mn)v uy —u) =0.
n—oo
Moreover, we have

lim [ fGo,u)(uy —u)dx =0 and lim / g, uh)(uy —u)do = 0.
n—oo N

n—oo Q
From this we obtain that

lim (A(un,), up, —u) =0. (5.15)

k— 00

Then, the weak convergence in (5.14) along with (5.15) and the (S4)-property of the operator
A (see Proposition 2.8) imply that

up — u in Whmoe(Q).
This finishes the proof. O
The next result is needed in order to show the mountain-pass geometry.

Proposition 5.2 Let hypotheses (H1) and (H») be satisfied. Then there exist constants C; > 0,
i e{l,...,5} such that forall e > 0

Cra; ul| 9% = Collull”™= — C3llull*, if |ull < min{1, C4, Cs},

ou), px(u) > .
CillullP~ = Callull™* — Csllul|*+, if llull > max{1, Cy4, Cs},

where ag is the same as in Lemma 2.4.
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Proof We only show the assertion for ¢, the proofs for ¢4 are similar. From (H»)(i), (ii) we
know that for each & > 0 there exists ¢, ¢, > 0 such that

&
p(x)

|G(x, )] < %W'(x) + & |t]*Y) fora.a.x € 9 and forall 7 € R.
px

|F(x, )| < [11P0) 4 ¢t fora.a.x € Qand forall 7 € R,

(5.16)

Applying (5.16), Proposition 2.1 (iii), (iv) and Proposition 2.2 (iii), (iv) as well as the embed-
dings W'z (Q) — L"0)(Q) with constant Cyy,,, and W!7ee(Q) < LO(9Q) with
constant Cry,,,, 0 (see Proposition 2.3 (iii) and (v)), we have for u € WL Hiog ()

1 1 1
o) = —0H, (Vu) + —0p) () + —0p(),00W)
q+ P+ P+

e & .
- p*Qp(-)(u) —ce0r()(U) — ?Qp(-),asz(u) — CeQu(,00 W)

1 1 & 1 €
= —0H, (Vu) + (* - *)Q ) (u) + (7 - *) 0p(),02 )
9t log Py P () e _ )40
— Ce0r()(U) — Ce00(),02 W)

. 1 1 £
>miny—, — — — ¢ o(u)
49+ P+ DP-

_ ~ [ 14
= comax { g, lully | = o max [l g Nt g )

. 1 1 £
>min|{ —, — — — t o(u)
4+ P+ P-

r— r.
— ¢p max {CHlog el Cﬁlog ||u||r+}
= sz 0 C[+ Ly
Cemax {Cyy oo ™=, Hiog 02 flll™ ¢ .

Next, we choose ¢ € (0, w) which implies - < - — 5 Taking

P+d+ a+ = pr

1 1 1
Ci=—, C4= and Cs= ——,

q+ CHiog CHiog, 00

the assertion of the proposition follows from Proposition 2.5 (iii), (iv) by setting

Cr=cCpy, and C3=&Cy o if Jull < min{l, Cy, Cs),

_ r4 o~ K+ .
Cr = CsCHlog and C3 = 656'7_‘1%,3(2 if |lull > max{l1, C4, Cs}.

A direct consequence of Proposition 5.2 is the following result.

Proposition 5.3 Let hypotheses (Hy) and (H3) be satisfied. Then there exist § > 0 such that

inf @) >0 and inf ¢@i(u) > 0.
llull=5 [luel|=8

Alternatively, there exists . > 0 such that ¢(u) > 0 for 0 < ||u|| < A.
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Proposition 5.4 Let hypotheses (H1) and (H3) be satisfied. Then ¢(tu) ﬂ —00 when-

ever) #£u € w L e (Q). Moreover; o+ (tu) ﬂ) —oo forall) # u € w L e (Q) such
thatu > 0 a.e.in Q2.

Proof We show the proof only for ¢, it can be done similarly for ¢4 since if u > 0 a.e.in €,
then g+ (fu) = @(tu) for &1 > 0. To this end, fix any 0 # u € WhHoe(Q) and let 7, ¢ € R
such that |¢], & > 1. From (H)(i), (ii), we have

F(x,t) > ilth+ log(e + |t]) —ce fora.a.x € Q,
i (5.17)
G(x,t) > —|t|?" log(e + |t]) — c. fora.a.x € 92,
9+

for some ¢, > 0. From hypotheses (H»)(i), (ii), we know that
g+ <ry <(p-)" and g+ <y < (p-)s
Using this and Proposition 2.3 (iii), (v) yields
lullg, <oo and |lullg, a0 < oo. (5.18)

Now from (2.6), (5.17), and (5.18) it follows

P+
(tu) < i
p

(Qp< (V) +0p0) () + 0p92(0))

1% ogte + 11D f () [Vul4®) dx

|t|‘1+

/ w(x) [Vul?™) log(e + |Vul) dx (5.19)

8It|q

/ |u|** log(e + t|ul) dx + c. |2

8It|"

q+

/ lu|? log(e + t|u|) do + ¢ |0L2|.
IR

By the monotonicity of the logarithm function and (5.18) we have

/ |u|9* log(e + t|u|) dx
{xeQ: ux)>1}

> log(e + 1) lul#+ dx,
{xeQ: u(x)>1} (520)

/ |u|?* log(e + t|u|) do
{xed: u(x)>1}

> log(e + 1) |u|?* do.
{x€d: u(x)>1}
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On the other hand, using (2.7), we obtain

1/|u
/ apes M0
(xeQ: O<u(x)<1} 1/]ul
> log(e + 1) Jul9+! dx,

{xeQ: O<u(x)<l1}

1/|u
f e
(xedQ: O<u(x)<l1} 1/]ul

> log(e + 1) lu)9++! do.
{xed: O<u(x)<1}

log(e + t|u|) dx

(5.21)

log(e + t|u|) do

Combining (5.19), (5.20), and (5.21) results in

|t P+

w(t) = = — (0 (V) + 0py ) + €pi.0520) )

1
T 119+ log(e + |z|)[— / () [Vul e d
q Q

&
——(/ |ua |9+ dx+f Ju|9+ T dx
q+ {xeQ: u(x)>1} {xeQ: O<u(x)<1}

+f lu|%* do +/ [u]9++1 do>:|
{xedQ: u(x)>1} {xedQ: O<u(x)<l1}

|t|47+
+
q

/ w(x) Va7 log(e 4 [Vul) dx + co (12| + 19K2)).
Q

Taking ¢ sufficiently large, the second term becomes negative which implies that ¢ (tu) ImEeg

—0Q. O
Now we can prove the existence of constant sign solutions of problem (1.11).

Proof of Theorem 1.1 From Propositions 5.1, 5.3 and 5.4 we see that we can apply the
mountain-pass theorem given in Theorem 2.9 to both functionals ¢.. Hence, we can find
uo, vo € Woe (Q) such that ¢/, (ug) = 0, ¢’ (v9) = 0, and

@+ (o), p—(vo) > ”iﬂfs pxW) > 0=¢4(0).
This shows that ug # 0 % vo. Then, testing ¢/, (ug) = 0 with —u,, we obtain g(u,) = 0.
So, Proposition 2.5 gives us —u, = 0 a.e.in & which implies that o = uar > (0 a.e.in Q.
In the same way, testing ¢’ (vg) = 0 with var , shows that vp < 0 a.e.in 2. Finally, from
Theorem 4.1, we get the assertion. O

6 Sign-changing solution

In this section we are going to prove the existence of a sign-changing solution which turns out
to be a least energy sign-changing solution of problem (1.11). As already mentioned in the
Introduction, we have to strengthen the hypotheses supposing now (H;’) and (H;’) instead
of (H;) and (Hy), respectively.
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Remark 6.1 Note that a necessary assumption for (H;’) to be fulfilled is the inequality py +
1 < (p_)«. In the case of constant exponents this inequality is equivalent to /N < p. This
strong assumption is required for (H”)(ii’).

First, it is easy to see that (Hy*)(i*), (ii’) imply g+ + 1 < r— and since g4 + 1 < (p-)s,
we are able to find r, £ € C(Q2) suchthatg, +1 <r_ <ry < (p-)*andgy+1<4{_ <
Ly < (p-)«. Also, if (Hp )(ii") is satisfied, then for any € > 0

F(x,s) .
im ———— =400 uniformly fora.a.x € €,
s>oo |g|+HI—E 6.1)
G(x,s) (©.

im ————— = +o00 uniformly for a.a.x € 0L2.
s—>oo |g|9+H1=e y

Especially (H,*)(ii”) implies (H)(ii).
In order to find a sign-changing solution of problem (1.11), we need the Nehari manifold
associated to (1.11) which is defined by

N = {u e WMo (@) \ {0}: ¢/ (), u) =0} .

It is easy to see that all weak solutions of (1.11) belong to N. Moreover, the corresponding
nodal Nehari manifold of (1.11) is given by

No = {ue WMo (Q): £u* e N}.

Obviously, A contains all sign-changing solutions of (1.11).

We start by establishing some structure on A which will be used for the study on the set
Np. First, we mention the following lemma which is needed in the next proposition. The
proof is straightforward, so we will omit it.

Lemma 6.2 Let b > 0 and Q > 1. Then the mapping t +—> %, t > 0, is decreasing
only fore > 1.

Proposition 6.3 Let hypotheses (H1’) and (Ha’) be satisfied. Then, foranyu € WMoz (Q)\ {0},
there exists a unique t, > 0 such that t,u € N. Moreover,

d
(tyu) >0, a‘ﬂ(m) =0 fort =1,

d d
ago(tu) >0 for0 <t <ty, 5<p(tu) <0 fort >t,.

In particular, (tu) < @(tyu) forall0 <t # t,.
Proof Letu € W'z (Q) \ {0}. We define the associated fibering map by
Ay:[0,00) > R, Au@) = @(tu).

Clearly, we have A, € C([0, o0)), A, € C1((0, 00)) and A, (0) = 0. Taking Propositions
5.3 and 5.4 into account we can find K, K > 0 such that

Ayu(t) >0 forO<t <Ky and A,(t) <0 fort > K». (6.2)

Therefore, using the extreme value theorem, we know that the global maximum of A, is
achieved at a point #, € (0, K;]. Clearly, this point is a critical point of A, which by the
chain rule implies that

0= A,/,,(tu) = (W/(tuu)v u).
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Thus, it holds #,u € N.
Next, we are going to show that 7, is indeed unique. For this purpose, we first make the
following observations:

fx, tu) f(x, tu)u

increasing = t > Y increasing in {x € Q: u(x) > 0},

9+ |u|q+
S x, tu) : Sl twu .

> ———— decreasing = > ——— increasingin {x € Q: u(x) < 0},
19+ |u |7+ 19+
g(x, tu) . . gx, tuu .
- e Q:
TR increasing = f +— ra increasing in {x € dQ2: u(x) > 0},
g(x, tu) . g(x, ruu o
——— decreasing = > ——— increasing in {x € dQ2: u(x) < 0}.
19+ |u |9+ 19+

Fort > 0 and for any u € Wb Hioe (Q) \ {0}, we have

1, 1
_ — p(x)
19+ Ay = /;2 <t4++1—17(x) IVul

1

1 1
p(x) p(x)
+/;2 t4++1=px) lul dx + /BSZ t9++1-px) lul do

f(x, tu)u g(x, tu)u
- ——dx — ———do
Q 9+ PYe) 19+

Let us study all the terms on the right-hand side. The first term is strictly decreasing for
Vu # 0 since p4 < g4 + 1, the third and the fourth term are also strictly decreasing, again
because of p4 < g4 + 1. For the second term we can use Lemmas 2.4 and 6.2 which imply
that it is decreasing. The terms with f and g are decreasing due to the observations above.
Since u # 0, the right-hand side of the equation above is strictly decreasing as a function in
the variable 7. Hence, there can be at most one value 7, > 0 such that A/ (z,,) = 0, that is,
t,u € N. This shows the uniqueness of 7, > 0.

Finally, A}, (¢) cannot take the value 0 anywhere else, so it has constant sign on (0, 7,,) and
(ty, 00). Due to (6.2), they must be positive and negative, respectively. O

log(e 4+t |Vul) [Vu| ]) .
t q(x)(e+1t|Vul)

Next, we will show that ¢ is sequentially coercive restricted to the Nehari manifold AV, that

is, for any sequence {u,},en € N such that ||u,|| 17 4o it follows that o(uy) i
+00.

Proposition 6.4 Let hypotheses (Hy’) and (H>’) be satisfied. Then the functional go|N is
sequentially coercive.

Proof Let {u,}pen S N be a sequence such that |u, || I7% 4o and Vo = Un/|unll-
Then {y, }nen S Wl Hiog () is bounded and so we can find a subsequence {yy, Jren and
y € WhHiee(Q) such that

Y=y in WhHee (@),
Y, — v in L"() and pointwisely a.e.in €2, (6.3)
Yn, — ¥ in L' (82) and pointwisely a.e.in 9.
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We claim that y = 0. Suppose by contradiction that y # 0. Let 0 < ¢ < « and, without any
loss of generality, we can assume that there exists k9 € N such that ||u,, || > 1 forall k > ko.
Applying Proposition 2.5 (iv) gives

1
o) < 7Q(unk)_/ F(x,unk)dx—/ G(x,up,)do
P Q I

< aillmll““—/ F(x,unk)dx—/ G(x, uy,)do.
pP- Q 0

Next, we divide the last inequality by ||u,, |9++¢ and use the representation y, = u,/||u, ||
to obtain

@ un,) a F(x, uy,) G(x, un)
< / e [ — | ey, |7 o, (64)
lletn, N9+ P— Ja lug |t o |un, 19+
Note that from (6.1) we have
lim F(x, unk) T F(x, unk)

q++e __ :
k—o0 ”unk ||q++5 " k=00 |Mnk|q++8 |ynk| =00, x € Qwithy(x) #0,

(6.5)
G(x, up,) . Gx,up) .
—_— = l —_— (I++8 = Q th .
k300 [ty 15+ kr0o [umy |45+ [ 00, x €98 with y(x) 0
Now, due to (Hy’)(i’"), (ii”), we can find constants My, Mo > O such that
F(x,t) > —Mg fora.a.x € Qandforallr € R, 66)

G(x,t) > —M;y fora.a.x € 0Q2 and for all t € R.
Setting Q¢ = {x € Q: y(x) = 0}, from (6.3), Fatou’s Lemma, (6.6), and (6.5), it follows

that F( )
. X, U
lim / 7nklynk |9+7+8 dx
k—o00 J |unk|q++8

= lim f 7F(x’u"")|ynqu++f dx+/ Tl tin) 4,
k—o0 \ Jo\qq lun 19+1€ Q ||un, |’”+6 (6.7)

F(x, . Mo |2
Z/ <lim M|ynk|4++8> dx — lim _MolS2|
2\

k=00 |ty |9+1¢ k=00 [|up, [|7+¢

= OoQ.

Similarly, using £9 = {x € 9Q: y(x) = 0}, we have

G(x,
lim/ Mlynk|q++8d6
k=00 JaQ |unk|q"'-"_5
G(x,u G(x,u
= lim / G, itm) ”+’<3|y,,k|‘i++f do + / G ttny) "i)g do
k—oo \ Jaa\x, |un |7+ So [une |*F (6.8)

G(x, . Mo
Z/ <lim (x u"k)lynqu”S) do — lim _MolSl
EIPAP)

k— 00 |unk|q++£ k—o00 ||unk||q++8
= 0.
Now, passing to the limit in (6.4) as k — oo and using (6.7) as well as (6.8), yields

(p(unk)
k=00 [y, [|9+F¢
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But this is a contradiction since {u, },en € N and so ¢(u,,) > 0 for all n € N by Proposition
6.3. This shows that y = 0.

Because u,, € N forall k € N, from Proposition 6.3, we know that ¢ (u,,) > ¢(Lyn,)
for all k € N and for any L > 1. Using this and Proposition 2.5 (iii) we have for all k € N

(P(Mnk) = ‘p(L)’nk)

1
> fQ(Lynk)—/ F(x,Lynk)dx—/ G(x, Lyy,)do
q+ Q Q

1 (6.9)
= — ”Lynk 17~ — F(x, L)’nk) dx — G(x, Lyl’lk) do
q+ Q aQ
LP-
=—- f F(x, Lyn,)dx — / G(x, Lyn,)do,
9+ Q 0
since ||yn, || = 1. Note that the two integrals on the right-hand side of (6.9) are strongly

continuous due to (H»)(i), see [2, Lemma 5.1 (v)]. Combining this fact with Ly,, —0 in
Wl Moe (Q) (see (6.3) and the fact that y = 0), there exists a number k; € N such that

LP-
@(unk) > —— —1 forallk > k.
9+
Since L > 1 was arbitrary chosen, we get ¢(u,,) — —+00 as k — oo, which by the

subsequence principle implies that ¢ (u,) — +00 asn — oo. O

Now we are able to prove that the infimum of ¢ over A and Ny, respectively, is always
positive.

Proposition 6.5 Let hypotheses (Hy’) and (H>’) be satisfied. Then

inf 0 d inf 0.
ulélNgl)(u) > an MIEI:I/\/() o) >
Proof The first part follows from Proposition 6.3 and Proposition 5.3, which imply that

)

o) > ¢ (—u) > inf @(u) >0 forallu e N,
flull llull=8

with § > 0 is given by Proposition 5.3. Since p(u) = (™) + o(—u ") andu™, —u~ e N/

for u € N, the second assertion follows. ]

Next we are going to prove that the infimum of ¢ restricted to the nodal Nehari manifold
Ny is achieved.

Proposition 6.6 Let hypotheses (H|’) and (H»’) be satisfied. Then there exists wy € Ny such
that (wo) = inf,eng @ (u).

Proof Let {u,},en S ANp be a minimizing sequence, that is, ¢(u,) \ inf,en; ¢ (). From
Proposition 2.6 we know that u;", —u; € W' Moe(Q) for all n € N. Therefore, {¢(u;)}en
and {¢(—u,, )},en are bounded in R because ¢ (u,) = w(u,f) +¢(—u, ) for alln € N and
since p(u;) > 0 as well as p(—u,) > 0 for all n € N by Proposition 6.3. Hence, from
Proposition 6.4 we know that {u:{}neN and {—u,, },en are bounded in whHiog (Q). Taking
Proposition 2.3 (iii), (v) into account, we can find subsequences {u,‘,"k}kEN and {—u;k}keN
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and vy, vo € WhHoe () such that

uh —vi, u, =y in Wt (Q),

nk
“er — vy, u, — vy in L") () and pointwisely a.e.in €2, 6.10)
u,fk — v, U, — vy in L' (82) and pointwisely a.e.in 92, .

withv; >0, wvp, >0, and vjvy =0.
Claim: vy, v #0
Suppose by contradiction that vy = 0. Since u;“k € N, we have

0= (¢' (). uy,)
Vi,

u )
=9(u+)+/ = Vu |7 dx
o Jagtote + |Vuik|)| ol

—/ f(x,u,fk)u,fkdx—/ g(x,u,fk)u,fkda

Q Ele}

ZQ(M,T,()—/ IO yust dx—/ g(x, uy yu,t do.
Q Ele}

Passing to the limit as k — 400 and using the convergence properties in (6.10) implies that
Q(u;:_k) — 0 which is by Proposition 2.5 (v) equivalent to ”:Tk — 0in W Me(Q). Then,
using the continuity of ¢ along with Proposition 6.5 yields

0 < inf p(u) < @) — @) =0 ask — oo,
ueN K

which is a contradiction. Thus, vy # 0. In a similar way one shows that v, # 0 and so the
Claim is proved.

From Proposition 6.3 and the Claim, we can find numbers #1, > 0 such that tjv1, vy €
N. Next, we define

wo = Hv] + Hvr.

Taking (6.10) into account, we see that wo+ = tjv) and —w, = tpvp which implies wg € No.
It should be noted that the positive terms in ¢(-) are convex and continuous, so sequentially
weakly lower semicontinuous. Since the terms with the functions F and G are strongly con-
tinuous, these are also sequentially weakly lower semicontinuous. Therefore, the functional
o(+) is sequentially weakly lower semicontinuous. Using this fact and Proposition 6.3 leads
to

ulenAffow(u) = lim oQun) = lim oG, )+ @(-u,)
> liminf o(tu}) + o(—tuy,)
k—o00

> @(tivy) + @(t2v2)
= p(wg) + e(—wy) = @(w) > inf @(u).
ueNy

This finishes the proof. O

Finally, we have to show that the minimizer obtained in Proposition 6.6 is indeed a critical
point of ¢(-) and so a least energy sign-changing solution of (1.11).
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Proposition 6.7 Let hypotheses (H,’) and (H> ") be satisfied and wy € Ny such that o(wg) =
inf,eng @ (u). Then wy is a critical point of .

Proof Assume by contradiction that ¢’ (wg) # 0. Then we can find numbers «, By > 0 such
that

Il @)« > o, forallu e WMo (Q) with |lu — woll < 3fo.

Let éHlog be the embedding constant of W1 e (©) <> LP- () (see Proposition 2.3 (iii)).
Since wy # 0 # wy , we have for any v € WMt (Q) that

ég}og lwo ||, ifvT =0,
ool

A1
lwo —vll = Cyy Mwo — vl = !
- 1 P- = + if ot =
og Hiog H wy Hp_ , ifvT =0.

Now we take a number S such that

wo [, Co,

B € (0, min {é,;}og

wil, ).

This implies that for any v € WMo (Q) with [|wo — v|| < By it follows that v # 0 # v™.

Let B = min{By, B1/2}. Due to the continuity of the mapping (s, ¢) > swar —tw, from
[0, 00)? into W 1Hioz (Q), there exists 8§ € (0, 1) such that for all s, 7 > 0 with max{|s —
1], |t — 1]} < § it holds

lswg — twy — woll < B. (6.11)
Let D=(1-6,1+ 8)2. From Proposition 6.3 we have fors,r > O withs # 1 # ¢

ga(sw(')" —twy) = ga(swg') + @(—twgy)

< <P(w(-)'_) + <p(—w0_) = ¢(w0) — MIEI}\f/O‘/’(”) (6.12)

From this it follows, in particular, that

+ — .
= max sw, —tw, ) < @(wg) = inf .
& (meww( 0 o) < ¢(wo) ueNO(ﬁ(u)

Now we are able to apply quantitative deformation lemma given in Lemma 2.10 with

S = B(wo. B) inf () Y il R

= B(wg, B), c¢= in ), £€=miny——, —
0 ueny ¥ 48

with B as defined above. Since Sy = B(wq, 38) and with the choice of €, we see that the

conditions in Lemma 2.10 are satisfied. Hence, we can find a mapping 1 with the properties

stated in the lemma. Moreover, due to the choice of &, we have

¢(swg—rwa)ss+c—c<c—<cf>gc—zg (6.13)
for all (s,t) € dD. Next, we define mappings T: [0, 00)2 — WhHe(Q) and
IT: (0, 00)? — R? by

Y(s,t) = r](],sw{)" —twgy)
[ + ., - -
(s, 1) = (" (Y7 (s, 1), Y (s,1)), ;(w (=Y (s,1), =T (s,0) |-

N
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The continuity of 7 implies the continuity of Y and since ¢ is C', IT is continuous as well.
Applying Lemma 2.10 (i) and (6.13), we have, for all (s, ) € D, that Y (s, t) = swo+ —twy
and
H(Sv t) = ( <(ﬂ/(sw(;r)» wg) ) (ga/(_lw(;)’ _U)6> ) .
Taking Proposition 6.3 into account, yields the componentwise inequalities
IMy(1—=368,1)>0>TII(1+6,1),
MMy, 1 —6) >0>Tl(t, 1 +6) forallt € (1 —-46,1+9),

where I1 = (I1y, [1). Then, by the Poincaré-Miranda existence theorem given in Theorem
2.11 applied to d(s,t) = —II(1 + s, 1 4 1), there exists a pair (sg,?p) € D such that
I1(so, to) = 0 which can be equivalently written as
(@' (Y (50, 10)), T F (50, 10)) = 0 = (@' (=Y (50, 0)), =Y~ (50, 10))-
Now, applying Lemma 2.10 (iv), (6.11), and the choice of § gives
I (s0, 20) — wollx < [T (s0, t0) — (fowg — tow)Il + ltowg — towy — woll
<B+B=28=5h.
Then, by the choice of 81, we have
Y (s0. 10) # 0 # =Y (0. fo),

which implies Y (so, #p) € Np. But, from Lemma 2.10 (ii), the choice of § and (6.12), it
follows that ¢(Y (s, f0)) < ¢ — ¢. This is a contradiction and so wy is a critical point of ¢. O

The proof of Theorem 1.3 follows now from Propositions 6.6 and 6.7 along with Theorem
4.1. We end this section with an example.

Example 6.8 Let (H;) be satisfied. In addition, for simplification, we also assume tgat
q+k/q— < 1 which implies g+ (1 + «/q-) < g+ +1 < ptoLet &, & ki € Co(Q),
i = 1, 2 such that

g+ + 1 <min{(k)) -, (K1), (k1)-}, max{(k)+, K)+} < (p-)*,

g+ + 1 <min{(k2)_, (k2)—, (k2)—}, max{(k2)y, (k2)+} < (p-)«

and
max{(K)+, (K1)+}  min{(k1)—, (1)} -1
p— N
max{(K2)+, (K2)+}  min{(k2)—, (K2)-} -1
p— N

Then, the functions

[t[F1O=2¢[1 + log(—n)], if ¢ <1,
f, ) = 102, if—1<t<1,,
11241 +1og(r)], if 1<t,
[1]F209=2¢[1 +log(—1)], if ¢ <—I,
glx, 1) = { |¢[2™) =2, if —1<t<l,
(/2O =2e[1 +log()],  if 1<t
satisfy hypotheses (H>’).
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