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Abstract. This paper provides multiplicity results for a class of nonlinear el-
liptic problems under a nonhomogeneous Neumann boundary condition. We

prove the existence of three nontrivial solutions to these problems which de-

pend on the Fuč́ık spectrum of the negative p-Laplacian with a Robin boundary
condition. Using variational and topological arguments combined with an e-

quivalent norm on the Sobolev space W 1,p it is obtained a smallest positive

solution, a greatest negative solution, and a sign-changing solution.

1. Introduction. The purpose of this article is to investigate the existence and
multiplicity of weak solutions to elliptic equations with nonhomogeneous Neumann
boundary condition. Specifically, given a bounded domain Ω ⊆ RN with a smooth
boundary ∂Ω and let 1 < p <∞, we consider the problem

−∆pu = a(u+)p−1 − b(u−)p−1 + f(x, u) in Ω,

|∇u|p−2 ∂u

∂ν
= h(x, u)− θ|u|p−2u on ∂Ω,

(1.1)

where −∆pu = −div(|∇u|p−2∇u) is the negative p-Laplacian, ∂u/∂ν denotes the
outer normal derivative of u while the values a, b and θ are real parameters specified
later. The terms u+ = max(u, 0) and u− = max(−u, 0) stand for the positive and
negative part of u, respectively, and the perturbations, namely f : Ω× R→ R and
h : ∂Ω × R → R, are some Carathéodory functions satisfying suitable hypotheses,
see (H) below. For the sake of simplicity we omit the denotation for the trace
operator τ : W 1,p(Ω)→ Lp(∂Ω) which is applied to the functions on the boundary
∂Ω.

The main goal of this article is to prove the existence of three nontrivial weak
solutions of the nonhomogeneous Neumann boundary value problem given in (1.1).
More precisely, we establish two extremal constant-sign solutions, namely a smallest
positive solution u+ as well as a greatest negative solution u−, and finally, the
existence of a nontrivial sign-changing solution u0 lying between these extremal
constant-sign solutions is pointed out.

Throughout the paper we impose the following assumptions.

(H) Let θ > 0 be a fixed constant and let f : Ω× R→ R and h : ∂Ω× R→ R be
Carathéodory functions satisfying the subsequent conditions:
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(H1) f is bounded on bounded sets.
(H2)

lim
|s|→∞

f(x, s)

|s|p−2s
= −∞, uniformly with respect to a.a. x ∈ Ω.

(H3)

lim
s→0

f(x, s)

|s|p−2s
= 0, uniformly with respect to a.a. x ∈ Ω.

(H4) h is bounded on bounded sets.
(H5) There exists a number sθ > 0 such that

h(x, s)

|s|p−2s
< θ, for a.a. x ∈ ∂Ω and for all |s| > sθ.

(H6)

lim
s→0

h(x, s)

|s|p−2s
= 0, uniformly with respect to a.a. x ∈ ∂Ω.

(H7) h satisfies the condition

|h(x1, s1)− h(x2, s2)| ≤ L
[
|x1 − x2|α + |s1 − s2|α

]
,

for all pairs (x1, s1), (x2, s2) in ∂Ω× [−K,K], where K is a positive con-
stant and α ∈ (0, 1].

By means of the hypotheses (H3) and (H6) we see at once that f(x, 0) = h(x, 0) =
0 reasoning that u ≡ 0 is a trivial solution of (1.1). The condition (H7) is a
Hölder continuity assumption which is needed to make use of the C1,α-regularity of
Lieberman (see [20]).

In a recent work of the author [32] there are shown multiplicity results to equa-
tions of the form

−∆pu = f(x, u)− |u|p−2u in Ω,

|∇u|p−2 ∂u

∂ν
= a(u+)p−1 − b(u−)p−1 + g(x, u) on ∂Ω,

(1.2)

where the solutions of (1.2) depend on the so-called Steklov Fuč́ık spectrum of the
negative p-Laplacian which was intensively treated by Mart́ınez and Rossi in [22].
The novelty of this paper is on the one hand that the solutions of (1.1) depend on
the Robin Fuč́ık spectrum of −∆p (see Section 2 for a detailed introduction) and
on the other hand we could drop a hypothesis on the function f : Ω×R→ R, which
was required in [32], namely

(A1) There exists a number δf > 0 such that
f(x, s)

|s|p−2s
≥ 0 for all 0 < |s| ≤ δf and

for a.a. x ∈ Ω.

Assumption (A1) means that the function f must change sign near zero. Now, we
do not need this condition on f . Further, regarding the behaviour at infinity, the
boundary function in [32] has to satisfy the condition

(A2) lim|s|→∞
g(x,s)
|s|p−2s = −∞ uniformly with respect to a.a. x ∈ ∂Ω.

We point out that we can replace (A2) by the weaker condition (H5).
Another novelty is the usage of an equivalent norm on the space W 1,p(Ω) obtained
by Deng (see [12]) which contains the norm ‖ · ‖Lp(∂Ω) instead of ‖ · ‖Lp(Ω). This
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ensures, in particular, that suitable energy functionals concerning problem (1.1)
(involving appropriate truncation functions to make sure the finiteness of the in-
tegrals) satisfy the coercivity and the Palais-Smale condition which is required in
our approach. It should be mentioned that we do not need differentiability, poly-
nomial growth, or some integral conditions on the mappings f and h. In order to
prove our main results we make use of variational and topological tools, e.g. critical
point theory, the mountain-pass theorem, the second deformation lemma and the
so-called Robin Fuč́ık spectrum of the negative p-Laplacian.

Elliptic equations with a nonhomogeneous Neumann boundary condition regard-
ing existence and multiplicity of solutions were studied by a number of authors in
the last years. Without guarantee of completeness we refer to the papers in [1], [13],
[14], [15], [19], [21], [23], [29], [35], and the references therein. With reference to ho-
mogeneous Neumann problems, multiple solution results can be found for example
in [2], [4], [5] and [6]. In the Dirichlet case there also exists a number of publications
according to the subject of multiplicity results, see e.g. in [9], [10], [11], and [17].

The paper is organized as follows. In Section 2 we give the basic notations in-
cluding the definition of a sub- and supersolution of (1.1), we point out some recent
results with regard to the Robin Fuč́ık spectrum of the negative p-Laplacian and we
consider a second auxiliary problem which is needed in our treatment. The third
section is devoted to the proofs of the existence of specific sub- and supersolutions
of (1.1) which leads to the existence of two ordered pairs of sub- and supersolution,
one with positive sign and the other one with negative sign. Then, we can derive
the existence of two constant-sign solutions thanks to the method of sub- and super-
solution dealt in [7]. The existence of extremal constant-sign solutions, more exact
a smallest positive solution and a greatest negative solution of (1.1), is shown in
Section 4 using functional analytical arguments in association with the properties
of the Robin Fuč́ık spectrum of −∆p. In the last section we prove the existence of a
sign-changing solution applying the fact that every nontrivial solution between the
obtained extremal constant-sign solution must be a sign-changing solution provided
it is unequal to these extremal solutions. Variational and topological tools like the
mountain-pass theorem, critical point theory and the second deformation lemma
are found a use in this last section.

2. Preliminaries. By Lp(Ω), Lp(∂Ω) and W 1,p(Ω) we denote the usual Lebesgue
and Sobolev spaces with their norms ‖·‖Lp(Ω), ‖·‖Lp(∂Ω) and ‖·‖W 1,p(Ω), respectively.

Given ζ > 0 we introduce an equivalent norm on W 1,p(Ω) given by

‖u‖ζ = ‖∇u‖Lp(Ω) + ζ‖u‖Lp(∂Ω) (2.1)

(see e.g. Deng [12]). We say that u ∈ W 1,p(Ω) is a weak solution of problem (1.1)
if ∫

Ω

|∇u|p−2∇u · ∇vdx

=

∫
Ω

(a(u+)p−1 − b(u−)p−1 + f(x, u))vdx+

∫
∂Ω

(h(x, u)− θ|u|p−2u)vdµ,

holds for all test functions v ∈ W 1,p(Ω) while dµ denotes the usual (N − 1)-
dimensional surface measure. Further, the definition of weak sub- and superso-
lutions is required in our treatments. A function u ∈ W 1,p(Ω) is said to be a weak
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subsolution of problem (1.1) if the inequality∫
Ω

|∇u|p−2∇u · ∇vdx

≤
∫

Ω

(a(u+)p−1 − b(u−)p−1 + f(x, u))vdx+

∫
∂Ω

(h(x, u)− θ|u|p−2u)vdµ,

is satisfied for all nonnegative test functions v ∈ W 1,p(Ω). Analogously, replacing
’u’ by ’u’ and ’≤’ by ’≥’, we obtain the definition of a weak supersolution of problem
(1.1). It is obvious that every weak solution is both a weak subsolution and a weak
supersolution. As a consequence of the assumptions in (H) we get a helpful result
stated above.

Corollary 2.1. Under the hypothesis (H) for each ξ > 0 there exist constants
χ1, χ2 > 0 such that, for all 0 ≤ |s| ≤ ξ,

|f(x, s)| ≤ χ1|s|p−1, for a.a. x ∈ Ω, |h(x, s)| ≤ χ2|s|p−1, for a.a. x ∈ ∂Ω.

To be more precise, the growth conditions in Corollary 2.1 come from the as-
sumptions (H1), (H3), (H4) and (H6), respectively.

As mentioned in the Introduction, we need the properties of the Fuč́ık spectrum
of the negative p-Laplacian −∆p with Robin boundary condition. This spectrum is

defined as the set Σ̂p of all pairs (a, b) ∈ R2 such that

−∆pu = a(u+)p−1 − b(u−)p−1 in Ω,

|∇u|p−2 ∂u

∂ν
= −β|u|p−2u on ∂Ω,

(2.2)

is solved nontrivially meaning that u ∈W 1,p(Ω), u 6≡ 0, and verifies the equality∫
Ω

|∇u|p−2∇u · ∇vdx+ β

∫
∂Ω

|u|p−2uvdµ =

∫
Ω

(a(u+)p−1 − b(u−)p−1)vdx, (2.3)

for all v ∈W 1,p(Ω). In (2.2), respectively (2.3), the parameter β is supposed to be
a fixed, nonnegative constant. If β = 0, (2.2) reduces to the Fuč́ık spectrum Θp of
the negative Neumann p-Laplacian (see [3]). The special case a = b = λ leads to

−∆pu = λ|u|p−2u in Ω, |∇u|p−2 ∂u

∂ν
= −β|u|p−2u on ∂Ω, (2.4)

which is known as the Robin eigenvalue problem of the negative p-Laplacian. Prob-
lem (2.4) was studied in the important publication of Lê [18] devoted to the eigen-
value problems for the negative p-Laplacian. In the Robin case he proved that the
first eigenvalue λ1 of (2.4) corresponding to the fixed value β is simple, isolated and
it can be variationally characterized through

λ1 = inf
u∈W 1,p(Ω)

{∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdµ :

∫
Ω

|u|pdx = 1

}
. (2.5)

Moreover, the set of eigenvalues to (2.4) is closed (see [18, Theorem 5.9]). It is also
known that the first eigenfunction ϕ1 associated to λ1 has constant sign in Ω and
every eigenfunction corresponding to an eigenvalue greater than λ1 has to change
sign. As ϕ1 > 0 in Ω and ϕ1 belongs to C1,α(Ω) for some 0 < α < 1 it follows
that ϕ1 ∈ int(C1(Ω)+) where int(C1(Ω)+) denotes the interior of the positive cone
C1(Ω)+ = {u ∈ C1(Ω) : u(x) ≥ 0,∀x ∈ Ω} in the Banach space C1(Ω), which is
nonempty and given by

int(C1(Ω)+) =
{
u ∈ C1(Ω) : u(x) > 0,∀x ∈ Ω

}
.
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Remark 2.2. If λ
(β)
1 is the first eigenvalue of the Robin eigenvalue problem (2.4)

corresponding to the fixed value β > 0 and if θ is a real parameter satisfying 0 < θ <

β, then we see from (2.5) that λ
(β)
1 ≥ λ(θ)

1 where λ
(θ)
1 is the first eigenvalue of (2.4)

concerning the value θ. This note is required in the end of the proof of Theorem 4.1
demonstrating the existence of extremal constant-sign solutions of (1.1).

Let us turn back to the Robin Fuč́ık spectrum which was recently studied in [24]
through a variational approach using a mountain-pass procedure. More precisely,

it was shown that Σ̂p contains a first nontrivial curve C which can be expressed as

C = {(s+ c(s), c(s)), (c(s), s+ c(s)) : s ≥ 0}, (2.6)

where c(s) is given by

c(s) = inf
γ∈Γ

max
u∈γ[−1,+1]

J̃s(u),

with

Γ = {γ ∈ C([−1, 1], S) : γ(−1) = −ϕ1 and γ(1) = ϕ1}. (2.7)

Here, J̃s is equal to the restriction of the C1-functional Js : W 1,p(Ω) → R defined
by

Js(u) =

∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdµ− s
∫

Ω

(u+)pdx

to the C1-submanifold

S =

{
u ∈W 1,p(Ω) :

∫
Ω

|u|pdx = 1

}
(2.8)

of W 1,p(Ω). This first nontrivial curve stated in (2.6) is Lipschitz continuous, de-
creasing and its asymptotic behavior can be described by

lim
s→+∞

c(s) =

{
λ1 if p ≤ N
λ > λ1 if p > N

where

λ = inf
u∈L

max
r∈R

∫
Ω
|∇(rϕ1 + u)|pdx+ β

∫
∂Ω
|rϕ1 + u|pdµ∫

Ω
|rϕ1 + u|pdx

,

with

L = {u ∈W 1,p(Ω) : u vanishes somewhere in Ω, u 6≡ 0}
(see [24, Proposition 4.2 and Theorem 4.3]). With the help of this first nontrivial
curve, we can formulate our last hypothesis on the given data in (1.1).

(H8) Let β be chosen such that 0 < θ < β and let (a, b) ∈ R2
+ be above the first

nontrivial curve C of the Fuč́ık spectrum Σ̂p constructed in [24].

In case a = b = λ condition (H8) reduces to the assumption that the value λ is
strictly greater than λ2 being the second eigenvalue of the Robin eigenvalue problem

of −∆p because of the fact that the point (λ2, λ2) belongs to Σ̂p. In [24] a variational
characterization of this eigenvalue is obtained by the representation

λ2 = inf
γ∈Γ

max
u∈γ[−1,1]

[∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdσ
]
.

For a detailed summary about the Fuč́ık spectrum of the negative p-Laplacian with
different boundary conditions we refer to the recent overview article in [25].
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A second problem which plays an important part in our treatment is the subse-
quent boundary value problem

−∆pu = −|u|p−2u+ 1 in Ω, |∇u|p−2 ∂u

∂ν
= 1 on ∂Ω, (2.9)

which means that∫
Ω

|∇u|p−2∇u · ∇vdx = −
∫

Ω

(|u|p−2u− 1)vdx+

∫
∂Ω

vdµ (2.10)

is fulfilled for every test function v ∈ W 1,p(Ω). From the classical existence theory
we infer the existence of a weak solution of problem (2.9). Testing (2.10) with
v = e1 − e2, where e1, e2 ∈ W 1,p(Ω) are two weak solutions of (2.10), we get the
uniqueness. Denote by e ∈ W 1,p(Ω) the unique weak solution of (2.9), we see
at once that e must be nonnegative (testing with v = e−). Further, we obtain
e ∈ L∞(Ω) (see [31, Theorem 4.1] or [33, Corollary 1.2]) and from the regularity
results of Lieberman [20] it follows e ∈ C1,α(Ω) with α ∈ (0, 1). Taking (2.9) into
account we have

∆pe = |e|p−2e− 1 ≤ ep−1 a.e. in Ω.

Defining β : [0,∞) → R through β(s) = sp−1 for s > 0 we may apply Vázquez’s
strong maximum principle (see [27, Theorem 5]) to get e(x) > 0 for all x ∈ Ω.
Fixing x0 ∈ ∂Ω such that e(x0) = 0 and using again Vázquez’s strong maximum
principle we conclude that ∂u/∂ν(x0) < 0. From the boundary condition in (2.9)
we obtain |∇u|p−2∂u/∂ν(x0) = 1 which is a contradiction. Hence, e(x) > 0 in Ω
guaranteeing e ∈ int(C1(Ω)+).

3. Existence of sub- and supersolutions. In this section we provide the ex-
istence of some pairs of weak sub- and supersolutions of our problem (1.1). Here
and in the rest of the paper we denote by ϕ1 the first eigenfunction of the Robin
eigenvalue problem (2.4) corresponding to the first eigenvalue λ1 related to the fixed
parameter β. The function e stands for the unique weak solution of problem (2.9).
The main result in this section is the following.

Lemma 3.1. Let the assumptions in (H) be satisfied and suppose that a, b > λ1

as well as 0 < θ < β. Then there are constants ϑa, ϑb > 0 depending on a and b,
respectively, such that ϑae is a positive weak supersolution and −ϑbe is a negative
weak subsolution of problem (1.1). Additionally, the function εϕ1 is a positive weak
subsolution of problem (1.1) while −εϕ1 is a negative weak supersolution provided
the number ε > 0 is sufficiently small.

Proof. We start to show that ϑae is a positive weak supersolution of (1.1) with a
positive constant ϑa to be specified. From (2.10) we obtain∫

Ω

|∇(ϑae)|p−2∇(ϑae) · ∇vdx

= −
∫

Ω

(ϑae)
p−1vdx+

∫
Ω

ϑp−1
a vdx+

∫
∂Ω

ϑp−1
a vdµ, ∀v ∈W 1,p(Ω).

(3.1)
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Combining the definition of a weak supersolution and equation (3.1), we have to
show that the inequality∫

Ω

(ϑp−1
a − (1 + a)(ϑae)

p−1 − f(x, ϑae))vdx

+

∫
∂Ω

(ϑp−1
a + θ(ϑae)

p−1 − h(x, ϑae))vdµ ≥ 0

(3.2)

is satisfied for all nonnegative test functions v ∈ W 1,p(Ω). Thanks to condition
(H2) there exists a number sa > 0 such that

f(x, s)

sp−1
< −(1 + a), for a.a. x ∈ Ω and all s > sa. (3.3)

With the aid of (H1), one gets

f(x, s) + (1 + a)sp−1 ≤ ca, for a.a. x ∈ Ω and all s ∈ [0, sa] (3.4)

with a constant ca depending on a. Finally, from (3.3) and (3.4) it follows

f(x, s) ≤ −(1 + a)sp−1 + ca, for a.a. x ∈ Ω and all s ≥ 0. (3.5)

From (H5) we obtain the existence of sθ > 0 such that

h(x, s)

sp−1
< θ, for a.a. x ∈ ∂Ω and all s > sθ,

and condition (H4) yields a constant cθ > 0 such that

h(x, s) ≤ cθ, for a.a. x ∈ ∂Ω and all s ∈ [0, sθ].

Consequently this leads to

h(x, s) ≤ θsp−1 + cθ, for a.a. x ∈ ∂Ω and all s ≥ 0. (3.6)

Now we can estimate the integrals in (3.2) using the inequalities in (3.5) and (3.6).
It results in ∫

Ω

(ϑp−1
a − (1 + a)(ϑae)

p−1 − f(x, ϑae))vdx

+

∫
∂Ω

(ϑp−1
a + θ(ϑae)

p−1 − h(x, ϑae))vdµ

≥
∫

Ω

(ϑp−1
a − (1 + a)(ϑae)

p−1 + (1 + a)(ϑae)
p−1 − ca)vdx

+

∫
∂Ω

(ϑp−1
a + θ(ϑae)

p−1 − θ(ϑae)p−1 − cθ)vdµ

=

∫
Ω

(ϑp−1
a − ca)vdx+

∫
∂Ω

(ϑp−1
a − cθ)vdµ,

for all v ∈W 1,p(Ω)+. From the choice ϑa := max

{
c

1
p−1
a , c

1
p−1

θ

}
we conclude that the

function u = ϑae is a positive weak supersolution of our problem (1.1). Following
the same pattern one can prove that u = −ϑbe is a negative weak subsolution of
(1.1).

Let us prove the second part of the lemma. To this end, we consider the weak
formulation of the Robin eigenvalue problem of the p-Laplacian multiplied with the
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parameter εp−1 > 0, namely∫
Ω

|∇(εϕ1)|p−2∇(εϕ1) · ∇vdx

=

∫
Ω

λ1(εϕ1)p−1vdx−
∫
∂Ω

β(εϕ1)p−1vdµ, ∀v ∈W 1,p(Ω).

Taking the definition of a weak subsolution into account we have to prove that∫
Ω

((λ1 − a)(εϕ1)p−1 − f(x, εϕ1))vdx

+

∫
∂Ω

((θ − β)(εϕ1)p−1 − h(x, εϕ1))vdµ ≤ 0

(3.7)

is fulfilled for all v ∈W 1,p(Ω)+. Applying the assumptions (H3) and (H6) provides
the existence of two numbers δa > 0 and δθ > 0 such that

|f(x, s)|
|s|p−1

< a− λ1, for a.a. x ∈ Ω and all 0 < |s| ≤ δa,

|h(x, s)|
|s|p−1

< β − θ, for a.a. x ∈ ∂Ω and all 0 < |s| ≤ δθ,
(3.8)

due to the fact that a > λ1 and β > θ. Choosing

0 < ε ≤ min

{
δa

‖ϕ1‖∞
,

δθ
‖ϕ1‖∞

}
,

where ‖ϕ1‖∞ stands for the supremum-norm of ϕ1, along with (3.8), we obtain
from (3.7) ∫

Ω

((λ1 − a)(εϕ1)p−1 − f(x, εϕ1))vdx

+

∫
∂Ω

((θ − β)(εϕ1)p−1 − h(x, εϕ1))vdµ

≤
∫

Ω

((λ1 − a)(εϕ1)p−1 + (a− λ1)(εϕ1)p−1)vdx

+

∫
∂Ω

((θ − β)(εϕ1)p−1 + (β − θ)(εϕ1)p−1)vdµ

= 0,

which proves the assertion. The existence of a negative weak supersolution −εϕ1

can be shown in a similar way.

Remark 3.2. Note that every nontrivial weak solution u ∈ [0, ϑae] of (1.1) belongs
to int(C1(Ω)+). This follows from the C1,α-regularity of Lieberman [20] combined
with Vázquez’s strong maximum principle [27] and the growth properties of f and
h given in Corollary 2.1. The same holds true for every nontrivial weak solution
u ∈ [−ϑbe, 0] meaning that u lies in − int(C1(Ω)+).

4. Extremal constant-sign solutions. The main result in this section is the
following theorem about the existence of extremal constant-sign solutions of problem
(1.1).
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Theorem 4.1. Let the conditions in (H) be satisfied and let 0 < θ < β. Then, for
every a > λ1 and b ∈ R, there exists a smallest positive weak solution u+ = u+(a) ∈
int(C1(Ω)+) of (1.1) in the order interval [0, ϑae] while for every b > λ1 and a ∈ R,
there exists a greatest negative weak solution u− = u−(b) ∈ − int(C1(Ω)+) within
[−ϑbe, 0].

Proof. We only prove the assertion for the smallest positive weak solution, the
other case acts in the same way. From Lemma 3.1 we know the existence of a
positive weak subsolution εϕ1 ∈ int(C1(Ω)+) and a positive weak supersolution
ϑae ∈ int(C1(Ω)+). Taking ε > 0 small enough such that εϕ1 ≤ ϑae provides an
ordered pair of weak sub- and supersolutions of problem (1.1), namely [εϕ1, ϑae].
The method of weak sub- and supersolution concerning problems of type (1.1)
(see [7]) ensures the existence of a smallest positive weak solution uε = uε(a) of
(1.1) lying between εϕ1 and ϑae. Taking into account Remark 3.2 we obtain that
uε ∈ int(C1(Ω)+). Therefore, for every positive integer n sufficiently large, there
exists a smallest positive weak solution un ∈ int(C1(Ω)+) of problem (1.1) satisfying
1
nϕ1 ≤ un ≤ ϑae. From this we get a sequence (un) of smallest positive weak
solutions being monotone decreasing. It follows

un ↓ u+ pointwise (4.1)

with a function u+ : Ω→ R belonging to [0, ϑae].
Let us show that u+ solves problem (1.1). As un ∈ [ 1

nϕ1, ϑae], one can easily

prove the boundedness of (un) in W 1,p(Ω). Thus, there is a weakly convergent
subsequence of (un) and due to the monotonicity of (un) along with the compact
embeddings W 1,p(Ω) ↪→ Lp(Ω) as well as W 1,p(Ω) ↪→ Lp(∂Ω), the entire sequence
(un) has the following convergence properties:

un ⇀ u+ in W 1,p(Ω),

un → u+ in Lp(Ω), in Lp(∂Ω), for a.a. x ∈ Ω, and for a.a. x ∈ ∂Ω.
(4.2)

As un solves problem (1.1), we have∫
Ω

|∇un|p−2∇un · ∇vdx

=

∫
Ω

(aup−1
n + f(x, un))vdx+

∫
∂Ω

(h(x, un)− θup−1
n )vdµ,

(4.3)

for all v ∈W 1,p(Ω). Taking the test function v = un − u+ ∈W 1,p(Ω) leads to∫
Ω

|∇un|p−2∇un · ∇(un − u+)dx

=

∫
Ω

(aup−1
n + f(x, un))(un − u+)dx+

∫
∂Ω

(h(x, un)− θup−1
n )(un − u+)dµ.

Thanks to the boundedness of f and h in combination with the convergence proper-
ties in (4.2) and the uniform boundedness of the sequence (un), we get by applying
Lebesgue’s dominated convergence that

lim sup
n→∞

∫
Ω

|∇un|p−2∇un · ∇(un − u+)dx = 0,

which by the (S+)-property of −∆p on W 1,p(Ω) implies

un → u+ in W 1,p(Ω). (4.4)
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The strong convergence in (4.4) along with (H1), (H4) and the uniform boundedness
of (un) allows us to pass to the limit in (4.3) which ensures that u+ is in fact a
weak solution of (1.1).

Taking into account Remark 3.2 we know that u+ ∈ int(C1(Ω)+) provided u 6≡ 0.
Arguing by contradiction, we suppose that u+ ≡ 0 implying that (see (4.1))

un(x) ↓ 0 for all x ∈ Ω. (4.5)

Setting

wn :=
un

‖un‖W 1,p(Ω)
for all n,

we may suppose that, along a subsequence denoted again by wn,

wn ⇀ w in W 1,p(Ω),

wn → w in Lp(Ω), in Lp(∂Ω), for a.a. x ∈ Ω, for a.a. x ∈ ∂Ω,
(4.6)

with some function w ∈ W 1,p(Ω). Additionally, there exist functions k1 ∈ Lp(Ω)+,
k2 ∈ Lp(∂Ω)+ such that

|wn(x)| ≤ k1(x) for a.a. all x ∈ Ω,

|wn(x)| ≤ k2(x) for a.a. all x ∈ ∂Ω.
(4.7)

Using the representation un = ‖un‖W 1,p(Ω)wn we have from (4.3) the variational
equation∫

Ω

|∇wn|p−2∇wn · ∇vdx

=

∫
Ω

(
awp−1

n +
f(x, un)

up−1
n

wp−1
n

)
vdx+

∫
∂Ω

(
h(x, un)

up−1
n

wp−1
n − θwp−1

n

)
vdµ,

(4.8)

for all v ∈W 1,p(Ω). Particularly, for the choice v = wn − w ∈W 1,p(Ω), one gets∫
Ω

|∇wn|p−2∇wn · ∇(wn − w)dx

=

∫
Ω

(
awp−1

n +
f(x, un)

up−1
n

wp−1
n

)
(wn − w)dx

+

∫
∂Ω

(
h(x, un)

up−1
n

wp−1
n − θwp−1

n

)
(wn − w)dµ.

(4.9)

Applying Corollary 2.1 with ξ = ϑa‖e‖∞ there exist constants cf , ch > 0 such that

|f(x, un(x))|
up−1
n (x)

wp−1
n (x)|wn(x)− w(x)| ≤ cfk1(x)p−1(k1(x) + |w(x)|),

|h(x, un(x))|
up−1
n (x)

wp−1
n (x)|wn(x)− w(x)| ≤ chk2(x)p−1(k2(x) + |w(x)|),

(4.10)

where (4.7) is also taken into account. As the right-hand sides of (4.10) are in
L1(Ω) and L1(∂Ω), respectively, we may apply Lebesgue’s dominated convergence
theorem, which associated with (4.6) provides

lim
n→∞

∫
Ω

f(x, un)

up−1
n

wp−1
n (wn − w)dx = 0,

lim
n→∞

∫
∂Ω

h(x, un)

up−1
n

wp−1
n (wn − w)dµ = 0.

(4.11)
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From (4.9) in conjunction with (4.11) we derive

lim sup
n→∞

∫
Ω

|∇wn|p−2∇wn · ∇(wn − w)dx = 0.

Applying again the (S+)-property of −∆p corresponding to W 1,p(Ω) yields

wn → w in W 1,p(Ω), (4.12)

while ‖w‖W 1,p(Ω) = 1 meaning w 6≡ 0. Taking into account (4.5), (4.12), and the
assumptions (H3) and (H6), we may pass to the limit in (4.8) which results in∫

Ω

|∇w|p−2∇w · ∇vdx = a

∫
Ω

wp−1vdx− θ
∫
∂Ω

wp−1vdµ, ∀v ∈W 1,p(Ω). (4.13)

Since w 6≡ 0, equation (4.13) represents the Robin eigenvalue problem of the negative
p-Laplacian −∆p with the eigenfunction w ≥ 0 corresponding to the eigenvalue a
and related to the parameter θ. By means of Remark 2.2 and due to the assumptions
a > λ1 and 0 < θ < β, we see that a is also greater than the first eigenvalue of the
Robin eigenvalue problem corresponding to the positive number θ. However, this
contradicts the results of Lê [18] because w must change sign in Ω. Hence, u+ 6≡ 0
concluding u+ ∈ int(C1(Ω)+).

Finally, we have to check that u+ is indeed the smallest positive weak solution
in [0, ϑae]. To this end, let u ∈ W 1,p(Ω), 0 ≤ u ≤ ϑae, u 6≡ 0 be a weak solution
of (1.1). Remark 3.2 ensures that u ∈ int(C1(Ω)+). This implies the existence of
an integer n sufficiently large such that u ∈ [ 1

nϕ1, ϑae]. As we already know, un is

the smallest weak solution in the ordered interval [ 1
nϕ1, ϑae] meaning that un ≤ u.

Making use of (4.1), we get u+ ≤ u which proves that u+ ∈ int(C1(Ω)+) is the
smallest weak solution of problem (1.1) within [0, ϑae].

Remark 4.2. Regarding Theorem 4.1 the next proceeding is to find a third nontrivial
weak solution u0 which lies between u− and u+. If u0 6= u− and u0 6= u+, then it
must be a sign-changing weak solution of (1.1) due to the extremality of u+ and u−.

5. Sign-changing solution. In this section we prove the existence of a nontrivial
sign-changing weak solution u0 ∈ C1(Ω) of (1.1) which belongs to the ordered
interval [u−, u+].

To this end, let τ+, τ−, τ0 : Ω× R→ R be truncation operators defined as:

τ+(x, s) =


0 if s < 0

s if 0 ≤ s ≤ u+(x)

u+(x) if s > u+(x)

, τ−(x, s) =


u−(x) if s < u−(x)

s if u−(x) ≤ s ≤ 0

0 if s > 0

,

τ0(x, s) =


u−(x) if s < u−(x)

s if u−(x) ≤ s ≤ u+(x)

u+(x) if s > u+(x)

.

Further, we denote by τ∂Ω
+ , τ∂Ω

− , τ∂Ω
0 : ∂Ω × R → R the corresponding truncation

operators defined on ∂Ω. We see at once that these truncation functions are contin-
uous, uniformly bounded, and even Lipschitz continuous with respect to the second
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argument. Taking into account these truncations we introduce the subsequent as-
sociated functionals through

J+(u) =
1

p

(
‖∇u‖pLp(Ω) + θ‖u‖pLp(∂Ω)

)
−
∫

Ω

∫ u(x)

0

(
aτ+(x, s)p−1 + f(x, τ+(x, s))

)
dsdx

−
∫
∂Ω

∫ u(x)

0

h(x, τ∂Ω
+ (x, s))dsdµ,

J−(u) =
1

p

(
‖∇u‖pLp(Ω) + θ‖u‖pLp(∂Ω)

)
−
∫

Ω

∫ u(x)

0

(
−b|τ−(x, s)|p−1 + f(x, τ−(x, s))

)
dsdx

−
∫
∂Ω

∫ u(x)

0

h(x, τ∂Ω
− (x, s))dsdµ,

J0(u) =
1

p

(
‖∇u‖pLp(Ω) + θ‖u‖pLp(∂Ω)

)
−
∫

Ω

∫ u(x)

0

(
aτ+(x, s)p−1 − b|τ−(x, s)|p−1 + f(x, τ0(x, s))

)
dsdx

−
∫
∂Ω

∫ u(x)

0

h(x, τ∂Ω
0 (x, s))dsdµ.

These functionals are well-defined and differentiable. Thanks to the truncation
operators combined with the equivalent norm stated in (2.1) (replacing ζ by θ) it
can be shown that J−, J+, J0 : W 1,p(Ω) → R are coercive and weakly sequentially
lower semicontinuous implying the existence of their global minimizers (cf. e.g.
[34, Proposition 38.15] ). Further, the functionals fulfill the classical Palais-Smale
condition. A characterization of their critical points is stated in the next lemma.

Lemma 5.1. Every critical point ω ∈ W 1,p(Ω) of J+(J−) is a nonnegative (non-
positive) weak solution of (1.1) such that 0 ≤ ω ≤ u+ (u− ≤ ω ≤ 0), where u+ and
u− denote the extremal constant-sign solutions of (1.1) obtained in Theorem 4.1. If
ω ∈ W 1,p(Ω) is a critical point of J0, then ω is a weak solution of (1.1) satisfying
u− ≤ ω ≤ u+.

Proof. Let us show the last assertion, the other ones can be done similarly. Suppose
ω ∈W 1,p(Ω) is a critical point of J0, then it holds J ′0(ω) = 0 meaning that

∫
Ω

|∇ω|p−2∇ω · ∇vdx+ θ

∫
∂Ω

|ω|p−2ωvdµ

=

∫
Ω

(
aτ+(x, ω)p−1 − b|τ−(x, ω)|p−1 + f(x, τ0(x, ω))

)
vdx

+

∫
∂Ω

h(x, τ∂Ω
0 (x, ω))vdµ, ∀v ∈W 1,p(Ω).
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Since u+ is a positive weak solution of (1.1), we obtain∫
Ω

|∇u+|p−2∇u+ · ∇vdx

=

∫
Ω

(
aup−1

+ + f(x, u+)
)
vdx+

∫
∂Ω

(
h(x, u+)− θup−1

+

)
vdµ,

for all v ∈ W 1,p(Ω). Now, putting v = (ω − u+)+ and combining both equations
above, one has∫

Ω

(
|∇ω|p−2∇ω − |∇u+|p−2∇u+

)
· ∇(ω − u+)+dx

+ θ

∫
∂Ω

(
|ω|p−2ω − up−1

+

)
(ω − u+)+dµ

=

∫
Ω

(
aτ+(x, ω)p−1 − b|τ−(x, ω)|p−1 − aup−1

+

)
(ω − u+)+dx

+

∫
Ω

(f(x, τ0(x, ω))− f(x, u+)) (ω − u+)+dx

+

∫
∂Ω

(
h(x, τ∂Ω

0 (x, s))− h(x, u+)
)

(ω − u+)+dµ.

(5.1)

With a view to the definition of the truncation operators it is easy to see that the
right-hand side of (5.1) vanishes. However, if ω > u+, the left-hand side is strictly
positive (cf. e.g. [8, p. 37]). Hence, it must hold ω ≤ u+. In order to prove u− ≤ ω
we can proceed in the same line which yields u− ≤ ω ≤ u+. Taking again the
definition of the truncations into account we have τ+(x, ω) = ω+, |τ−(x, ω)| = ω−,
τ0(x, ω) = ω and τ∂Ω

0 (x, ω) = ω meaning that ω is a weak solution of (1.1) satisfying
u− ≤ ω ≤ u+.

Lemma 5.2. Suppose (H) and let a, b > λ1 and β > θ > 0. Then the extremal
positive (negative) weak solution u+ (u−) of (1.1) is the unique global minimizer of
the functional J+ (J−) while both of them are local minimizers of the functional J0

as well. Further, J0 possesses a global minimizer ω0 being a nontrivial weak solution
of (1.1) satisfying u− ≤ ω0 ≤ u+.

Proof. Let ω+ ∈W 1,p(Ω) the global minimizer of J+ which exists due to the prop-
erty of J+ to be coercive and weakly sequentially lower semicontinuous. Concerning
Lemma 5.1 the critical point ω+ is a nonnegative weak solution to equation (1.1)
belonging to [0, u+]. In order to verify that ω+ is unequal zero, we have to show
that J+(ω+) 6= 0. According to hypothesis (H3) and (H6) we find numbers δa > 0
and δθ > 0 such that

|f(x, s)| ≤ (a− λ1)sp−1, ∀s : 0 < s ≤ δa,
|h(x, s)| ≤ (β − θ)sp−1, ∀s : 0 < s ≤ δθ,

(5.2)

since a > λ1 and β > θ. We put ε > 0 sufficiently small such that

εϕ1 < u+, ε‖ϕ1‖∞ < δa, ε‖ϕ1‖∞ < δθ.
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From (5.2) combined with the Robin eigenvalue problem we infer

J+(εϕ1) =
λ1 − a
p

εp‖ϕ1‖pLp(Ω)

−
∫

Ω

∫ εϕ1(x)

0

f(x, s)dsdx+
θ−β
p

εp‖ϕ1‖pLp(∂Ω)−
∫
∂Ω

∫ εϕ1(x)

0

h(x, s)dsdµ

<
λ1−a
p

εp‖ϕ1‖pLp(Ω)+

∫
Ω

∫ εϕ1(x)

0

(a−λ1)sp−1dsdx+
θ−β
p

εp‖ϕ1‖pLp(∂Ω)

+

∫
∂Ω

∫ εϕ1(x)

0

(β − θ)sp−1dsdµ

= 0.

Hence, J+(ω+) < 0 meaning that ω+ 6≡ 0. This yields that ω+ ∈ int(C1(Ω)+) (cf.
Remark 3.2). Due to the fact that u+ is the smallest positive weak solution of (1.1)
in [0, ϑae] satisfying 0 ≤ ω+ ≤ u+ we obtain ω+ = u+ proving that u+ must be
the unique global minimizer of J+. In a similar way, we get that u− is the unique
global minimizer of J−. As u+ ∈ int(C1(Ω)+), there exists a neighborhood Vu+

of

u+ in the space C1(Ω) satisfying Vu+
⊂ C1(Ω)+. Hence, it holds J+ = J0 on Vu+

meaning that u+ is a local minimizer of J0 on C1(Ω). From [30] we know that u+

is a local minimizer on W 1,p(Ω) as well. Similarly, we obtain that u− is a local
minimizer of J0 with respect to W 1,p(Ω).

As mentioned at the beginning of this section the functional J0 : W 1,p(Ω)→ R is
coercive and weakly sequentially lower semicontinuous. That means that its global
minimizer, namely ω0, exists. Taking into account Lemma 5.1 we get that the
critical point ω0 is a solution of (1.1) satisfying u− ≤ ω0 ≤ u+. Since J0(u+) =
J+(u+) < 0 it follows that ω0 must be nontrivial meaning ω0 6≡ 0.

Now, we are in the position to prove the main result in this section.

Theorem 5.3. Under the hypotheses (H) and (H8) problem (1.1) possesses a non-
trivial sign-changing weak solution u0 ∈ C1(Ω).

Proof. In Lemma 5.2 it has been shown that the functional J0 : W 1,p(Ω) → R
possesses a global minimizer ω0 ∈ W 1,p(Ω) which is a nontrivial weak solution of
our original problem (1.1) lying between u− and u+. If ω0 6= u− and ω0 6= u+,
then u0 = ω0 must be a sign-changing weak solution of (1.1) due to the extremality
properties of the constant-sign solutions u− and u+ (cf. Theorem 4.1). In this case
we are done.

Let us prove the assertion if either ω0 = u− or ω0 = u+ is satisfied. We only
show the case ω0 = u+, the other one can be done likewise. From Lemma 5.2 it
is known that u− is a local minimizer of J0. Without loss of generality we can
assume that u− is a strict local minimizer of J0 elsewise there would exist infinitely
many critical points ω of J0 being sign-changing weak solutions of (1.1) because
of the relation u− ≤ ω ≤ u+ combined with the fact that u− as well as u+ are
extremal constant-sign solutions. With the aid of these assumptions we find a
number ρ ∈

(
0, ‖u+ − u−‖W 1,p(Ω)

)
such that

J0(u+) ≤ J0(u−) < inf{J0(u) : u ∈ ∂Bρ(u−)} (5.3)

with ∂Bρ = {u ∈ W 1,p(Ω) : ‖u − u−‖W 1,p(Ω) = ρ}. Now, we are able to apply the
mountain-pass theorem used to the functional J0 (see [26] or [28, Theorem 2.4.4]).
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Note that J0 fulfills the Palais-Smale condition which is required at this point. We
obtain the existence of a critical point u0 ∈ W 1,p(Ω) of J0, that is J ′0(u0) = 0,
satisfying

inf {J0(u) : u ∈ ∂Bρ(u−)} ≤ J0(u0) = inf
γ∈ΓW

max
t∈[−1,1]

J0(γ(t)), (5.4)

where

ΓW = {γ ∈ C([−1, 1],W 1,p(Ω)) : γ(−1) = u−, γ(1) = u+}.

We easily see from (5.3) and (5.4) that u0 can not be u− as well as u+. Therefore,
the critical point u0 is a nontrivial sign-changing weak solution of (1.1) provided
u0 6= 0. That means we have to prove that J0(u0) 6= 0, which is satisfied if there
exists a path γ̃ ∈ ΓW such that

J0(γ̃(t)) 6= 0, for all t ∈ [−1, 1]. (5.5)

Let S (defined in (2.8)) and SC = S ∩ C1(Ω) be equipped with the topologies
induced by W 1,p(Ω) and C1(Ω), respectively. We set

ΓC = {γ ∈ C([−1, 1], SC) : γ(−1) = −ϕ1, γ(1) = ϕ1}

while Γ is stated in (2.7). Taking the recent results in [24] into account there
exists a continuous path γ ∈ Γ satisfying t 7→ γ(t) ∈ {u ∈ W 1,p(Ω) : J(a,b)(u) <
0, ‖u‖Lp(Ω) = 1} provided the pair (a, b) is above the curve C of hypothesis (H8).

Here, the functional J(a,b) : W 1,p(Ω) → R is defined as the potential associated to
the Robin Fuč́ık spectrum given by

J(a,b)(u) =

∫
Ω

|∇u|pdx+ β

∫
∂Ω

|u|pdµ−
∫

Ω

(a(u+)p + b(u−)p)dx.

Thanks to this first nontrivial curve C, we find a number κ > 0 such that

J(a,b)(γ(t)) ≤ −κ < 0, for all t ∈ [−1, 1].

Since SC is dense in S we deduce the density of ΓC in Γ (for the proof we refer to
[28]) which implies the existence of a continuous path γC ∈ ΓC such that

|J(a,b)(γ(t))− J(a,b)(γC(t))| < κ

2
, for all t ∈ [−1, 1].

Further, as the set γC([−1, 1])(Ω) is uniformly bounded in R there exists a constant
M > 0 such that

|γC(t)(x)| ≤M for all x ∈ Ω and for all t ∈ [−1, 1].

Recall that u+,−u− ∈ int(C1(Ω)+) (see Theorem 4.1). Then, for every u ∈
γC([−1, 1]) and any bounded neighborhood Uu of u in C1(Ω), we find positive
numbers ςu and ιu satisfying

u+ − ςw ∈ int(C1(Ω)+) and − u− + ιw ∈ int(C1(Ω)+), (5.6)

for all ς ∈ [0, ςu], for all ι ∈ [0, ιu], and for all w ∈ Uu. With the aid of (5.6) together
with a compactness argument we obtain the existence of a number εC > 0 such that

u−(x) ≤ εγC(t)(x) ≤ u+(x), (5.7)
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for all x ∈ Ω, for all t ∈ [−1, 1], and for all ε ∈ (0, εC ]. By means of the representa-
tion of J(a,b), we may write the functional J0 in the subsequent form

J0(u) =
1

p
J(a,b)(u) +

θ − β
p
‖u‖pLp(∂Ω) +

1

p

∫
Ω

(
a(u+)p + b(u−)p

)
dx

−
∫

Ω

∫ u(x)

0

(
aτ+(x, s)p−1 − b|τ−(x, s)|p−1 + f(x, τ0(x, s))

)
dsdx

−
∫
∂Ω

∫ u(x)

0

h(x, τ∂Ω
0 (x, s))dsdµ.

(5.8)

Applying (5.7) to the new representation of J0 given in (5.8) it follows, for all
ε ∈ (0, εC ] and all t ∈ [−1, 1],

J0(εγC(t)) <
1

p
J(a,b)(εγC(t))−

∫
Ω

∫ εγC(t)(x)

0

f(x, s)dsdx

−
∫
∂Ω

∫ εγC(t)(x)

0

h(x, s)dsdµ

= εp

[
1

p
J(a,b)(γC(t))− 1

εp

∫
Ω

∫ εγC(t)(x)

0

f(x, s)dsdx

− 1

εp

∫
∂Ω

∫ εγC(t)(x)

0

h(x, s)dsdµ

]

< εp

[
− κ

2p
+

1

εp

∫
Ω

∣∣∣∣∣
∫ εγC(t)(x)

0

f(x, s)ds

∣∣∣∣∣ dx
+

1

εp

∫
∂Ω

∣∣∣∣∣
∫ εγC(t)(x)

0

h(x, s)ds

∣∣∣∣∣ dµ
]
,

(5.9)

where we have used the fact that θ < β. Due to the assumptions (H3) and (H6)
there are constants ψ1 > 0 and ψ2 > 0 such that

|f(x, s)| ≤ κ

5Mp|Ω|
|s|p−1, for a.a. x ∈ Ω and all s : |s| ≤ ψ1,

|h(x, s)| ≤ κ

5Mp|∂Ω|
|s|p−1, for a.a. x ∈ ∂Ω and all s : |s| ≤ ψ2.

Now, we choose ε > 0 sufficiently small such that ε < min
{
εC ,

ψ1

M , ψ2

M

}
to obtain

1

εp

∫
Ω

∣∣∣∣∣
∫ εγC(t)(x)

0

f(x, s)ds

∣∣∣∣∣ dx ≤ κ

5p
,

1

εp

∫
∂Ω

∣∣∣∣∣
∫ εγC(t)(x)

0

h(x, s)ds

∣∣∣∣∣ dµ ≤ κ

5p
.

(5.10)

Then, we get from (5.9) combined with (5.10)

J0(εγC(t)) ≤ εp
(
− κ

2p
+

κ

5p
+

κ

5p

)
< 0, for all t ∈ [−1, 1]. (5.11)

Relation (5.11) demonstrates the existence of a continuous path εγC connecting
−εϕ1 and εϕ1. In order to prove the latter in (5.5) we have to construct two other
paths which shall join εϕ1 and u+, respectively, u− and −εϕ1.
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As proved in Lemma 5.2 the smallest positive weak solution u+ is the unique
global minimizer of J+, so we can suppose that J+(u+) < J+(εϕ1). Further, from
Lemma 5.1 it is known that the functional J+ has no critical values in the interval
(J+(u+), J+(εϕ1)]. Since the functional J+ satisfies the Palais-Smale condition due
to its coercivity, the second deformation lemma (cf. [16]) can be applied to J+.
Denote

Jεϕ1

+ := {u ∈W 1,p(Ω) : J+(u) ≤ J+(εϕ1)},

we obtain the existence of a continuous mapping

η : [0, 1]× Jεϕ1

+ → Jεϕ1

+

characterized through

(1) η(0, u) = u, (2) η(1, u) = u+, (3) J+(η(t, u)) ≤ J+(u),

for all t ∈ [0, 1] and for all u ∈ Jεϕ1

+ . Now we denote by γ+ a path from [0, 1] to
W 1,p(Ω) defined by γ+(t) = η(t, εϕ1)+ = max{η(t, εϕ1), 0} for all t ∈ [0, 1]. Clearly,
γ+ is continuous and joins εϕ1 and u+. Moreover, it satisfies

J0(γ+(t)) = J+(γ+(t)) ≤ J+(η(t, εϕ1)) ≤ J+(εϕ1) < 0,

for all t ∈ [0, 1]. Finally, we may apply the second deformation lemma to the
functional J− making use of the same arguments. We obtain a continuous path
γ− : [0, 1]→W 1,p(Ω) connecting −εϕ1 and u− and satisfying

J0(γ−(t)) < 0, for all t ∈ [0, 1].

Now, the proof is almost finished. If we put the paths γ−, γC and γ+ together, we
get a continuous path γ̃ which joins u− and u+ and it fulfills (5.5) meaning that
u0 ∈W 1,p(Ω) obtained from the mountain-pass theorem is nontrivial. That means
that we have found a sign-changing weak solution u0 of our original problem (1.1)
which lies between u− and u+. That finishes the proof of the theorem.
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