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1. Introduction

A differential operator that has found a place in many research fields in recent years 
is the so-called “double phase operator”, which is defined by

u �→ − div
(
|∇u|p(x)−2∇u + μ(x)|∇u|q(x)−2∇u

)
,

for every function u belonging to a suitable Musielak-Orlicz Sobolev space W 1,H(Ω), 
where Ω ⊂ RN is supposed to be a bounded domain with Lipschitz boundary ∂Ω. The 
integral functional related to this operator, given by

∫
Ω

(
|∇u|p(x) + μ(x)|∇u|q(x)

)
dx, u ∈ W 1,H(Ω),

changes ellipticity in two different phases and has been first introduced in 1986 by Zhikov 
[53] with constant exponents. Since then, many authors studied problems involving this 
operator, which has been used to model different phenomena. Among the topics, we men-
tion first the elasticity theory in which it describes the behavior of strongly anisotropic 
materials, whose hardening properties are related to the exponents p(·) and q(·) and 
significantly change with the point and the coefficient μ(·) determines the geometry of a 
composite made of two different materials, see Zhikov [54]. Moreover, other applications 
can be found in the works of Bahrouni-Rădulescu-Repovš [2] on transonic flows, Benci-
D’Avenia-Fortunato-Pisani [8] on quantum physics and Zhikov [54] on the Lavrentiev 
gap phenomenon, the thermistor problem and the duality theory. For a mathematical 
study of such integral functionals with (p, q)-growth we refer to the works of Baroni-
Colombo-Mingione [4–6], Colombo-Mingione [11,12], Cupini-Marcellini-Mascolo [16], De 
Filippis-Mingione [18], Marcellini [38–40], Ragusa-Tachikawa [46], see also the papers of 
Beck-Mingione [7] and De Filippis-Mingione [17] for nonautonomous integrals. Further-
more it should be mentioned that the double phase operator generalizes several other 
differential operators, for example, the (p(·), q(·))-Laplacian when infΩ μ > 0 and the 
p(·)-Laplacian if μ ≡ 0, respectively, both of which have been extensively studied in the 
literature.

Concerning applications in partial differential equations, the double phase operator 
arises from the study of general reaction–diffusion equations with nonhomogeneous dif-
fusion and transport aspects. These nonhomogeneous operators have applications in 
biophysics, plasma physics and chemical reactions, with double phase features, where 
the function u corresponds to the concentration term, and the differential operator rep-
resents the diffusion coefficient.

The weak solutions of related problems are functions belonging to an appropriate 
Musielak-Orlicz Sobolev space W 1,H(Ω), where H : Ω × [0, ∞) → [0, ∞) is a nonlinear 
function defined by
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(x, t) �→ tp(x) + μ(x)tq(x),

with

1 < p(x) < N, p(x) < q(x) < p∗(x) = Np(x)
N − p(x) for all x ∈ Ω,

and 0 ≤ μ(·) ∈ L∞(Ω). The novelties of our paper can be summarized as follows and 
affect different results of independent interest. First, we prove the existence of a new 
general equivalent norm on W 1,H(Ω) given by

‖u‖∗1,H = inf
{
τ > 0 :

∫
Ω

((
|∇u|
τ

)p(x)

+ μ(x)
(
|∇u|
τ

)q(x)
)

dx

+
∫
Ω

ϑ1(x)
(
|u|
τ

)δ1(x)

dx

+
∫
∂Ω

ϑ2(x)
(
|u|
τ

)δ2(x)

dσ ≤ 1
}
,

(1.1)

where 0 ≤ ϑ1(·) ∈ L∞(Ω), 0 ≤ ϑ2(·) ∈ L∞(∂Ω) and δ1, δ2 are of class C(Ω), satisfying 
1 ≤ δ1(x) ≤ p∗(x) and 1 ≤ δ2(x) ≤ p∗(x) for all x ∈ Ω. For more details we refer 
to (H1). Let us emphasize that in this setting the exponents δ1(·) and δ2(·) can be 
also critical, namely they can coincide (at some points or at all ones) with the Sobolev 
critical exponents p∗(·) and p∗(·), respectively, see (2.1) for the definition of them. There 
is a trade-off for allowing the exponents δ1 and δ2 to be equal to the Sobolev critical 
exponents at some points: it does not suffice that δ1 and δ2 are continuous functions, we 
require that they are log-Hölder continuous and in W 1,γ(Ω) for γ > N , respectively. The 
reason is the Sobolev embedding theorem in variable exponent spaces, which requires 
this extra regularity if you achieve equality with the critical Sobolev exponent. Note 
that in the constant exponent case there would be no difference. All in all, the norm in 
(1.1) generalizes different known norms in W 1,p(Ω), W 1,p(·)(Ω) or in the Musielak-Orlicz 
Sobolev space with constant exponents, see Crespo-Blanco-Papageorgiou-Winkert [14].

In the second part of the paper, we are interested in the boundedness of weak solutions 
of the following nonlinear Neumann problem

− divA(x, u,∇u) = B(x, u,∇u) in Ω,

A(x, u,∇u) · ν = C(x, u) on ∂Ω,
(1.2)

where the right-hand side in Ω can also depend on the gradient of the solution and 
A, B and C are Carathéodory functions satisfying suitable and general growth conditions 
presented in (H∞). In particular, any weak solution of (1.2) turns out to be in L∞(Ω)
and we give in Theorem 4.1 a priori estimates on its L∞(Ω)-norm. Such a result can be 
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applied in several other problems involving the variable exponent double phase operator 
as well as general right-hand sides.

In the last part of this paper our purpose is to prove existence and multiplicity results 
for a variable exponent double phase problem with nonlinear boundary condition and 
superlinear nonlinearities. Inspired by the recent work of Crespo-Blanco-Winkert [15]
on a Dirichlet problem, the new equivalent norm that we present in Section 3 plays an 
important role. In particular, given a bounded domain Ω ⊂ RN , N ≥ 2, with Lipschitz 
boundary ∂Ω and denoting with ν(x) the outer unit normal of Ω at x ∈ ∂Ω, we study 
the following problem

− divF(u) + |u|p(x)−2u = f(x, u) in Ω,

F(u) · ν = g(x, u) − |u|p(x)−2u on ∂Ω,
(P )

where divF(u) is the variable exponent double phase operator given by

F(u) := |∇u|p(x)−2∇u + μ(x)|∇u|q(x)−2∇u,

and f : Ω × R → R as well as g : ∂Ω × R → R are Carathéodory functions which are 
superlinear with respect to the second argument, see the precise conditions in (Hf,g) and 
some examples in Example 5.2.

In recent years, many authors have dealt with double phase problems in the constant 
exponents case, see for instance Biagi-Esposito-Vecchi [9], Colasuonno-Squassina [10], 
Farkas-Winkert [25], Fiscella [26], Gasiński-Papageorgiou [27], Gasiński-Winkert [28,29], 
Ge-Pucci [30], Liu-Dai [35], Liu-Papageorgiou [36], Papageorgiou-Rădulescu-Repovš [41], 
Perera-Squassina [44], Pucci [45], Stegliński [47], Zeng-Bai-Gasiński-Winkert [51] and the 
references therein.

On the other hand, there are much fewer results for the variable exponents case, 
see Amoroso-Bonanno-D’Aguì-Winkert [1], Bahrouni-Rădulescu-Winkert [3], Crespo-
Blanco-Gasiński-Harjulehto-Winkert [13], Crespo-Blanco-Winkert [15], Leonardi-
Papageorgiou [34], Liu-Pucci [37], Kim-Kim-Oh-Zeng [33], Ragusa-Tachikawa [46], Vetro-
Winkert [50] and Zeng-Rădulescu-Winkert [52].

As mentioned before, we present existence and multiplicity results for problem (P )
by using critical point theory and the Nehari manifold approach, that is, we are able 
to provide the existence of three bounded weak solutions of problem (P ) with precise 
information on the sign. Indeed, through a mountain-pass approach we obtain the ex-
istence of two solutions with constant sign. In addition, through the Nehari manifold 
method along with the Quantitative Deformation Lemma and the Brouwer degree we 
establish the existence of a sign-changing solution, that turns out to have exactly two 
nodal domains. We emphasize that we do not require a monotonicity condition on the 
exponent p(·) as it was needed in the work of Crespo-Blanco-Winkert [15, hypothesis 
(H1)], since we do not need Poincarè’s inequality for the modular function related to the 
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norm. Moreover, as far as we know, the growth assumption on the boundary ∂Ω stated 
in (h4) is new and optimal for this treatment.

The paper is organized as follows. In Section 2 we recall the definitions and some 
properties of the Lebesgue and Sobolev spaces with variable exponents and of the 
Musielak-Orlicz Sobolev spaces as well as the main tools needed in our treatment, such as 
the Mountain-Pass Theorem (Theorem 2.8) and the Quantitative Deformation Lemma 
(Lemma 2.9). In Section 3 we present the proof of a new equivalent norm in the Musielak-
Orlicz Sobolev space and we give some properties related to the corresponding modular 
and the operator. In Section 4 we provide a result on the boundedness of the weak solu-
tions of a more general problem than (P ), giving also in Theorem 4.1 a priori estimates 
on the L∞(Ω)-norm of the weak solutions. Then, in Section 5 we state the assumptions 
on the nonlinearities f and g and in Theorem 5.7 we prove the existence of two constant 
sign solutions, in particular one is nonnegative and the other one is nonpositive. After 
this, in Section 6 we state Theorem 6.6 concerning the existence of a third solution, which 
is sign-changing, obtained minimizing the energy functional related to our problem in 
a suitable Nehari manifold subset. Finally, Theorem 6.9 gives information on the nodal 
domains of this sign-changing solution.

2. Preliminaries

For any 1 ≤ r ≤ ∞, Lr(Ω) indicates the usual Lebesgue spaces equipped with the 
norm ‖ ·‖r and for 1 ≤ r < ∞, W 1,r(Ω) denotes the Sobolev space endowed with the usual 
norm ‖ ·‖1,r. First, we introduce the Lebesgue and Sobolev spaces with variable exponents 
and some properties that will be useful in our treatment. For a detailed overview we refer 
to the book of Diening-Harjulehto-Hästö-Růžička [19]. For any r ∈ C(Ω), we set

r+ := max
x∈Ω

r(x) and r− := min
x∈Ω

r(x),

and define

C+(Ω) = {r ∈ C(Ω) : r− > 1}.

Denoting by M(Ω) the space of all measurable functions u : Ω → R, we define for any 
r ∈ C+(Ω) the Lebesgue space with variable exponent by

Lr(·)(Ω) = {u ∈ M(Ω) : ρr(·)(u) < ∞},

where the modular is given by

ρr(·)(u) =
∫
Ω

|u|r(x) dx,

endowed with the Luxemburg norm
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‖u‖r(·) = inf
{
τ > 0 : ρr(·)

(u
τ

)
≤ 1

}
.

Here, we recall the relation between the norm and the modular, see Fan-Zhao [24, 
Theorems 1.2 and 1.3].

Proposition 2.1. Let r ∈ C+(Ω), u ∈ Lr(·)(Ω) and λ ∈ R. Then the following hold:

(i) If u �= 0, then ‖u‖r(·) = λ ⇐⇒ ρr(·)(uλ ) = 1;
(ii) ‖u‖r(·) < 1 (resp. > 1, = 1) ⇐⇒ ρr(·)(u) < 1 (resp. > 1, = 1);
(iii) If ‖u‖r(·) < 1 =⇒ ‖u‖r+r(·) ≤ ρr(·)(u) ≤ ‖u‖r−r(·);
(iv) If ‖u‖r(·) > 1 =⇒ ‖u‖r−r(·) ≤ ρr(·)(u) ≤ ‖u‖r+r(·);
(v) ‖u‖r(·) → 0 ⇐⇒ ρr(·)(u) → 0;
(vi) ‖u‖r(·) → 1 ⇐⇒ ρr(·)(u) → 1;
(vii) ‖u‖r(·) → +∞ ⇐⇒ ρr(·)(u) → +∞;
(viii) un → u in Lr(·)(Ω) =⇒ ρr(·)(un) → ρ(u).

For r′ ∈ C+(Ω) being the conjugate variable exponent to r, that is,

1
r(x) + 1

r′(x) = 1 for all x ∈ Ω,

it is clear that Lr(·)(Ω)∗ = Lr′(·)(Ω) and the following Hölder’s inequality holds

‖uv‖1 ≤ 2‖u‖r(·)‖v‖r′(·),

for all u ∈ Lr(·)(Ω) and for all v ∈ Lr′(·)(Ω), see Diening-Harjulehto-Hästö-Růžička [19, 
Lemma 3.2.20].

Furthermore, for r1, r2 ∈ C+(Ω) with r1(x) ≤ r2(x) for all x ∈ Ω, we have the 
continuous embedding

Lr2(·)(Ω) ↪→ Lr1(·)(Ω).

Moreover, we can define variable exponent Lebesgue spaces with weights: for any 
ω ∈ L1(Ω), ω ≥ 0, we can define the modular

ρr(·),ω(u) =
∫
Ω

ω(x)|u|r(x) dx.

Then, we define the space

Lr(·)
ω (Ω) =

⎧⎨⎩u ∈ M(Ω) :
∫
Ω

ρr(·),ω(u) dx < ∞

⎫⎬⎭ ,
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endowed with the corresponding Luxemburg norm

‖u‖r(·),ω = inf
{
λ > 0 : ρr(·),ω

(u
λ

)
≤ 1

}
.

Next we can define the corresponding variable exponent Sobolev space W 1,r(·)(Ω)
which is given by, for r ∈ C+(Ω),

W 1,r(·)(Ω) =
{
u ∈ Lr(·)(Ω) : |∇u| ∈ Lr(·)(Ω)

}
,

equipped with the norm

‖u‖1,r(·) = ‖u‖r(·) + ‖∇u‖r(·),

where ‖∇u‖r(·) = ‖ |∇u| ‖r(·). It is well known that Lr(·)(Ω) and W 1,r(·)(Ω) are separable 
and reflexive Banach spaces and possess an equivalent, uniformly convex norm, see for 
example Diening-Harjulehto-Hästö-Růžička [19].

For any r ∈ C+(Ω) with r+ < N , we denote by r∗ and r∗ the critical Sobolev 
exponents, defined for all x ∈ Ω as follows

r∗(x) = Nr(x)
N − r(x) and r∗(x) = (N − 1)r(x)

N − r(x) . (2.1)

Furthermore, let σ be the (N − 1)-dimensional Hausdorff measure on the boundary ∂Ω
and indicate with Lr(·)(∂Ω) the boundary Lebesgue space endowed with the usual norm ‖ ·
‖r,∂Ω. We can consider a trace operator, i.e., a continuous linear operator γ : W 1,r(·)(Ω) →
Lm(·)(∂Ω) for all m ∈ C(Ω) with 1 ≤ m(x) < r∗(x) for every x ∈ Ω, such that

γ(u) = u|∂Ω for all u ∈ W 1,r(·)(Ω) ∩ C(Ω).

If it also holds that r ∈ W 1,γ(Ω) with γ > N , then we can take any m ∈ C(Ω) with 
1 ≤ m(x) ≤ r∗(x) for every x ∈ Ω. By the trace embedding theorem, it is known that γ
is compact for any r ∈ C(Ω) with 1 ≤ r(x) < r∗(x) for all x ∈ Ω, see Fan [21, Corollary 
2.4]. In this paper we avoid the notation of the trace operator and we consider all the 
restrictions of Sobolev functions to the boundary ∂Ω in the sense of traces. Moreover, 
we indicate with ρr(·),∂Ω(·) and ‖ · ‖r(·),∂Ω the modular and the norm, respectively, of the 
space Lr(·)(∂Ω) with exponent r(·) on the boundary ∂Ω.

By C0, 1
| log t| (Ω) we denote the set of all functions h : Ω → R that are log-Hölder 

continuous, that is, there exists a constant C > 0 such that

|h(x) − h(y)| ≤ C

| log |x− y|| for all x, y ∈ Ω with |x− y| < 1
2 .

Next, we present some embedding results, see Diening-Harjulehto-Hästö-Růžička [19, 
Corollary 8.3.2], Fan [21, Corollary 2.4], Fan [22, Propositions 2.1 and 2.2], Fan-Shen-
Zhao [23] and Ho-Kim-Winkert-Zhang [31, Proposition 2.5].
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Proposition 2.2.

(i) Let r ∈ C0, 1
| log t| (Ω) ∩C+(Ω) and let s ∈ C(Ω) be such that 1 ≤ s(x) ≤ r∗(x) for all 

x ∈ Ω. Then, the embedding W 1,r(·)(Ω) ↪→ Ls(·)(Ω) is continuous. If r ∈ C+(Ω), 
s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for all x ∈ Ω, then the embedding above is compact.

(ii) Suppose that r ∈ C+(Ω) ∩W 1,γ(Ω) for some γ > N and let s ∈ C(Ω) be such that 
1 ≤ s(x) ≤ r∗(x) for all x ∈ Ω. Then, the embedding W 1,r(·)(Ω) ↪→ Ls(·)(∂Ω) is 
continuous. If r ∈ C+(Ω), s ∈ C(Ω) and 1 ≤ s(x) < r∗(x) for all x ∈ Ω, then the 
embedding above is compact.

Remark 2.3. Note that for a bounded domain Ω ⊂ RN and γ > N we have the following 
inclusions

C0,1(Ω) ⊂ W 1,γ(Ω) ⊂ C0,1−N
γ (Ω) ⊂ C0, 1

| log t| (Ω).

Now, we introduce the Musielak-Orlicz space, the Musielak-Orlicz Sobolev space and 
we recall some properties that will be useful in the sequel. From now on, we assume the 
following:

(H) p, q ∈ C(Ω) such that 1 < p(x) < N and p(x) < q(x) < p∗(x) for all x ∈ Ω and 
μ ∈ L∞(Ω) with μ(x) ≥ 0 for a.a. x ∈ Ω.

We consider the nonlinear function H : Ω × [0, ∞) → [0, ∞) defined by

H(x, t) = tp(x) + μ(x)tq(x) for all (x, t) ∈ Ω × [0,∞),

and we denote by ρH(·) the corresponding modular, namely

ρH(u) =
∫
Ω

H(x, |u|) dx =
∫
Ω

(
|u|p(x) + μ(x)|u|q(x)

)
dx.

Then, we indicate with LH(Ω) the Musielak-Orlicz space, given by

LH(Ω) = {u ∈ M(Ω) : ρH(u) < +∞} ,

endowed with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1

}
.

Let W 1,H(Ω) be the Musielak-Orlicz Sobolev space, defined by

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
,
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equipped with the usual norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. From Crespo-Blanco-Gasiński-Harjulehto-Winkert [13, 
Proposition 2.12] we know that LH(Ω) and W 1,H(Ω) are reflexive Banach spaces. Fur-
ther, we introduce the seminormed space

Lq(·)
μ (Ω) =

⎧⎨⎩u ∈ M(Ω) :
∫
Ω

μ(x)|u|q(x) dx < +∞

⎫⎬⎭ ,

and endow it with the seminorm

‖u‖q(·),μ = inf

⎧⎨⎩τ > 0 :
∫
Ω

μ(x)
(
|u|
τ

)q(x)

dx ≤ 1

⎫⎬⎭ .

The following result about the main embeddings of W 1,H(Ω) can be found in Crespo-
Blanco-Gasiński-Harjulehto-Winkert [13, Propositions 2.16 and 2.18].

Proposition 2.4. Let (H) be satisfied. Then the following embeddings hold:

(i) LH(Ω) ↪→ Lr(·)(Ω) and W 1,H(Ω) ↪→ W 1,r(·)(Ω) are continuous for all r ∈ C(Ω)
with 1 ≤ r(x) ≤ p(x) for all x ∈ Ω;

(ii) if p ∈ C+(Ω) ∩C0, 1
| log t| (Ω), then W 1,H(Ω) ↪→ Lr(·)(Ω) is continuous for r ∈ C(Ω)

with 1 ≤ r(x) ≤ p∗(x) for all x ∈ Ω;
(iii) W 1,H(Ω) ↪→ Lr(·)(Ω) is compact for all r ∈ C(Ω) with 1 ≤ r(x) < p∗(x) for all 

x ∈ Ω.
(iv) if p ∈ C+(Ω) ∩W 1,γ(Ω) for some γ > N , then W 1,H(Ω) ↪→ Lr(·)(∂Ω) is continuous 

for r ∈ C(Ω) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ Ω;
(v) W 1,H(Ω) ↪→ Lr(·)(∂Ω) is compact for r ∈ C(Ω) with 1 ≤ r(x) < p∗(x) for all 

x ∈ Ω;
(vi) LH(Ω) ↪→ L

q(·)
μ (Ω) is continuous;

(vii) Lq(·)(Ω) ↪→ LH(Ω) is continuous;
(viii) W 1,H(Ω) ↪→ LH(Ω) is compact.

For our existence results, we equip the space W 1,H(Ω) with the following norm

‖u‖ = inf
{
τ > 0 :

∫
Ω

(∣∣∣∣∇u

τ

∣∣∣∣p(x)

+ μ(x)
∣∣∣∣∇u

τ

∣∣∣∣q(x)
)

dx

+
∫ ∣∣∣u

τ

∣∣∣p(x)
dx +

∫ ∣∣∣u
τ

∣∣∣p(x)
dσ ≤ 1

}
,

(2.2)
Ω ∂Ω
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induced by the modular

ρ(u) =
∫
Ω

(
|∇u|p(x) + μ(x)|∇u|q(x)

)
dx +

∫
Ω

|u|p(x) dx +
∫
∂Ω

|u|p(x) dσ,

for all u ∈ W 1,H(Ω). We emphasize that in Section 3 we prove in Proposition 3.1 the 
existence of a new equivalent norm in W 1,H(Ω), denoted by ‖ · ‖∗1,H, in a more general 
setting and the norm (2.2) derives from ‖ · ‖∗1,H defined in (3.2) by choosing ϑ1 ≡ ϑ2 ≡ 1
and δ1 ≡ δ2 ≡ p. For reader’s convenience, we give here the relationship between the 
modular ρ(·) and the norm ‖ · ‖, while in Section 3 we present the same proposition for 
the general ones, see Proposition 3.2.

Proposition 2.5. Let hypothesis (H) be satisfied, u ∈ W 1,H(Ω) and λ ∈ R. Then the 
following hold:

(i) If u �= 0, then ‖u‖ = λ ⇐⇒ ρ(uλ ) = 1;
(ii) ‖u‖ < 1 (resp. > 1, = 1) ⇐⇒ ρ(u) < 1 (resp. > 1, = 1);
(iii) If ‖u‖ < 1 =⇒ ‖u‖q+ ≤ ρ(u) ≤ ‖u‖p− ;
(iv) If ‖u‖ > 1 =⇒ ‖u‖p− ≤ ρ(u) ≤ ‖u‖q+ ;
(v) ‖u‖ → 0 ⇐⇒ ρ(u) → 0;
(vi) ‖u‖ → +∞ ⇐⇒ ρ(u) → +∞;
(vii) ‖u‖ → 1 ⇐⇒ ρ(u) → 1;

Moreover, for any h ∈ R let h+ = max{h, 0} and h− = max{−h, 0}, then one has 
that h = h+ − h− and |h| = h+ + h−. Also, from Crespo-Blanco-Gasiński-Harjulehto-
Winkert [13, Proposition 2.17] we know that, under assumption (H), if u ∈ W 1,H(Ω)
then u± ∈ W 1,H(Ω).

Now, denote by 〈 · , · 〉 the duality pairing between W 1,H(Ω) and its dual space 
W 1,H(Ω)∗ and by A : W 1,H(Ω) → W 1,H(Ω)∗ the nonlinear operator defined for all 
u, v ∈ W 1,H(Ω) by

〈A(u), v〉 =
∫
Ω

(
|∇u|p(x)−2∇u + μ(x)|∇u|q(x)−2∇u

)
· ∇v dx

+
∫
Ω

|u|p(x)−2uv dx +
∫
∂Ω

|u|p(x)−2uv dσ.

In the following proposition we give the properties of this operator, see Proposition 3.3
in Section 3.

Proposition 2.6. Let hypothesis (H) be satisfied. Then, the operator A : W 1,H(Ω) →
W 1,H(Ω)∗ is bounded, continuous, strictly monotone and of type (S+), that is,
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if un ⇀ u in W 1,H(Ω) and lim sup
n→∞

〈A(un), un − u〉 ≤ 0,

then un → u in W 1,H(Ω). Moreover, it is coercive and a homeomorphism.

Next, we recall some tools needed in our investigations. In the sequel, for X being a 
Banach space, we denote by X∗ its topological dual space.

Definition 2.7. Given L ∈ C1(X), we say that L satisfies the Cerami condition (C-
condition for short), if every sequence {un}n∈N ⊆ X such that

(C1) {L(un)}n≥1 ⊆ R is bounded,

(C2) (1 + ‖un‖X)L′(un) → 0 in X∗ as n → ∞,

admits a strongly convergent subsequence in X. We say that L satisfies the Cerami 
condition at level c ∈ R (Cc-condition for short), if (C1) is replaced by L(un) → c as 
n → ∞.

The following version of the Mountain-Pass Theorem is stated in the book of 
Papageorgiou-Rădulescu-Repovš [42, Theorem 5.4.6].

Theorem 2.8. Let X be a Banach space and suppose ϕ ∈ C1(X), u0, u1 ∈ X with ‖u1 −
u0‖ > δ > 0,

max {ϕ(u0), ϕ(u1)} ≤ inf {ϕ(u) : ‖u− u0‖ = δ} = mδ,

c = inf
γ∈Γ

max
0≤t≤1

ϕ(γ(t)) with Γ = {γ ∈ C ([0, 1], X) : γ(0) = u0, γ(1) = u1} ,

and ϕ satisfies the Cc-condition. Then c ≥ mδ and c is a critical value of ϕ. Moreover, 
if c = mδ, then there exists u ∈ Bδ(u0) such that ϕ′(u) = 0.

Finally, we present a version of the Quantitative Deformation Lemma, which can be 
found in Willem [49, Lemma 2.3].

Lemma 2.9. Let X be a Banach space, ϕ ∈ C1(X; R), ∅ �= S ⊂ X, c ∈ R, ε, δ > 0 such 
that

‖ϕ′(u)‖∗ ≥ 8ε
δ

for all u ∈ ϕ−1 ([c− 2ε, c + 2ε]) ∩ S2δ,

where Sr = {u ∈ X : d(u, S) = infu0∈S ‖u − u0‖ < r} for any r > 0. Then there exists 
η ∈ C([0, 1] ×X; X) such that

(i) η(t, u) = u, if t = 0 or if u /∈ ϕ−1 ([c− 2ε, c + 2ε]) ∩ S2δ,
(ii) ϕ(η(1, u)) ≤ c − ε for all u ∈ ϕ−1((−∞, c + ε]) ∩ S,
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(iii) η(t, ·) is an homeomorphism of X for all t ∈ [0, 1],
(iv) ‖η(t, u) − u‖ ≤ δ for all u ∈ X and t ∈ [0, 1],
(v) ϕ(η(·, u)) is decreasing for all u ∈ X,
(vi) ϕ(η(t, u)) < c for all u ∈ ϕ−1((−∞, c]) ∩ Sδ and t ∈ (0, 1].

3. A new equivalent norm

In this section we prove the existence of a new and general equivalent norm in 
W 1,H(Ω). First, in addition to (H), we suppose the following conditions:

(H1) (i) δ1, δ2 ∈ C(Ω) with 1 ≤ δ1(x) ≤ p∗(x) and 1 ≤ δ2(x) ≤ p∗(x) for all x ∈ Ω, 
where

(a1) p ∈ C(Ω) ∩ C0, 1
| log t| (Ω), if δ1(x) = p∗(x) for some x ∈ Ω;

(a2) p ∈ C(Ω) ∩W 1,γ(Ω) for some γ > N , if δ2(x) = p∗(x) for some x ∈ Ω;

(ii) ϑ1 ∈ L∞(Ω) with ϑ1(x) ≥ 0 for a.a. x ∈ Ω;
(iii) ϑ2 ∈ L∞(∂Ω) with ϑ2(x) ≥ 0 for a.a. x ∈ ∂Ω;
(iv) ϑ1 �≡ 0 or ϑ2 �≡ 0.

In the sequel we use the seminormed spaces

L
δ1(·)
ϑ1

(Ω) =

⎧⎨⎩u ∈ M(Ω) :
∫
Ω

ϑ1(x)|u|δ1(x) dx < ∞

⎫⎬⎭ ,

L
δ2(·)
ϑ2

(∂Ω) =

⎧⎨⎩u ∈ M(Ω) :
∫
∂Ω

ϑ2(x)|u|δ2(x) dσ < ∞

⎫⎬⎭ ,

with corresponding seminorms

‖u‖δ1(·),ϑ1 = inf

⎧⎨⎩τ > 0 :
∫
Ω

ϑ1(x)
∣∣∣u
τ

∣∣∣δ1(x)
dx ≤ 1

⎫⎬⎭ ,

‖u‖δ2(·),ϑ2,∂Ω = inf

⎧⎨⎩τ > 0 :
∫
∂Ω

ϑ2(x)
∣∣∣u
τ

∣∣∣δ2(x)
dσ ≤ 1

⎫⎬⎭ ,

respectively. We set

‖u‖◦1,H = ‖∇u‖H + ‖u‖δ1(·),ϑ1 + ‖u‖δ2(·),ϑ2,∂Ω, (3.1)

and
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‖u‖∗1,H = inf
{
τ > 0 :

∫
Ω

(∣∣∣∣∇u

τ

∣∣∣∣p(x)

+ μ(x)
∣∣∣∣∇u

τ

∣∣∣∣q(x)
)

dx

+
∫
Ω

ϑ1(x)
∣∣∣u
τ

∣∣∣δ1(x)
dx +

∫
∂Ω

ϑ2(x)
∣∣∣u
τ

∣∣∣δ2(x)
dσ ≤ 1

}
.

(3.2)

It can be easily seen that ‖ · ‖◦1,H and ‖ · ‖∗1,H are norms on W 1,H(Ω). In the next result, 
we prove that they are both equivalent to the usual one.

Proposition 3.1. Let hypotheses (H) and (H1) be satisfied. Then, ‖ ·‖◦1,H and ‖ ·‖∗1,H given 
in (3.1) and (3.2), respectively, are both equivalent norms on W 1,H(Ω).

Proof. We only prove the result when δ1(x) = p∗(x) and δ2(x) = p∗(x) for all x ∈ Ω, 
the other cases can be shown in a similar way. So, we suppose that p ∈ C(Ω) ∩W 1,γ(Ω)
for some γ > N . Then, by Remark 2.3 we know that p ∈ C(Ω) ∩ C0, 1

| log t| (Ω) as well.
First, for u ∈ W 1,H(Ω) \ {0} we have

∫
Ω

ϑ1(x)
(

|u|
‖u‖p∗(·)

)p∗(x)

dx ≤ ‖ϑ1‖∞ ρp∗(·)

(
u

‖u‖p∗(·)

)
= ‖ϑ1‖∞.

Hence,

‖u‖p∗(·),ϑ1 ≤ ‖ϑ1‖∞‖u‖p∗(·).

In the same way, we show that

‖u‖p∗(·),ϑ2,∂Ω ≤ ‖ϑ2‖∞,∂Ω ‖u‖p∗(·),∂Ω.

Using these along with Proposition 2.4(ii), (iv), we obtain

‖u‖◦1,H ≤ ‖∇u‖H + C1‖u‖p∗(·) + C2‖u‖p∗(·),∂Ω

≤ ‖∇u‖H + C3‖u‖1,H + C4‖u‖1,H

≤ C5‖u‖1,H,

for all u ∈ W 1,H(Ω), with positive constants Ci, i = 1, . . . 5.
Next, we are going to prove that

‖u‖H ≤ C6‖u‖◦1,H, (3.3)

for some C6 > 0. We argue indirectly and assume that (3.3) does not hold. Then, we 
find a sequence {un}n∈N ⊂ W 1,H(Ω) such that
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‖un‖H > n‖un‖◦1,H for all n ∈ N. (3.4)

Let yn = un

‖un‖H
. Hence, ‖yn‖H = 1 and from (3.4) we get

1
n
> ‖yn‖◦1,H. (3.5)

From ‖yn‖H = 1 and (3.5), we know that {yn}n∈N ⊂ W 1,H(Ω) is bounded. Therefore, 
using the embeddings in Proposition 2.4(ii), (iv) and up to a subsequence if necessary, 
we may assume that

yn ⇀ y in W 1,H(Ω) and yn ⇀ y in Lp∗(·)(Ω) and Lp∗(·)(∂Ω). (3.6)

Furthermore, from (3.6) and Proposition 2.4(viii), we conclude that yn → y in LH(Ω)
and because of ‖yn‖H = 1 we have y �= 0. Passing to the limit in (3.5) as n → ∞ and 
using (3.6) along with the weak lower semicontinuity of the norm ‖∇ · ‖H and of the 
seminorms ‖ · ‖p∗(·),ϑ1 , ‖ · ‖p∗(·),ϑ2,∂Ω we obtain

0 ≥ ‖∇y‖H + ‖y‖p∗(·),ϑ1 + ‖y‖p∗(·),ϑ2,∂Ω. (3.7)

Inequality (3.7) implies that y ≡ η �= 0 is a constant and so we have a contradiction

0 ≥ |η|‖1‖p∗(·),ϑ1 + |η|‖1‖p∗(·),ϑ2,∂Ω > 0,

because of (H1)(iv). Therefore (3.3) holds and we get

‖u‖1,H ≤ C7‖u‖◦1,H,

for some C7 > 0.
Next, we are going to show that ‖ · ‖◦1,H and ‖ · ‖∗1,H are equivalent norms in W 1,H(Ω). 

For u ∈ W 1,H(Ω), we obtain

∫
Ω

⎛⎝(
|∇u|
‖u‖◦1,H

)p(x)

+ μ(x)
(

|∇u|
‖u‖◦1,H

)q(x)
⎞⎠ dx

+
∫
Ω

ϑ1(x)
(

|u|
‖u‖◦1,H

)p∗(x)

dx +
∫
∂Ω

ϑ2(x)
(

|u|
‖u‖◦1,H

)p∗(x)

dσ

≤ ρH

(
∇u

‖∇u‖H

)
+

∫
Ω

ϑ1(x)
(

|u|
‖u‖p∗(·),θ1

)p∗(x)

dx

+
∫
∂Ω

ϑ2(x)
(

|u|
‖u‖p∗(·),θ2,∂Ω

)p∗(x)

dσ = 3.
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Thus,

‖u‖∗1,H ≤ 3‖u‖◦1,H. (3.8)

On the other hand, we have

∫
Ω

⎛⎝(
|∇u|
‖u‖∗1,H

)p(x)

+ μ(x)
(

|∇u|
‖u‖∗1,H

)q(x)
⎞⎠ dx

+
∫
Ω

ϑ1(x)
(

|u|
‖u‖∗1,H

)p∗(x)

dx +
∫
∂Ω

ϑ2(x)
(

|u|
‖u‖∗1,H

)p∗(x)

dσ

≤ ρ∗1,H

(
u

‖u‖∗1,H

)
,

(3.9)

where ρ∗1,H is the corresponding modular to ‖ · ‖∗1,H given by

ρ∗1,H(u) =
∫
Ω

(
|∇u|p(x) + μ(x)|∇u|q(x)

)
dx +

∫
Ω

ϑ1(x)|u|p∗(x) dx

+
∫
∂Ω

ϑ2(x)|u|p∗(x) dσ.

Note that, for u ∈ W 1,H(Ω), the function τ �→ ρ∗1,H(τu) is continuous, convex and even 
and it is strictly increasing when τ ∈ [0, ∞). So, by definition, we directly obtain

‖u‖∗1,H = τ if and only if ρ∗1,H

(u
τ

)
= 1.

From this and (3.9) we conclude that

‖∇u‖H ≤ ‖u‖∗1,H, ‖u‖p∗(·),ϑ1 ≤ ‖u‖∗1,H and ‖u‖p∗(·),ϑ2,∂Ω ≤ ‖u‖∗1,H.

Therefore,

1
3‖u‖

◦
1,H ≤ ‖u‖∗1,H. (3.10)

From (3.8) and (3.10) the proof is complete. �
Let

r1 := min {p−, (δ1)−, (δ2)−} and r2 := max {q+, (δ1)+, (δ2)+} .
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In the following proposition we give the relation between the norm ‖ ·‖∗1,H and the related 
modular function ρ∗1,H(·). The proof is similar to that one of Propositions 2.13 and 2.14 
given by Crespo-Blanco-Gasiński-Harjulehto-Winkert in [13].

Proposition 3.2. Let hypotheses (H) and (H1) be satisfied, u ∈ W 1,H(Ω) and λ ∈ R. 
Then the following hold:

(i) If u �= 0, then ‖u‖∗1,H = λ ⇐⇒ ρ∗1,H(uλ ) = 1;
(ii) ‖u‖∗1,H < 1 (resp. > 1, = 1) ⇐⇒ ρ∗1,H(u) < 1 (resp. > 1, = 1);
(iii) If ‖u‖∗1,H < 1 =⇒

(
‖u‖∗1,H

)r2 ≤ ρ∗1,H(u) ≤
(
‖u‖∗1,H

)r1 ;
(iv) If ‖u‖∗1,H > 1 =⇒

(
‖u‖∗1,H

)r1 ≤ ρ∗1,H(u) ≤
(
‖u‖∗1,H

)r2 ;
(v) ‖u‖∗1,H → 0 ⇐⇒ ρ∗1,H(u) → 0;
(vi) ‖u‖∗1,H → ∞ ⇐⇒ ρ∗1,H(u) → ∞;
(vii) ‖u‖∗1,H → 1 ⇐⇒ ρ∗1,H(u) → 1.

Finally, denote by B : W 1,H(Ω) → W 1,H(Ω)∗ the nonlinear operator defined pointwise 
by

〈B(u), v〉 =
∫
Ω

(
|∇u|p(x)−2∇u + μ(x)|∇u|q(x)−2∇u

)
· ∇v dx

+
∫
Ω

ϑ1|u|δ1(x)−2uv dx +
∫
∂Ω

ϑ2|u|δ2(x)−2uv dσ,

for all u, v ∈ W 1,H(Ω). Arguing as in the in proof of Propositions 3.4 and 3.5 in [13], we 
have the following the properties.

Proposition 3.3. Let hypotheses (H) and (H1) be satisfied. Then, the operator B :
W 1,H(Ω) → W 1,H(Ω)∗ is bounded, continuous and strictly monotone. If, in addition, 
1 < δ1(x), δ2(x) for all x ∈ Ω, then B is coercive, a homeomorphism and of type (S+).

Proof. As in the proof of Proposition 3.1 we only consider the case when δ1(x) = p∗(x)
and δ2(x) = p∗(x) for all x ∈ Ω. Similarly to the proof of Theorem 3.3 in [13], we can 
show that B is bounded, continuous and strictly monotone. Let us only show the proof 
for the (S+)-property. To this end, let {un}n∈N ⊆ W 1,H(Ω) be a sequence such that

un ⇀ u in W 1,H(Ω) and lim sup
n→∞

〈B(un), un − u〉 ≤ 0. (3.11)

From Proposition 2.4(ii) and (iv) we know, up to a subsequence if necessary, that

un ⇀ u in Lp∗(·)(Ω) and un ⇀ u in Lp∗(·)(∂Ω). (3.12)

The strict monotonicity of B implies that
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lim
n→∞

〈B(un) −B(u), un − u〉 = 0 = lim
n→∞

〈B(u), un − u〉 .

This yields

lim
n→∞

∫
Ω

(
|∇un|p(x)−2∇un − |∇u|p(x)−2∇u

)
· (∇un −∇u) dx = 0,

lim
n→∞

∫
Ω

ϑ1(x)
(
|un|p

∗(x)−2un − |u|p∗(x)−2u
)

(un − u) dx = 0,

lim
n→∞

∫
∂Ω

ϑ2(x)
(
|un|p∗(x)−2un − |u|p∗(x)−2u

)
(un − u) dσ = 0.

Then, in the same way as the claim in [13, Proof of Theorem 3.3, after (3.2)], taking 
(3.12) into account, we can show that

∇un → ∇u in Lp(·)(Ω),

un → u in L
p∗(·)
ϑ1

(Ω),

un → u in L
p∗(·)
ϑ2

(∂Ω).

(3.13)

From (3.13) we know that

∇un → ∇u in measure in Ω,

ϑ1(x)
1

p∗(x)un → ϑ1(x)
1

p∗(x)u in measure in Ω,

ϑ2(x)
1

p∗(x)un → ϑ2(x)
1

p∗(x)u in measure in ∂Ω.

(3.14)

Note that if an, bn ≥ 0 for all n ∈ N, we have

lim sup
n→∞

an ≤ lim sup
n→∞

(an + bn). (3.15)

Therefore, from (3.15), the lim sup-condition in (3.11) in the shape

lim sup
n→∞

〈B(un) −B(u), un − u〉 ≤ 0

and the weak convergence of (3.11) as well as the embeddings W 1,H(Ω) ↪→ L
p∗(·)
ϑ1

(Ω), 
W 1,H(Ω) ↪→ L

p∗(·)
ϑ2

(∂Ω), we obtain that

lim sup
n→∞

∫ (
|∇un|p(x)−2∇un + μ(x)|∇un|q(x)−2∇un

)
· (∇un −∇u) dx ≤ 0,
Ω
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lim sup
n→∞

∫
Ω

ϑ1(x)|un|p
∗(x)−2un(un − u) dx ≤ 0,

lim sup
n→∞

∫
∂Ω

ϑ2(x)|un|p∗(x)−2un(un − u) dσ ≤ 0.

Arguing as in [13, (3.8), (3.9) and (3.10)] it can be shown that

lim
n→∞

∫
Ω

(
|∇un|p(x)

p(x) + μ(x) |∇un|q(x)

q(x)

)
dx

=
∫
Ω

(
|∇u|p(x)

p(x) + μ(x) |∇u|q(x)

q(x)

)
dx,

lim
n→∞

∫
Ω

ϑ1(x)|un|p
∗(x) dx =

∫
Ω

ϑ1(x)|u|p∗(x) dx,

lim
n→∞

∫
∂Ω

ϑ2(x)|un|p∗(x) dσ =
∫
∂Ω

ϑ2(x)|u|p∗(x) dσ.

(3.16)

Due to (3.14), the left-hand sides of (3.16) converge in measure to those on the right-
hand sides. Then, the converse of Vitali’s theorem implies the uniform integrability of 
the sequences of functions{

|∇un|p(x)

p(x) + μ(x) |∇un|q(x)

q(x)

}
n∈N

,

{
ϑ1(x) |un|p

∗(x)

p∗(x)

}
n∈N

,

{
ϑ2(x) |un|p∗(x)

p∗(x)

}
n∈N

.

But then the sequences

An :=
{
|∇un −∇u|p(x) + μ(x)|∇un −∇u|q(x)

}
n∈N

,

Bn :=
{
ϑ1(x)|un − u|p∗(x)

}
n∈N

, Cn :=
{
ϑ2(x)|un − u|p∗(x)

}
n∈N

,

are uniformly integrable. This gives

0 = lim
n→∞

∫
Ω

An dx = lim
n→∞

∫
Ω

Bn dx = lim
n→∞

∫
∂Ω

Cn dσ,

which implies that

lim ρ∗1,H(un − u)

n→∞
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= lim
n→∞

⎛⎝∫
Ω

(
|∇un −∇u|p(x) + μ(x)|∇un −∇u|q(x)

)
dx

+
∫
Ω

ϑ1(x)|un − u|p∗(x) dx +
∫
∂Ω

ϑ2(x)|un − u|p∗(x) dσ

⎞⎠ = 0.

But this is equivalent to ‖un − u‖1,H → 0, see Proposition 3.2 (v). Thus, un → u in 
W 1,H(Ω). �
4. Bounded solutions

In this section we give a result about the boundedness in the L∞-norm of the solutions 
of (P ). We state the theorem in a more general and more natural setting than in (P )
and even allow a gradient dependency on the nonlinearity at the right-hand side in the 
domain. For this purpose we need the following assumptions.

(H∞) Let A : Ω ×R ×RN → RN and B : Ω ×R ×RN → R be Carathéodory functions 
and assume that there exist constants a1, a2, a3, b > 0 and r ∈ C+(Ω) with q(x) <
r(x) < p∗(x) for all x ∈ Ω such that

|A(x, t, ξ)| ≤ a1

[
|t|

r(x)
p′(x) + |ξ|p(x)−1 + μ(x)|ξ|q(x)−1 + 1

]
,

A(x, t, ξ) · ξ ≥ a2

[
|ξ|p(x) + μ(x)|ξ|q(x)

]
− a3

[
|t|r(x) + 1

]
,

|B(x, t, ξ)| ≤ b
[
|ξ|

p(x)
r′(x) + |t|r(x)−1 + 1

]
,

for a.a. x ∈ Ω and for all (t, ξ) ∈ R × RN . Furthermore, let C : ∂Ω × R → R be 
also a Carathéodory function, c > 0 and l ∈ C+(Ω) with p(x) < l(x) < p∗(x) for 
all x ∈ Ω such that

|C(x, t)| ≤ c
[
|t|l(x)−1 + 1

]
,

for a.a. x ∈ ∂Ω and for all t ∈ R.

We consider the problem

− divA(x, u,∇u) = B(x, u,∇u) in Ω,

A(x, u,∇u) · ν = C(x, u) on ∂Ω,
(4.1)

already presented in the Introduction, see (1.2). We say that u ∈ W 1,H(Ω) is a weak 
solution of (4.1) if for all v ∈ W 1,H(Ω) it holds that
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∫
Ω

A(x, u,∇u) · ∇v dx =
∫
Ω

B(x, u,∇u)v dx +
∫
∂Ω

C(x, u)v dσ.

Following Theorem 4.3 due to Ho-Winkert [32], we obtain a priori L∞-estimates for 
the problem (4.1).

Theorem 4.1. Let hypotheses (H) and (H∞) be satisfied and let u ∈ W 1,H(Ω) be a weak 
solution of problem (4.1). Then, u ∈ L∞(Ω) ∩ L∞(∂Ω) and

‖u‖∞ + ‖u‖∞,∂Ω ≤ C max
{
‖u‖τ1r(·), ‖u‖

τ2
r(·), ‖u‖

τ1
l(·),∂Ω, ‖u‖

τ2
l(·),∂Ω

}
,

where C, τ1, τ2 > 0 are independent of u.

Proof. We base our arguments on the proof of [32, Theorem 4.3] introducing the following 
changes.

First, take

Ψ(x, t) = tr(x) for all (x, t) ∈ Ω × [0,∞),

Zn =
∫

Aκn

(u− κn)r(x) dx,

Υ(x, t) = tl(x) for all (x, t) ∈ Ω × [0,∞),

Yn =
∫

Γκn

(u− κn)l(x) dx,

instead of the definitions given there. Then the Step 1 works exactly the same except for 
(4.9), which now is true because q(x) ≤ r(x) for all x ∈ Ω and∫

Aκn+1

[
(u− κn+1)p(x) + μ(x)(u− κn+1)q(x)

]
dx

≤
∫

Aκn+1

[
(u− κn+1)r(x) + 1 + ||μ||∞(u− κn+1)r(x) + ||μ||∞

]
dx.

Later, we take

Tn,i(α) =
∫
Ωi

vαn dx for all i ∈ {1, . . . ,m}, α > 0,

Hn,i(α) =
∫
Ωi

vαn dx for all i ∈ I, α > 0,
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skip the ψ� and Φ� parts and then use only the embeddings

W 1,p(·)(Ωi) ↪→ W 1,(pi)−(Ωi) ↪→ Lr�i +ε(Ωi),

W 1,p(·)(Ωi) ↪→ W 1,(pi)−(Ωi) ↪→ Ll�i +ε(∂Ωi).
(4.2)

Then one can complete Step 2 with a completely analogous argument. We finish the 
proof by repeating exactly the treatment of Step 3. �
Remark 4.2. Let us emphasize that Theorem 4.1 holds under the weaker hypothesis on 
the exponents given in (H∞) instead of the much more restrictive assumptions needed 
in [32, Theorem 4.3]. The reason behind this relies on the less general growth condition 
we require on the main operators, so we only need to use the embeddings (4.2) instead 
of the other stronger and sharper embeddings used in (4.19) and (4.49) of [32] and for 
which the authors require the aforementioned stronger hypothesis on the exponents.

5. Constant sign solutions

In this section we establish existence of two constant sign solutions obtained through 
Theorem 2.8. In particular, one solution turns out to be nonnegative and the other one 
to be nonpositive. First, we have to strengthen the hypotheses (H) as follows:

(H2) p, q ∈ C(Ω) such that 1 < p(x) < N and p(x) < q(x) < (p−)∗ for all x ∈ Ω and 
μ ∈ L∞(Ω) with μ(x) ≥ 0 for a.a. x ∈ Ω.

Next, we state the required assumptions on the nonlinearities:

(Hf,g) Let f : Ω ×R → R and g : ∂Ω ×R → R be Carathéodory functions and F (x, t) =∫ t

0 f(x, s) ds and G(x, t) =
∫ t

0 g(x, s) ds be such that the following hold:

(h1) there exist �, κ ∈ C+(Ω) and K1, K2 > 0 with �+ < (p−)∗ and κ+ < (p−)∗
such that

|f(x, t)| ≤ K1

(
1 + |t|
(x)−1

)
for a.a.x ∈ Ω,

|g(x, t)| ≤ K2

(
1 + |t|κ(x)−1

)
for a.a.x ∈ ∂Ω,

and for all t ∈ R;

(h2)

lim
t→±∞

F (x, t)
|t|q+ = ∞ uniformly for a.a.x ∈ Ω,

lim G(x, t)
q+

= ∞ uniformly for a.a.x ∈ ∂Ω;

t→±∞ |t|
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(h3)

lim
t→0

F (x, t)
|t|p(x) = 0 uniformly for a.a.x ∈ Ω,

lim
t→0

G(x, t)
|t|p(x) = 0 uniformly for a.a.x ∈ ∂Ω;

(h4) there exist α, β, ζ, θ ∈ C+(Ω) with

min{α−, β−} ∈
(

(�+ − p−) N
p−

, �+

)
,

min{ζ−, θ−} ∈
(

(κ+ − p−) N − 1
p− − 1 , κ+

)
,

and K3 > 0 such that

0 < K3 ≤ lim inf
t→∞

f(x, t)t− q+F (x, t)
|t|α(x) ,

0 < K3 ≤ lim inf
t→−∞

f(x, t)t− q+F (x, t)
|t|β(x) ,

uniformly for a.a. x ∈ Ω and K4 > 0 such that

0 < K4 ≤ lim inf
t→∞

g(x, t)t− q+G(x, t)
|t|ζ(x) ,

0 < K4 ≤ lim inf
t→−∞

g(x, t)t− q+G(x, t)
|t|θ(x) ,

uniformly for a.a. x ∈ ∂Ω;

(h5) the functions

t �→ f(x, t)
|t|q+−1 and t �→ g(x, t)

|t|q+−1

are increasing in (−∞, 0) and in (0, ∞) for a.a. x ∈ Ω and for a.a. x ∈ ∂Ω, 
respectively.

We note that assumption (h3) together with the continuity of f(x, ·) and g(x, ·) implies 
that

f(x, 0) = 0 for a.a.x ∈ Ω and g(x, 0) = 0 for a.a.x ∈ ∂Ω. (5.1)

Moreover, in Lemma 4.4 of Crespo-Blanco-Winkert [15], the authors summarize the prop-
erties that the nonlinear term of the equation (i.e. function f) verifies as consequences of 
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the previous assumptions. Clearly, as the nonlinear function g satisfies similar hypotheses 
on the boundary, it also verifies the same properties on ∂Ω.

Remark 5.1. The conditions on the exponents in (h4) are well defined since from (h1) we 
have �+ < (p−)∗ and κ+ < (p−)∗ and the following hold

(�+ − p−) N
p−

= �+
N

p−
− (p−)∗N − p−

p−
< �+

N

p−
− �+

N − p−
p−

= �+,

(κ+ − p−) N − 1
p− − 1 = κ+

N − 1
p− − 1 − (p−)∗

N − p−
p− − 1 < κ+

N − 1
p− − 1 − κ+

N − p−
p− − 1 = κ+.

Example 5.2. Simple examples of f and g satisfying (Hf,g) are

f(x, t) = |t|q++ε1−2t and g(x, t) = |t|q++ε2−2t,

i.e. independent of x, where 0 < ε1 < min{(p−)∗ − q+), 1} and 0 < ε2 < min{(p−)∗ −
q+), 1}. For the assumption (h4) choose α(x) = q+ + ε1 − ε̃− 1, where ε̃ is small enough, 
and choose β, ζ and θ analogously.

Less trivial examples of f and g are

f(x, t) =

⎧⎪⎪⎨⎪⎪⎩
|t|l1(x)−2t[1 + log(−t)], if t ≤ −1,
|t|η(x)−2t, if − 1 < t < 1,
|t|l2(x)−2t[1 + log(t)], if 1 ≤ t,

g(x, t) =

⎧⎪⎪⎨⎪⎪⎩
|t|κ1(x)−2t[1 + log(−t)], if t ≤ −1,
|t|ν(x)−2t, if − 1 < t < 1,
|t|κ2(x)−2t[1 + log(t)], if 1 ≤ t,

where l1, l2, η ∈ C(Ω), q+ ≤ η(x) and q+ ≤ l1(x), l2(x) < (p−)∗ for all x ∈ Ω, and they 
satisfy

max{(l1)+, (l2)+}
p−

− (li)−
N

< 1, for all i ∈ {1, 2},

and also κ1, κ2, ν ∈ C(Ω), q+ ≤ ν(x) and q+ ≤ κ1(x), κ2(x) < (p−)∗ for all x ∈ Ω, and 
they satisfy

max{(κ1)+, (κ2)+}
p− − 1 − (κi)−

N − 1 <
p−

p− − 1 , for all i ∈ {1, 2}.

Then f and g satisfy all the assumptions above. For the assumption (h2) of f take 
l(x) = max{l1(x), l2(x)} + ε for all x ∈ Ω, with ε > 0 small enough so that l+ < (p−)∗
and
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l+
p−

− (li)−
N

< 1, for all i ∈ {1, 2}.

For the assumption (h4) of f , take α(x) = l1(x), β(x) = l2(x) for all x ∈ Ω. This is 
the reason for the assumption on (l1)± and (l2)±. Observe that if we take l1 = l2 = l

constant, the condition is equivalent to l < (p−)∗, hence redundant in that case. For the 
assumptions (h2) and (h4) of g, analogous considerations apply.

Our aim is to establish results on the existence of weak solutions for problem (P ), 
namely functions u ∈ W 1,H(Ω) such that∫

Ω

(
|∇u|p(x)−2∇u + μ(x)|∇u|q(x)−2∇u

)
· ∇v dx +

∫
Ω

|u|p(x)−2uv dx

=
∫
Ω

f(x, u)v dx +
∫
∂Ω

g(x, u)v dσ −
∫
∂Ω

|u|p(x)−2uv dσ,

for every v ∈ W 1,H(Ω). In particular, these weak solutions are critical points of the 
energy functional I : W 1,H(Ω) → R associated to the problem (P ) given by

I(u) =
∫
Ω

(
|∇u|p(x)

p(x) + μ(x) |∇u|q(x)

q(x)

)
dx +

∫
Ω

|u|p(x)

p(x) dx

+
∫
∂Ω

|u|p(x)

p(x) dσ −
∫
Ω

F (x, u) dx−
∫
∂Ω

G(x, u) dσ,

for all u ∈ W 1,H(Ω). Since we are interested in constant sign solutions, we consider the 
positive and negative truncations of the functional I, that are I± : W 1,H(Ω) → R defined 
by

I±(u) =
∫
Ω

(
|∇u|p(x)

p(x) + μ(x) |∇u|q(x)

q(x)

)
dx +

∫
Ω

|u|p(x)

p(x) dx

+
∫
∂Ω

|u|p(x)

p(x) dσ −
∫
Ω

F (x,±u±) dx−
∫
∂Ω

G(x,±u±) dσ,

for all u ∈ W 1,H(Ω), where we have taken (5.1) into account. Our existence result is based 
on the Mountain-Pass Theorem. First we give preliminary results in order to verify the 
assumptions required in Theorem 2.8. We start with the compactness condition on the 
functional.

Proposition 5.3. Let hypotheses (H2), (h1), (h3) and (h4) be satisfied. Then, the func-
tionals I± satisfy the C-condition.
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Proof. We show the proof for I+, the case for I− works in the same way. Let {un}n∈N ⊆
W 1,H(Ω) be a sequence such that (C1) and (C2) from Definition 2.7 hold. From (C2), 
there exists {εn}n∈N with εn → 0+ such that

∣∣〈I ′+(un), v〉
∣∣ ≤ εn‖v‖

1 + ‖un‖
for all n ∈ N and for all v ∈ W 1,H(Ω). (5.2)

Choosing v = −u−
n ∈ W 1,H(Ω), one has

ρ(−u−
n ) −

∫
Ω

f(x,+u+
n )(−u−

n ) dx−
∫
∂Ω

g(x,+u+
n )(−u−

n ) dσ ≤ εn,

for all n ∈ N, which leads to ρ(−u−
n ) → 0 as n → ∞, since the supports of +u+

n and 
−u−

n do not overlap. From Proposition 2.5(v) it follows that

−u−
n → 0 in W 1,H(Ω). (5.3)

Claim 1. {u+
n }n∈N is bounded in Lα−(Ω) and in Lζ−(∂Ω).

From (C1) we have that there exists a constant M1 > 0 such that for all n ∈ N one 
has |I+(un)| ≤ M , that is

1
q+

ρ(u+
n ) −

∫
Ω

F (x, u+
n ) dx−

∫
∂Ω

G(x, u+
n ) dσ ≤ M1 −

1
q+

ρ(−u−
n ),

which, taking (5.3) into account, leads to

ρ(u+
n ) −

∫
Ω

q+F (x, u+
n ) dx−

∫
∂Ω

q+G(x, u+
n ) dσ ≤ M2, (5.4)

for all n ∈ N and for some M2 > 0. Testing (5.2) for v = u+
n , we have

−ρ(u+
n ) +

∫
Ω

f(x, u+
n )u+

n dx +
∫
∂Ω

g(x, u+
n )u+

n dσ ≤ εn, (5.5)

for all n ∈ N. Adding (5.4) and (5.5) we obtain∫
Ω

(
f(x, u+

n )u+
n − q+F (x, u+

n )
)

dx

+
∫
∂Ω

(
g(x, u+

n )u+
n − q+G(x, u+

n )
)

dσ ≤ M3,

(5.6)
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for all n ∈ N, with M3 > 0. Without loss of generality, we can assume α− ≤ β− and 
ζ− ≤ θ−. From (h4), there exist K̂3, K̃3, K̂4, K̃4 > 0 such that for all t ∈ R the following 
hold

f(x, t)t− q+F (x, t) ≥ K̂3|t|α− − K̃3 for a.a.x ∈ Ω,

g(x, t)t− q+G(x, t) ≥ K̂4|t|ζ− − K̃4 for a.a.x ∈ ∂Ω.

Exploiting these relations in (5.6), we derive

K̂3‖u+
n ‖α−

α− + K̂4‖u+
n ‖

ζ−
ζ−,∂Ω ≤ M4,

which gives

‖u+
n ‖α− ≤ M5 and ‖u+

n ‖ζ−,∂Ω ≤ M̃5 for all n ∈ N

for some M5, M̃5 > 0 and Claim 1 is achieved.

Claim 2. {u+
n }n∈N is bounded in W 1,H(Ω).

From (h1) and (h4), we have that

α− < �+ < (p−)∗ and ζ− < κ+ < (p−)∗.

Hence, there exist s, τ ∈ (0, 1) such that

1
�+

= s

(p−)∗ + 1 − s

α−
and 1

κ+
= τ

(p−)∗
+ 1 − τ

ζ−
, (5.7)

and applying the interpolation inequality, see Papageorgiou-Winkert [43, Proposition 
2.3.17 p.116], we obtain

‖u+
n ‖
+ ≤ ‖u+

n ‖s(p−)∗‖u+
n ‖1−s

α− ,

‖u+
n ‖κ+,∂Ω ≤ ‖u+

n ‖τ(p−)∗,∂Ω‖u+
n ‖1−τ

ζ−,∂Ω,

for all n ∈ N. Taking Claim 1 into account, one has

‖u+
n ‖
+ ≤ M6‖u+

n ‖s(p−)∗ and ‖u+
n ‖κ+,∂Ω ≤ M̃6‖u+

n ‖τ(p−)∗,∂Ω, (5.8)

for some M6, M̃6 > 0 and for all n ∈ N. Again, from (5.2) with v = u+
n , using (h1), it 

follows that

ρ(u+
n ) ≤ εn + K1

∫
Ω

(
|u+

n | + |u+
n |
(x)

)
dx + K2

∫
∂Ω

(
|u+

n | + |u+
n |κ(x)

)
dσ. (5.9)
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We may assume that ‖u+
n ‖ ≥ 1 for all n ∈ N, otherwise we are done. Then, using 

Proposition 2.5(iv), (5.9) and (5.8), we derive that

‖u+
n ‖p− ≤ ρ(u+

n ) ≤ εn + K1

(
‖u+

n ‖1 + ‖u+
n ‖


+

+

)
+ K2

(
‖u+

n ‖1,∂Ω + ‖u+
n ‖

κ+
κ+,∂Ω

)
≤ εn + M7

(
1 + ‖u+

n ‖
s
+
(p−)∗

)
+ M̃7

(
1 + ‖u+

n ‖
τκ+
(p−)∗,∂Ω

)
,

with M7, M̃7 > 0. Then, considering the embeddings W 1,H(Ω) ↪→ W 1,p−(Ω) ↪→
L(p−)∗(Ω) and W 1,H(Ω) ↪→ W 1,p−(Ω) ↪→ L(p−)∗(∂Ω), we get

‖u+
n ‖p− ≤ εn + M8

(
1 + ‖u+

n ‖s
+ + ‖u+
n ‖τκ+

)
,

for all n ∈ N and for some M8 > 0. From (5.7), the definition of (p−)∗ and (h4), one has

s�+ = (p−)∗(�+ − α−)
(p−)∗ − α−

= Np−(�+ − α−)
Np− −Nα− + p−α−

<
Np−(�+ − α−)

Np− −Nα− + p−(�+ − p−) N
p−

= p−.

Similarly, from (5.7), the definition of (p−)∗ and (h4), we have

ζ− >
ζ−
p−

+ (κ+ − p−)N − 1
p−

,

which implies

τκ+ = (p−)∗(κ+ − ζ−)
(p−)∗ − ζ−

= (N − 1)p−(κ+ − ζ−)
(N − 1)p− −Nζ− + p−ζ−

<
(N − 1)p−(κ+ − ζ−)

(N − 1)p− −Nζ− + p−
(

ζ−
p−

+ (κ+ − p−)N−1
p−

) = p−.

This completes the proof of Claim 2.

Claim 3. un → u in W 1,H(Ω) up to a subsequence.

From (5.3) and Claim 2, it follows that {un}n∈N is bounded in W 1,H(Ω). Since 
W 1,H(Ω) is a reflexive space, there exists a weakly convergent subsequence in W 1,H(Ω), 
not relabeled, such that

un ⇀ u in W 1,H(Ω).

Then, as by (5.2) in correspondence of v = un − u, it holds
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〈I ′+(un), un − u〉 → 0 as n → ∞.

The f and g terms are strongly continuous (see for example [15, Lemma 4.4]), hence 
their limit vanishes and we derive

〈A(un), un − u〉 → 0 as n → ∞.

As A satisfies the (S+)-property, see Proposition 2.6, the proof is complete. �
The following results are needed to verify the so-called mountain-pass geometry.

Proposition 5.4. Let hypotheses (H2), (h1) and (h3) be satisfied. Then, there exist con-
stants Ci > 0, i = 1, . . . , 5 such that

I(u), I±(u) ≥
{
C1‖u‖q+ − C2‖u‖
− − C3‖u‖κ− if ‖u‖ ≤ min{1, C4, C5},
C1‖u‖p− − C2‖u‖
+ − C3‖u‖κ+ if ‖u‖ ≥ max{1, C4, C5}.

Proof. We give the proof only for the functional I, the proof for I± is similar. From 
assumptions (h1) and (h3) it follows that for all ε > 0 there exist cε, ̃cε > 0 such that

|F (x, t)| ≤ ε

p(x) |t|
p(x) + cε|t|
(x) for a.a.x ∈ Ω and for all t ∈ R,

|G(x, t)| ≤ ε

p(x) |t|
p(x) + c̃ε|t|κ(x) for a.a.x ∈ ∂Ω and for all t ∈ R.

(5.10)

Let u ∈ W 1,H(Ω) be fixed. Using (5.10), Proposition 2.1, the embedding W 1,H(Ω) ↪→
L
(·)(Ω) with constant C
 and the embedding W 1,H(Ω) ↪→ Lκ(·)(∂Ω) with constant Cκ,∂Ω
one has

I(u) ≥ 1
q+

ρH(∇u) + 1
p+

ρp(·)(u) + 1
p+

ρp(·),∂Ω(u)

− ε

p−
ρp(·)(u) − cερ
(·)(u) − ε

p−
ρp(·),∂Ω(u) − c̃ερκ(·),∂Ω(u)

= 1
q+

ρH(∇u) +
(

1
p+

− ε

p−

)
ρp(·)(u) +

(
1
p+

− ε

p−

)
ρp(·),∂Ω(u)

− cερ
(·)(u) − c̃ερκ(·),∂Ω(u)

≥ min
{

1
q+

,
1
p+

− ε

p−

}
ρ(u)

− cε max
{
‖u‖
−
(·), ‖u‖


+

(·)

}
− c̃ε max

{
‖u‖κ−

κ(·),∂Ω, ‖u‖
κ+
κ(·),∂Ω

}
≥ min

{
1
q+

,
1
p+

− ε

p−

}
ρ(u)

− cε max
{
C


−

 ‖u‖
− , C
+


 ‖u‖
+
}
− c̃ε max

{
C

κ−
κ,∂Ω‖u‖κ− , C

κ+
κ,∂Ω‖u‖κ+

}
.
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Choosing ε ∈
(
0, (q+−p+)p−

p+q+

)
and taking

C1 = 1
q+

, C4 = 1
C


and C5 = 1
Cκ,∂Ω

,

our statement follows from Proposition 2.5(iii)-(iv) and by setting

C2 = cεC

−

 and C3 = c̃εC

κ−
κ,∂Ω if ‖u‖ ≤ min{1, C4, C5},

C2 = cεC

+

 and C3 = c̃εC

κ+
κ,∂Ω if ‖u‖ ≥ max{1, C4, C5}. �

The following result is a direct consequence of Proposition 5.4.

Proposition 5.5. Let hypotheses (H2), (h1) and (h3) be satisfied with q+ < �−, κ−. Then 
there exists δ > 0 such that

inf
‖u‖=δ

I(u) > 0 and inf
‖u‖=δ

I±(u) > 0,

or alternatively, there exists λ > 0 such that I(u) > 0 for 0 < ‖u‖ < λ.

Proposition 5.6. Let hypotheses (H2), (h1) and (h2) be satisfied. Then, I(su) → −∞ as 
s → ±∞ for every u ∈ W 1,H(Ω) \ {0}. Moreover, I±(su) → −∞ as s → ±∞ for all 
u ∈ W 1,H(Ω) \ {0} such that u ≥ 0 a.e. in Ω.

Proof. We give the proof only for the functional I, since if u ≥ 0 a.e. in Ω then I±(su) =
I(su) for ±s > 0. Fix s, ε ∈ R and u ∈ W 1,H(Ω) such that |s| ≥ 1, ε ≥ 1 and u �= 0. 
From (h1) and (h2) it follows that

|F (x, t)| ≥ ε

q+
|t|q+ − cε for a.a.x ∈ Ω,

|G(x, t)| ≥ ε

q+
|t|q+ − cε for a.a.x ∈ ∂Ω,

see also [15, Lemma 4.4]. Then, using the previous inequalities, one has

I(su) ≤ |s|p+

p−

(
ρp(·)(∇u) + ρp(·)(u) + ρp(·),∂Ω(u)

)
+ cε (|Ω| + |∂Ω|)

+ |s|q+
[
ρq(·),μ(∇u)

q−
− ε

q+

(
‖u‖q+q+ + ‖u‖q+q+,∂Ω

)]
.

Noting that ‖u‖q+ < ∞ and ‖u‖q+,∂Ω < ∞ since q+ < l− < (p−)∗ and q+ < κ− < (p−)∗, 
we can choose ε large enough such that the third term is negative and I(su) → −∞ as 
|s| → ∞. �

Finally, we state the main result of this section.
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Theorem 5.7. Let hypotheses (H2), (h1)–(h4) be satisfied. Then, there exist two nontrivial 
weak solutions u0, v0 ∈ W 1,H(Ω) ∩ L∞(Ω) of problem (P ) such that u0 ≥ 0 and v0 ≤ 0
a.e. in Ω.

Proof. Thanks to Proposition 5.3, 5.5 and 5.6, we can apply Theorem 2.8 to both func-
tionals I±. Then, there exist u0, v0 ∈ W 1,H(Ω) such that I ′+(u0) = 0 and I ′−(v0) = 0, 
namely u0, v0 are weak solutions of problem (P ). In particular, from Proposition 5.5 it 
follows that

I+(u0) ≥ inf
‖u‖=δ

I+(u) > 0 = I+(0),

which implies u0 �= 0. Analogously, I−(v0) > 0 and v0 �= 0. Finally, since 〈I ′+(u0), v〉 = 0
for every v ∈ W 1,H(Ω), we can choose v = −u−

0 and this leads to

ρ(−u−
0 ) =

∫
Ω

f(x, u+
0 )(−u−

0 ) dx +
∫
∂Ω

g(x, u+
0 )(−u−

0 ) dσ = 0.

From Proposition 2.5 it follows that −u−
0 = 0 a.e. in Ω, hence u0 ≥ 0 a.e. in Ω. Similarly, 

we can test 〈I ′−(v0), v+
0 〉 = 0 and derive that v0 ≤ 0 a.e. in Ω. Finally, we know that u0

and v0 are bounded functions because of Theorem 4.1. �
6. Sign changing solution

In this section we present our main result on the existence of a sign-changing solution 
through the Nehari manifold approach, in addition to the two constant sign solutions 
obtained in Section 5. We indicate with N the Nehari manifold of I, defined by

N =
{
u ∈ W 1,H(Ω) : 〈I ′(u), u〉 = 0, u �= 0

}
.

Clearly, any nontrivial weak solution of (P ) belongs to N , because the weak solutions of 
(P ) are exactly the critical points of I. Since we are interested in sign-changing solutions, 
we introduce the following subset of N

N0 =
{
u ∈ W 1,H(Ω) : ±u± ∈ N

}
.

For an overview on the method of the Nehari manifold, we refer to the book chapter of 
Szulkin-Weth [48].

First, we prove some properties of the Nehari manifold N (Proposition 6.1) and of 
the energy functional I restricted to N (Proposition 6.2).

Proposition 6.1. Let hypotheses (H2), (h1)–(h3) and (h5) be satisfied. Then, for any 
u ∈ W 1,H(Ω) \ {0}, there exists a unique su > 0 such that suu ∈ N .
Moreover, one has
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I(suu) > 0 and I(suu) > I(su) for all s > 0 with s �= su,

and

∂sI(su) > 0 for 0 < s < su and ∂sI(su) < 0 for s > su.

Proof. For any fixed u ∈ W 1,H(Ω) \ {0} we define φu : [0, ∞) → R as follows

φu(s) = I(su) for all s ∈ [0,∞).

Clearly, φu belongs to C ([0,∞)) and C1 ((0,∞)). From Propositions 5.5 and 5.6 we 
derive that there exist δ, M > 0 such that

φu(s) > 0 for 0 < t < δ and φu(s) < 0 for t > M. (6.1)

Then, applying the extreme value theorem, we get in particular that φu admits a local 
maximum, i.e., there exists 0 < su ≤ M such that

sup
s∈[0,∞)

φu(s) = max
s∈[0,M ]

φu(s) = φu(su).

Since su is also a critical point of φu, in combination with φ′
u(s) = 〈I ′(su), u〉 for every 

s > 0, one has

φ′
u(su) = 〈I ′(suu), u〉 = 0 =⇒ suu ∈ N .

Claim. su is unique.

From assumption (h5) we have that

s �→ f(x, su)
sq+−1|u|q+−1 increasing ⇒ s �→ f(x, su)u

sq+−1 increasing in {x ∈ Ω : u(x) > 0},

s �→ f(x, su)
sq+−1|u|q+−1 decreasing ⇒ s �→ f(x, su)u

sq+−1 increasing in {x ∈ Ω : u(x) < 0},

s �→ g(x, su)
sq+−1|u|q+−1 increasing ⇒ s �→ g(x, su)u

sq+−1 increasing in {x ∈ ∂Ω : u(x) > 0},

s �→ g(x, su)
sq+−1|u|q+−1 decreasing ⇒ s �→ g(x, su)u

sq+−1 increasing in {x ∈ ∂Ω : u(x) < 0}.

Multiplying by 1/sq+−1 the equation φ′
u(s) = 〈I ′(su), u〉 = 0 (consider only s > 0), 

which is a necessary condition for su ∈ N , we obtain
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∫
Ω

(
|∇u|p(x)

sq+−p(x) + μ(x)|∇u|q(x)

sq+−q(x)

)
dx +

∫
Ω

|u|p(x)

sq+−p(x) dx +
∫
∂Ω

|u|p(x)

sq+−p(x) dσ

−
∫
Ω

f(x, su)u
sq+−1 dx−

∫
∂Ω

g(x, su)u
sq+−1 dσ = 0.

As functions of s, the left-hand side is strictly decreasing, because it is so in the sets 
{x ∈ Ω : ∇u �= 0}, {x ∈ Ω : u �= 0} and {x ∈ ∂Ω : u �= 0} and at least decreasing in 
the rest (recall that p(x) < q(x) ≤ q+ for all x ∈ Ω and the previous comments for f and 
g). Consequently, there can be at most one single value su > 0 for which the equation 
holds, namely there exists a unique su > 0 such that suu ∈ N .

Finally, since φ′
u(s) has constant sign for 0 < s < su and s > su, from (6.1) we can 

derive

φ′
u(s) > 0 for 0 < s < su and φ′

u(s) < 0 for s > su.

Thus su is a strict maximum for φu and this completes the proof. �
Proposition 6.2. Let hypotheses (H2), (h1)–(h3) and (h5) be satisfied. Then, the func-
tional I|N is sequentially coercive, namely for any sequence {un}n∈N ⊂ N such that 
‖un‖ n→∞−−−−→ ∞ one has I(un) n→∞−−−−→ ∞.

Proof. Let {un}n∈N ⊂ N be a sequence such that ‖un‖ n→∞−−−−→ ∞ and put

yn = un

‖un‖
for all n ∈ N. (6.2)

Since {yn}n∈N is bounded in the reflexive space W 1,H(Ω) and due to the compact em-
beddings W 1,H(Ω) ↪→ L
(·)(Ω) as well as W 1,H(Ω) ↪→ Lκ(·)(∂Ω) (see Proposition 2.4(iii), 
(v)), there exists a subsequence {ynk

}k∈N and y ∈ W 1,H(Ω) such that

ynk
⇀ y in W 1,H(Ω),

ynk
→ y in L
(·)(Ω) and pointwisely a.e. in Ω,

ynk
→ y in Lκ(·)(∂Ω) and pointwisely a.e. in ∂Ω.

(6.3)

Claim. y = 0.

By contradiction, suppose that y �= 0. As ‖un‖ → ∞, there exists k0 ∈ N such that 
for every k ≥ k0 one has ‖unk

‖ ≥ 1 and

I(unk
) ≤ 1

p−
ρ(unk

) −
∫

F (x, unk
) dx−

∫
G(x, unk

) dσ

Ω ∂Ω
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≤ 1
p−

‖unk
‖q+ −

∫
Ω

F (x, unk
) dx−

∫
∂Ω

G(x, unk
) dσ,

where we have used Proposition 2.5(iv). Dividing by ‖unk
‖q+ and taking (6.2) into ac-

count, we obtain

I(unk
)

‖unk
‖q+ ≤ 1

p−
−

∫
Ω

F (x, unk
)

|unk
|q+ |ynk

|q+ dx−
∫
∂Ω

G(x, unk
)

|unk
|q+ |ynk

|q+ dσ. (6.4)

Now, we observe that if f and g fulfill (h1) and (h2), then there exist M9, M10 > 0 such 
that

F (x, t) > −M9 for a.a.x ∈ Ω and for all t ∈ R,

G(x, t) > −M10 for a.a.x ∈ ∂Ω and for all t ∈ R.
(6.5)

Setting Ω0 = {x ∈ Ω : y(x) = 0}, by using (6.5), (h2), (6.3) and Fatou’s Lemma, we get

lim
k→∞

∫
Ω

F (x, unk
)

|unk
|q+ |ynk

|q+ dx

= lim
k→∞

⎛⎜⎝ ∫
Ω\Ω0

F (x, unk
)

|unk
|q+ |ynk

|q+ dx +
∫
Ω0

F (x, unk
)

‖unk
‖q+

⎞⎟⎠
≥

∫
Ω\Ω0

(
lim
k→∞

F (x, unk
)

|unk
|q+ |ynk

|q+
)

dx− lim
k→∞

M9|Ω0|
‖unk

‖q+

= ∞.

Analogously, for Σ0 = {x ∈ ∂Ω : y(x) = 0}, we have

lim
k→∞

∫
∂Ω

G(x, unk
)

|unk
|q+ |ynk

|q+ dσ

= lim
k→∞

⎛⎜⎝ ∫
∂Ω\Σ0

G(x, unk
)

|unk
|q+ |ynk

|q+ dσ +
∫
Σ0

G(x, unk
)

‖unk
‖q+

⎞⎟⎠
≥

∫
∂Ω\Σ0

(
lim
k→∞

G(x, unk
)

|unk
|q+ |ynk

|q+
)

dσ − lim
k→∞

M10|Σ0|
‖unk

‖q+

= ∞.

Hence, passing to the limit as k → ∞ in (6.4), it follows that
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lim
k→∞

I(unk
)

‖unk
‖q+ = −∞,

which is a contradiction with {un}n∈N ⊆ N that implies I(un) > 0 for all n ∈ N (see 
Proposition 6.1). Thus, the proof of our claim is complete.

Recall that unk
∈ N for every k ∈ N, from Proposition 6.1 it follows that 

I(unk
) ≥ I(sunk

) for every s > 0, s �= 1 and for all k ∈ N. Fixing s > 1 and using 
Proposition 2.5(iv), one has

I(unk
) ≥ I(synk

)

≥ 1
q+

ρ(synk
) −

∫
Ω

F (x, synk
) dx−

∫
∂Ω

G(x, synk
) dσ

≥ 1
q+

‖synk
‖p− −

∫
Ω

F (x, synk
) dx−

∫
∂Ω

G(x, synk
) dσ

= sp−

q+
−

∫
Ω

F (x, synk
) dx−

∫
∂Ω

G(x, synk
) dσ.

Moreover, as a consequence of the assumptions on the nonlinear functions f and g, it 
follows that the integral terms are strongly continuous (see for example [15, Lemma 4.4]). 
Since synk

⇀ 0, we derive that there exists k1 ∈ N such that

I(unk
) ≥ sp−

q+
− 1 for all k ≥ k1.

From the arbitrariness of s > 1, we get I(unk
) → ∞ as k → ∞, which implies that 

I(un) n→∞−−−−→ ∞ and our statement is achieved. �
Now, we are able to prove the existence of a minimizer of I restricted to N0.

Proposition 6.3. Let hypotheses (H2), (h1)–(h3) and (h5) be satisfied. Then

inf
u∈N

I(u) > 0 and inf
u∈N0

I(u) > 0.

Proof. Fix u ∈ N . Then, from Proposition 6.1 we have that I(u) ≥ I(su) for all s >
0, s �= 1. In particular, applying Proposition 5.5, it follows that

I(u) ≥ I

(
δ

‖u‖u
)

≥ inf
‖u‖=δ

I(u) > 0 for all u ∈ N ,

that implies

inf
u∈N

I(u) > 0.
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Now, fix u ∈ N0. Since by definition ±u± ∈ N , we get

I(u) = I(u+) + I(−u−) ≥ 2 inf
u∈N

I(u) > 0 for all u ∈ N0,

so we obtain

inf
u∈N0

I(u) > 0. �
Proposition 6.4. Let hypotheses (H2), (h1)–(h3) and (h5) be satisfied. Then, there exists 
w0 ∈ N0 such that

I(w0) = inf
u∈N0

I(u).

Proof. Let {un}n∈N ⊆ N0 be a minimizing sequence, that is, I(un) ↘ infu∈N0 I(u). As 
un ∈ N0, then ±u±

n ∈ N and I(±u±
n ) > 0 for all n ∈ N (see Proposition 6.1). Moreover, 

since I(un) = I(u+
n ) + I(−u−

n ) for every n ∈ N and from Proposition 6.2, one has that 
{±u±

n }n∈N are both bounded. Then, by the compact embeddings W 1,H(Ω) ↪→ L
(·)(Ω)
as well as W 1,H(Ω) ↪→ Lκ(·)(∂Ω) (see Proposition 2.4(iii), (v)), there exist subsequences 
{±u±

nk
}k∈N and v1, v2 ∈ W 1,H(Ω) such that

u+
nk

⇀ v1, u
−
nk

⇀ v2 in W 1,H(Ω),

u+
nk

→ v1, u
−
nk

→ v2 in L
(·)(Ω) and pointwisely a.e. in Ω,

u+
nk

→ v1, u
−
nk

→ v2 in Lκ(·)(∂Ω) and pointwisely a.e. in ∂Ω,

with v1 ≥ 0, v2 ≥ 0 and v1v2 = 0 a.e. in Ω.

Claim. v1, v2 �= 0.

Arguing by contradiction, suppose that v1 = 0. Recalling that u+
nk

∈ N implies that

〈I ′(u+
nk

), u+
nk
〉 = 0,

one has

ρ(u+
nk

) −
∫
Ω

f(x, u+
nk

)(u+
nk

) dx−
∫
∂Ω

g(x, u+
nk

)(u+
nk

) dσ = 0.

From the Carathéodory assumption and (h1) on the nonlinearities f and g, it follows that 
the two integral terms are strongly continuous (see [15, Lemma 4.4]), thus ρ(u+

nk
) → 0

as k → ∞. By Proposition 2.5(v), we get u+
nk

→ 0 in W 1,H(Ω) and

0 < inf
u∈N

I(u) ≤ I(u+
nk

) → I(0) = 0 as k → ∞,
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that is a contradiction. Analogously we prove that v2 �= 0 and our claim is true. Now, 
using Proposition 6.1, there exist s1, s2 > 0 such that s1v1, s2v2 ∈ N . We put

w0 = s1v1 − s2v2 = w+
0 − w−

0 ,

hence w0 ∈ N0. Finally, it remains to prove that I(w0) = infu∈N0 I(u). It is worth 
noticing that all the positive terms of I are convex and continuous, thus sequentially 
weakly lower semicontinuous. On the other hand, we know that the F and G terms are 
strongly continuous. Hence, I is sequentially weakly lower semicontinuous and this leads 
to

inf
u∈N0

I(u) = lim
k→∞

I(unk
) = lim

k→∞

(
I(u+

nk
) + I(−u−

nk
)
)

≥ lim inf
k→∞

(
I(s1u

+
nk

) + I(−s2u
−
nk

)
)

≥ I(s1v1) + I(−s2v2)

= I(w+
0 ) + I(−w−

0 )

= I(w0) ≥ inf
u∈N0

I(u).

The proof is complete. �
Now, we prove that the minimizer obtained in Proposition 6.4 is a critical point of 

the functional I.

Proposition 6.5. Let hypotheses (H2), (h1)–(h3) and (h5) be satisfied and let w0 ∈ N0
such that I(w0) = inf

u∈N0
I(u). Then, w0 is a critical point of the functional I.

Proof. First, we observe something that will be useful in the sequel. Recalling that 
±w±

0 �= 0 and indicating with Cp− the constant of the embedding W 1,H(Ω) ↪→ Lp−(Ω), 
we have that

‖w0 − v‖ ≥ C−1
p− ‖w0 − v‖p− ≥

{
C−1

p− ‖w−
0 ‖p− if v− = 0,

C−1
p− ‖w+

0 ‖p− if v+ = 0,

for all v ∈ W 1,H(Ω). Thus, taking

0 < δ0 < min
{
C−1

p− ‖w+
0 ‖p− , C

−1
p− ‖w−

0 ‖p−

}
,

we have the following implication

if ‖w0 − v‖ < δ0, then v+ �= 0 �= v−. (6.6)
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Now, arguing by contradiction, suppose that I ′(w0) �= 0. Then there exist γ, δ1 > 0 such 
that

‖I ′(u)‖∗ ≥ γ for all u ∈ W 1,H(Ω) with ‖u− w0‖ < 3δ1. (6.7)

Put

δ = min
{
δ0
2 , δ1

}
. (6.8)

From the continuity of the map defined by (s, t) �→ sw+
0 − tw−

0 for every (s, t) ∈ [0, ∞)2, 
we have that for every δ > 0 there exists λ ∈ (0, 1) such that

‖sw+
0 − tw−

0 − w0‖ < δ, (6.9)

for all (s, t) ∈ [0, ∞)2 with max{|s − 1|, |t − 1|} < λ. Let

D = (1 − λ, 1 + λ)2, m0 = max
(s,t)∈∂D

I(sw+
0 − tw−

0 ),

and

c = inf
u∈N0

I(u). (6.10)

We emphasize that for any (s, t) ∈ [0, ∞)2 \ {(1, 1)}, using Proposition 6.1, one has

I(sw+
0 − tw−

0 ) = I(sw+
0 ) + I(−tw−

0 )

< I(w+
0 ) + I(−w−

0 ) = I(w0) = inf
u∈N0

I(u),
(6.11)

which implies that m0 < c.
In order to use the same notation of the Quantitative Deformation Lemma given in 

Lemma 2.9, we set

S = B(w0, δ), ε = min
{
c−m0

4 ,
γ δ

8

}
,

and δ, c as in (6.8) and (6.10), respectively. We also notice that by the definition of S it 
follows that Sδ = B(w0, 2δ) and S2δ = B(w0, 3δ). From (6.7), we get

‖I ′(u)‖∗ ≥ γ ≥ 8ε
δ

for all u ∈ S2δ,

so all the assumptions of Lemma 2.9 are verified. Hence, there exists a mapping η ∈
C

(
[0, 1] ×W 1,H(Ω),W 1,H(Ω)

)
such that
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(i) η(t, u) = u, if t = 0 or if u /∈ I−1 ([c− 2ε, c + 2ε]) ∩ S2δ,
(ii) I(η(1, u)) ≤ c − ε for all u ∈ I−1 ((−∞, c + ε]) ∩ S,
(iii) η(t, ·) is an homeomorphism of W 1,H(Ω) for all t ∈ [0, 1],
(iv) ‖η(t, u) − u‖ ≤ δ for all u ∈ W 1,H(Ω) and t ∈ [0, 1],
(v) I(η(·, u)) is decreasing for all u ∈ W 1,H(Ω),
(vi) I(η(t, u)) < c for all u ∈ I−1 ((−∞, c]) ∩ Sδ and t ∈ (0, 1].

Afterwards, we consider h : [0, ∞)2 → W 1,H(Ω) defined by

h(s, t) = η(1, sw+
0 − tw−

0 ) for all (s, t) ∈ [0,∞)2,

which has the following properties:

(vii) h ∈ C
(
[0,∞)2,W 1,H(Ω)

)
,

(viii) I(h(s, t)) ≤ c − ε for all (s, t) ∈ D, by (ii), (6.9) and (6.11),
(ix) h(D) ⊆ Sδ, by (iv) and (6.9),
(x) h(s, t) = sw+

0 − tw−
0 for all (s, t) ∈ ∂D,

where the last one follows from (i) and

I(sw+
0 − tw−

0 ) ≤ m0 + c− c < c−
(
c−m0

2

)
≤ c− 2ε for all (s, t) ∈ ∂D.

Now, we define two mappings H0, H1 : (0, ∞)2 → R2 given by

H0(s, t) =
(
〈I ′(sw+

0 ), w+
0 〉 , 〈I ′(−tw−

0 ),−w−
0 〉

)
,

H1(s, t) =
(

1
s
〈I ′(h+(s, t)), h+(s, t)〉 , 1

t
〈(−h−(s, t)),−h−(s, t)〉

)
,

which are clearly continuous. From Proposition 6.1 it follows that

〈I ′(sw+
0 ), w+

0 〉
{
> 0 for all 0 < s < 1,
< 0 for all s > 1,

〈I ′(−tw−
0 ),−w−

0 〉
{
> 0 for all 0 < t < 1,
< 0 for all t > 1.

(6.12)

Given A ⊆ Rn open and bounded and g ∈ C(A, RN ), we denote by deg(g, A, y) the 
Brouwer degree over A of g at the value y ∈ RN \ g(∂A). From the Cartesian product 
property of the Brouwer degree (see the book of Dinca-Mawhin [20, Lemma 7.1.1 and 
Theorem 7.1.1]) we get
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deg(H0, D, 0) = deg
(
〈I ′(sw+

0 ), w+
0 〉 , (1 − λ, 1 + λ) , 0

)
× deg

(
〈I ′(−tw−

0 ),−w−
0 〉 , (1 − λ, 1 + λ) , 0

)
,

and by (6.12) and Proposition 1.2.3 of Dinca-Mawhin [20], we obtain

deg(H0, D, 0) = (−1)(−1) = 1.

We observe that (x) implies H0|∂D = H1|∂D, so as the Brouwer degree depends on the 
boundary ([20, Corollary 1.2.7]), we have

deg(H1, D, 0) = deg(H0, D, 0) = 1,

and by the solution property ([20, Corollary 1.2.5]) it follows that there exists (s0, t0) ∈ D

such that H1(s0, t0) = (0, 0), namely

〈I ′(h+(s0, t0)), h+(s0, t0)〉 = 0 = 〈I ′(−h−(s0, t0)),−h−(s0, t0)〉.

Finally, by (ix)

‖h(s0, t0) − w0‖ ≤ 2δ ≤ δ0,

which, taking (6.6) into account, leads to

h+(s0, t0) �= 0 and − h−(s0, t0) �= 0.

Thus, h(s0, t0) ∈ N0, that is a contradiction with

I(h(s0, t0)) ≤ c− ε = inf
u∈N0

I(u) − ε,

obtained by (viii). This completes the proof. �
Combining Theorem 5.7 with Propositions 6.4 and 6.5, we get the existence of three 

weak solutions for problem (P ). We further know that they are bounded functions thanks 
to Theorem 4.1.

Theorem 6.6. Let hypotheses (H2) and (Hf,g) be satisfied. Then, there exist three non-
trivial weak solutions u0, v0, w0 ∈ W 1,H(Ω) ∩ L∞(Ω) of problem (P ) such that u0 ≥ 0, 
v0 ≤ 0 and w0 is sign-changing.

In the last part of this section, we derive information about the number of nodal 
domains of the sign-changing solution, that is the number of maximal regions where 
it has constant sign. The usual definition of nodal domains of a function deals with a 
continuous function. Nevertheless, we do not know whether our solutions are continuous. 
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Therefore, we use the definition proposed by Crespo-Blanco-Winkert [15, Section 6] that 
we recall in the following.

Definition 6.7. Let u ∈ W 1,H(Ω) and A be a Borelian subset of Ω with |A| > 0. We say 
that A is a nodal domain of u if

(i) u ≥ 0 a.e. on A or u ≤ 0 a.e. on A;
(ii) 0 �= u1A ∈ W 1,H(Ω);
(iii) A is minimal w.r.t. (i) and (ii), i.e., if B ⊆ A with B being a Borelian subset of Ω, 

|B| > 0 and B satisfies (i) and (ii), then |A \B| = 0.

For our purposes, we need to require one more assumption on the nonlinearities:

(h6) f(x, t)t − q+F (x, t) ≥ 0 and g(x, t)t − q+G(x, t) ≥ 0 for all t ∈ R and for a.a. x ∈ Ω
and for a.a. x ∈ ∂Ω, respectively.

Proposition 6.8. Let hypotheses (H2), (Hf,g) and (h6) be satisfied. Then, any minimizer 
of I|N0 , which is also a sign-changing weak solution of problem (P ), has exactly two 
nodal domains.

Proof. Let w0 be such that I(w0) = inf
u∈N0

I(u), fix any w̃0 representative of w0 and set

Ω± = {x ∈ Ω : ±w̃0(x) > 0} .

As w01Ω± = ±w̃0
± a.e. in Ω, it follows that Ω+ and Ω− satisfy conditions (i) and (ii) 

of Definition 6.7. By contradiction, we prove that they are also minimal. We assume, 
without loss of generality, that there exist Borelian subsets A1, A2 of Ω, with A1 ∩
A2 = ∅, |A1| > 0 and |A2| > 0, such that Ω− = A1∪̇A2 and A1 satisfies (i) and (ii) of 
Definition 6.7. Moreover, it holds

w01A2 = w̃01A2 < 0 a.e. in A2,

w01A2 = w01Ω− − w01A1 ∈ W 1,H(Ω),

thus A2 also satisfies (i) and (ii). Summarizing, we have

1Ω+w0 ≥ 0, 1A1w0 ≤ 0, 1A2w0 ≤ 0 a.e. in Ω, (6.13)

and

w0 = 1Ω+w0 + 1A1w0 + 1A2w0 a.e. in Ω.
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Setting y1 = 1Ω+w0 + 1A1w0 and y2 = 1A2w0, from (6.13) we have y+
1 = 1Ω+w0 and 

−y−1 = 1A1w0. Since I ′(w0) = 0 and as the supports of y+
1 , −y−1 and y2 do not overlap, 

one has

0 = 〈I ′(w0), y+
1 〉 = 〈I ′(y+

1 ), y+
1 〉.

Hence y+
1 ∈ N and analogously, −y−1 ∈ N . Therefore, y1 ∈ N0. With the same argument 

one can show that 〈I ′(y2), y2〉 = 0. Then, from these properties, we obtain

I(y2) = I(y2) −
1
q+

〈I ′(y2), y2〉

≥
(

1
p+

− 1
q+

)
ρp(·)(∇y2) +

(
1
p+

− 1
q+

)
ρp(·)(y2) +

(
1
p+

− 1
q+

)
ρp(·),∂Ω(y2)

+
∫
Ω

(
1
q+

f(x, y2)y2 − F (x, y2)
)

dx +
∫
∂Ω

(
1
q+

g(x, y2)y2 −G(x, y2)
)

dσ,

which leads to

I(y2) > 0,

because of p+ < q+, y2 �= 0 and (h6). Finally, we get

inf
u∈N0

I(u) = I(w0) = I(y1) + I(y2) > I(y1) ≥ inf
u∈N0

I(u),

which is a contradiction and this completes the proof. �
Combining Theorem 6.6 and Proposition 6.8, we get the main existence result of this 

paper.

Theorem 6.9. Let hypotheses (H2), (Hf,g) and (h6) be satisfied. Then, there exist three 
nontrivial weak solutions u0, v0, w0 ∈ W 1,H(Ω) ∩ L∞(Ω) of problem (P ) such that

u0 ≥ 0, v0 ≤ 0, w0 being sign-changing with two nodal domains.
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