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1. Introduction

Let Ω ⊆ RN , N � 2, be a bounded domain with Lipschitz boundary ∂Ω and let 
Ωλ := λΩ be an expanding domain, where λ is a positive parameter. In this paper we 
consider the following problem

−Δpu− μΔqu = f(u) − |u|p−2u in Ωλ,

u = 0 on ∂Ωλ,

u(−x) = −u(x) for a. a.x ∈ Ωλ,

(1.1)

where we suppose the following assumptions:

(H1) μ > 0 and 1 < q < p < N .
(H2) f : R → R is a continuous and odd function with primitive F (s) =

∫ s

0 f(t) dt
satisfying the following conditions:
(i) there exist r ∈ (p, p∗) and a constant C > 0 such that

|f(s)| ≤ C
(
1 + |s|r−1) for all s ∈ R,

where p∗ = Np
N−p is the critical Sobolev exponent to p;

(ii) lim
s→0

f(s)
|s|q−2s

= 0;

(iii) lim
|s|→+∞

F (s)
|s|p = +∞;

(iv) f(s)
|s|p−1 is strictly increasing on (−∞, 0) and on (0, ∞).

A function u ∈ W 1,p
0 (Ωλ) is said to be a weak solution of problem (1.1) if u(−x) =

−u(x) for a.a. x ∈ Ωλ and if∫
Ωλ

(
|∇u|p−2∇u + μ|∇u|q−2∇u

)
· ∇v dx =

∫
Ωλ

(
f(u) − |u|p−2u

)
v dx

is satisfied for all v ∈ W 1,p
0 (Ωλ). The corresponding energy functional Jλ : W 1,p

0 (Ωλ) → R

for problem (1.1) is given by

Jλ(u) = 1
p
‖u‖p1,p + μ

q
‖∇u‖qq −

∫
Ωλ

F (u) dx for all u ∈ W 1,p
0 (Ωλ). (1.2)

Under the assumptions in (H1) and (H2), it is clear that Jλ is well-defined and of class 
C1.

The following theorem is our main result.
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Theorem 1.1. Let hypotheses (H1) and (H2) be satisfied and let Ω be symmetric with 
respect to the origin, that is, Ω = −Ω. Then there exists λ∗ > 0 such that, for any 
λ � λ∗, problem (1.1) has at least γ(Ωλ \ {0}) pairs (±u) of odd weak solutions with 
precisely two nodal domains, where γ stands for the genus.

The proof of Theorem 1.1 relies on the Lusternik-Schnirelmann category in combi-
nation with the odd symmetry invariant Nehari submanifold. As far as we know this is 
the first work dealing with a superlinear (p, q)-equation in expanding domains that has 
multiple sign-changing solutions obtained via the Lusternik-Schnirelmann category.

A starting point in the direct application of the Lusternik-Schnirelmann category to 
elliptic equations was the work of Benci-Cerami [11] who studied the problem

−Δu + λu = up−1 in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.3)

where p ∈ (2, 2∗). It is shown that problem (1.3) has at least cat(Ω) solutions when p is 
close to 2∗, where cat(Ω) denotes the Lusternik-Schnirelmann category of Ω. Motivated 
by this work and its used methods, Bartsch-Wang [9] treated nonlinear Schrödinger 
equations of the form

−Δu + (λa(x) + 1)u = up, u > 0 in RN , (1.4)

with 1 < p < 2∗ − 1 and showed the existence of at least cat(Ω) solutions of (1.4)
when the parameter λ > 0 is large enough, see also [8] of the same authors. Afterwards, 
the Lusternik-Schnirelmann category has been applied to several types of problems. We 
mention, for example, the works of Alves [2] for p-Laplace equations with expanding 
domains, Alves-Ding [3] for critical p-Laplace equations, Alves-Figueiredo-Furtado [4]
for multiple solutions for nonlinear Schrödinger equations with magnetic fields, Benci-
Bonanno-Micheletti [10] for elliptic equations on Riemannian manifolds, Cingolani [16]
for nonlinear Schrödinger equations with an external magnetic field, Cingolani-Lazzo 
[17] for nonlinear Schrödinger equations, Figueiredo-Pimenta-Siciliano [20] for fractional 
Laplacian in expanding domains, Figueiredo-Siciliano [21] for fractional Schrödinger 
equations in RN and Wang-Tian-Xu-Zhang [26] for Kirchhoff type problems, see also 
the references therein. All these works are dealing with constant sign solutions.

For sign-changing solutions via the Lusternik-Schnirelmann category we refer to the 
paper of Castro-Clapp [14] in which the problem

Δu + λu + |u|2∗−2u = 0 in Ω,

u = 0 on ∂Ω,

u(τx) = −u(x) for all x ∈ Ω

(1.5)
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was studied where τ is a nontrivial orthogonal involution. For λ > 0 to be small, the 
existence of pairs of sign-changing solutions which change the sign exactly once has 
been shown for problem (1.5). These results have been improved by Cano-Clapp [13]. 
Finally, we mention some results concerning problems with expanding domains, see, 
for example the papers of Ackermann-Clapp-Pacella [1] for alternating sign multibump 
solutions in expanding tubular domains, Alves-Figueiredo-Furtado [5] for complex equa-
tions, Bartsch-Clapp-Grossi-Pacella [7] for asymptotically radial solutions in expanding 
domains, Byeon-Tanaka [12] for multibump positive solutions in expanding tubular 
domains, Catrina-Wang [15] for Dirichlet Laplace problems in an expanding annulus, 
Dancer-Yan [18] for multibump solutions and Feireisl-Nečasová-Sun [19] for inviscid in-
compressible limits on expanding domains.

The paper is organized as follows. In Section 2 we recall some basic definitions and 
investigate the relation between the unit sphere and the odd symmetry invariant Nehari 
manifold. Section 3 is devoted to the (PS)-condition property and some needed estimates 
and in Section 4 we prove Theorem 1.1. Our results are combining ideas from the work 
of Alves [2], Castro-Clapp [14] and Catrina-Wang [15].

2. The mapping between S◦
± and N ◦

±

We denote by Ls(Ω) (resp. Ls(Ω; RN )) and Ls(Ωλ) (resp. Ls(Ωλ; RN )) the usual 
Lebesgue spaces equipped with the norm ‖ · ‖s for every 1 ≤ s < ∞. For 1 < s < ∞, 
W 1,s(Ω) and W 1,s

0 (Ωλ) stand for the Sobolev spaces endowed with the norm ‖ · ‖1,s.
Let X be a Banach space and let A be the class of all closed subsets B of X \ {0}

which are symmetric, that is, u ∈ B implies −u ∈ B.

Definition 2.1. Let B ∈ A. The genus γ(B) of B is defined as the least integer n such 
that there exists ϕ ∈ C(X, Rn) such that ϕ is odd and ϕ(x) 	= 0 for all x ∈ B. We set 
γ(B) = +∞ if there are no integers with the above property and γ(∅) = 0.

Remark 2.2. An equivalent way to define γ(B) is to take the minimal integer n such that 
there exists an odd map ϕ ∈ C(B, Rn \ {0}).

For a function u, from now on, we denote by u+ (resp. u−) the positive (resp. negative) 
part of u, that is

u+ = max (u, 0) , u− = min (u, 0) . (2.1)

Let

W 1,p
0 (Ωλ)◦ :=

{
u ∈ W 1,p

0 (Ωλ) : u(−x) = −u(x)
}
.

We denote the Nehari manifold corresponding to (1.1) by
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Nλ :=
{
u ∈ W 1,p

0 (Ωλ) \ {0} : 〈J ′
λ(u), u〉 = 0

}
and the odd symmetry invariant Nehari submanifold by

N ◦
λ := {u ∈ Nλ : u(−x) = −u(x)} .

It is clear that

N ◦
λ = Nλ ∩W 1,p

0 (Ωλ)◦.

Note that Jλ : W 1,p
0 (Ωλ)◦ → R is an even functional with (Jλ(−u))′ = −J ′

λ(u). There-
fore, if Jλ ∈ C2, then the nontrivial solutions of (1.1) are the critical points of the 
restriction of Jλ to the odd symmetry invariant Nehari submanifold N ◦

λ . However, we 
only assume that f is continuous. This leads to Jλ ∈ C1 and the non-differentiability of 
N ◦

λ . To overcome these difficulties, we need the following two lemmas.
We write

S◦ =
{
u ∈ W 1,p

0 (Ωλ)◦ : ‖u‖1,p = 1
}
, S◦

± =
{
u± : u ∈ S◦} and N ◦

± =
{
u± : u ∈ N ◦

λ

}
.

Then we can set up a one-to-one correspondence between S◦
± and N ◦

± as follows.

Lemma 2.3. Let hypotheses (H1) and (H2) be satisfied.

(i) For each w ∈ W 1,p
0 (Ωλ)◦ \ {0}, set hw±(t) = Jλ(tw±) for t ≥ 0. Then there exists a 

unique tw± > 0 such that h′
w±(t) > 0 if 0 < t < tw± and h′

w±(t) < 0 if t > tw± , that 
is, max

t∈[0,+∞)
hw±(t) is achieved at t = tw± and tw±w± ∈ N ◦

±.

(ii) There exists δ > 0 such that tw± � δ for w ∈ S◦
± and for each compact subset 

W◦ ⊆ S◦
± there exists a constant CW◦ such that tw± � CW◦ for all w ∈ W◦.

Proof. (i) Let w ∈ W 1,p
0 (Ωλ)◦ \ {0} be fixed and define hw±(t) = Jλ(tw±) on [0, ∞). It 

is clear that hw±(0) = 0. From (H2)(i) and (H2)(ii) we know that for given ε > 0 we can 
find Cε > 0 such that

|F (s)| ≤ ε|s|q + Cε|s|r for a. a.x ∈ Ω and for all s ∈ R. (2.2)

Using (2.2) and the embedding W 1,q
0 (Ωλ) → Lq(Ωλ) with embedding constant Cq > 0

we get for t > 0

hw±(t) = Jλ(tw±) = tp

p
‖w±‖p1,p + μtq

q
‖∇w±‖qq −

∫
Ωλ

F (tw±) dx

≥ tp

p
‖w±‖p1,p + μtq

q
‖∇w±‖qq −

∫ (
εtq|w±|q + Cεt

r|w±|r
)
dx
Ωλ
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≥ tp

p
‖w±‖p1,p +

(
μ

q
− Cq

q ε

)
tq‖∇w±‖qq − Cεt

r‖w±‖rr

= C1t
p + C2t

q − C3t
r for 0 < ε <

μ

qCq
q

with C1, C2, C3 > 0. Hence, for t > 0 small enough we see that hw±(t) > 0 due to 
q < p < r.

From hypothesis (H2)(iii) there exists for any M > 0 a number TM > 0 such that

F (s) ≥ M |s|p for a. a.x ∈ Ω and for all |s| > TM . (2.3)

Taking (2.3) into account, we have for t > 0 large

hw±(t) = Jλ(tw±) ≤ tp

p
‖w±‖p1,p + μtq

q
‖∇w±‖qq −M

∫
Ωλ

tp|w±|p dx

= C1t
p + C2t

q − C3Mtp

� −C4t
p + C2t

q for M >
C1

C3
,

with C1, C2, C3, C4 > 0. This implies that hw±(t) < 0 for t large enough. Hence there 
exists tw± > 0 such that h′

w±(tw±) = 0. Note that

0 = h′
w±(t) = tp−1‖w±‖p1,p + μtq−1‖∇w±‖qq −

∫
Ωλ

f(tw±)w± dx

implies tw± ∈ N ◦
± and

‖w±‖p1,p =
∫
Ωλ

f(tw±)w±

tp−1 dx− μ

tp−q
‖∇w±‖qq

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ω>

λ

f(tw+)w+

tp−1 dx− μ

tp−q
‖∇w±‖qq,

∫
Ω<

λ

f(tw−)w−

tp−1 dx− μ

tp−q
‖∇w±‖qq,

(2.4)

where

Ω>
λ = {x ∈ Ωλ : w(x) > 0} ,

Ω<
λ = {x ∈ Ωλ : w(x) < 0}

and w+ (resp. w−) is the positive (resp. negative) part of w, given in (2.1). By (H2)(iv), 
the right-hand side of (2.4) is a strictly increasing function in t. It follows that hw±(t)
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has a unique critical point. Therefore max
t∈[0,+∞)

hw±(t) is achieved at the unique point 

t = tw± > 0 so that h′
w±(tw±) = 0 and tw±w± ∈ N ◦

±.
(ii) First, we prove that there exists δ > 0 such that tw± > δ for any w ∈ S◦

±. From
(H2)(i) and (H2)(ii) we know that for given ε > 0 we can find Cε > 0 such that

|f(s)| ≤ ε|s|q−1 + Cε|s|r−1 for a. a.x ∈ Ω and for all s ∈ R. (2.5)

Let w± ∈ S◦
±. Using tw±w± ∈ N ◦

±, (2.5) and the embeddings W 1,q
0 (Ωλ) → Lq(Ωλ), 

W 1,p
0 (Ωλ) → Lr(Ωλ) with embedding constants Cq, Cp > 0 we obtain

tpw±‖w±‖p1,p + μtqw±‖∇w±‖qq =
∫
Ωλ

f(tw±w±)tw±w± dx

≤ εtqw±

∫
Ωλ

|w±|q dx + Cεt
r
w±

∫
Ωλ

|w±|r dx

≤ Cq
q εt

q
w±‖∇w±‖qq + Cr

pCεt
r
w±‖w±‖r1,p.

Choosing ε ∈ (0, μ
Cq

q
) and using the fact that ‖w±‖1,p = 1/2, it follows that

tpw±

2p ≤ tpw‖w‖p1,p +
(
μ− Cq

q ε
)
tqw‖∇w‖qq ≤ Cr

pCε
trw±

2r .

We take δ = 2 
(

1
Cr

pCε

) 1
r−p

> 0 in order to get the desired assertion.
Next, let W◦ ⊆ S◦

± be compact. Suppose by contradiction that there is a sequence 
{w±

n }n∈N ⊆ W◦ such that tn := tw±
n

→ +∞. By (i), we know that Jλ(tnw±
n ) =

max
t∈[0,+∞)

Jλ(tw±
n ) � 0.

Using ‖ · ‖q1,q ≤ Cpq‖ · ‖q1,p along with (H2)(iii), we deduce that

0 � Jλ(tnw±
n )

tpn
� 1

p
+ μCpq

q
−

∫
Ωλ

F (tnw±
n )

tpn
dx → −∞ as n → ∞,

which yields a contradiction. Thus there exists CW◦ such that tw± � CW◦ . �
We define

m̂± :
{
w± : w ∈ W 1,p

0 (Ωλ)◦ \ {0}
}
→ N ◦

±, w± �→ m̂±(w±) := tw±w±,

where tw± is defined in Lemma 2.3. For simplification we write m± := m̂±|S◦
± . Next, we 

are going to prove that m± is a one-to-one correspondence between S◦
± and N ◦

±.

Lemma 2.4. Let hypotheses (H1) and (H2) be satisfied.
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(i) The mapping m̂± is continuous.
(ii) The mapping m± is a homeomorphism between S◦

± and N ◦
± and the inverse of m±

is given by

m−1
± (u±) = u±

‖u±‖1,p
for all u ∈ N ◦

±

Proof. (i) Assume that w±
n → w±. From Lemma 2.3 (ii) it follows that {tw±

n
}n∈N is 

uniformly bounded. Hence, there exists a subsequence of {tw±
n
}n∈N , not relabeled, which 

converges to a limit t0. From (2.4) we conclude that t0 = tw± . But then tw±
n

→ tw± . 
Thus m̂± is continuous.

(ii) From (i) we know that m±(S◦
±) is a bounded set in W 1,p

0 (Ωλ) and for any u± ∈
m±(S◦

±) ⊆ N ◦
±, there exists δ > 0 such that ‖u±‖1,p ≥ δ. Indeed, similar to the proof of 

Lemma 2.3 (i), by using u ∈ N ◦
± ⊆ Nλ, (2.3) and the embeddings W 1,q

0 (Ωλ) → Lq(Ωλ), 
W 1,p

0 (Ωλ) → Lr(Ωλ) with embedding constants Cq, Cp > 0 we have

‖u±‖p1,p + μ‖∇u±‖qq =
∫
Ωλ

f(u±)u± dx ≤ ε

∫
Ωλ

|u±|q dx + Cε

∫
Ωλ

|u±|r dx

≤ Cq
q ε‖∇u±‖qq + Cr

pCε‖u±‖r1,p.

Choosing ε > 0 small enough, we obtain from this

‖u±‖p1,p ≤ ‖u±‖p1,p +
(
μ− Cq

q ε
)
‖∇u±‖qq ≤ Cr

pCε‖u±‖r1,p.

Taking δ = 2 
(

1
Cr

pCε

) 1
r−p

> 0 we have ‖u±‖1,p ≥ δ. From the continuity of m̂± and its 
definition, we know that the map m± : S◦

± → N ◦
± is continuous and one-to-one. It is 

clear that the inverse function of m± is given by m−1
± (u±) = u±

‖u±‖1,p
for any u± ∈ N ◦

±. 
To reach the desired conclusion, it is enough to show that m−1

± is continuous. Indeed, 
we have

∥∥m−1
± (u±) −m−1

± (v±)
∥∥

1,p =
∥∥∥∥ u±

‖u±‖1,p
− v±

‖v±‖1,p

∥∥∥∥
1,p

=
∥∥∥∥u± − v±

‖u‖1,p
+ v± (‖v±‖1,p − ‖u±‖1,p)

‖u±‖1,p‖v±‖1,p

∥∥∥∥
1,p

≤ 2‖u± − v±‖1,p

‖u±‖1,p
≤ 2

δ
‖u± − v±‖1,p,

that is, m−1
± is Lipschitz continuous. �

We write Ψ̂(w±) := Jλ(m̂±(w±)). In the next lemma, we are going to show that the 
problem of finding critical points of Ψ̂|S◦ is equivalent to the problem of finding critical 
±
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points of Jλ|N◦
± . Recall that a sequence {un}n∈N ⊆ M is called a (PS)c-sequence if 

J(un) → c and J ′(un) → 0. We say that Jλ satisfies the (PS)-condition on M, if every 
(PS)c-sequence has a converging subsequence.

Lemma 2.5. Let hypotheses (H1) and (H2) be satisfied.

(i) Ψ̂ ∈ C1
({

w± : w ∈ W 1,p
0 (Ωλ)◦ \ {0}

}
,R

)
and

〈
Ψ̂′(w±), z

〉
=

〈
J ′
λ(m±(w±)), ‖m±(w±)‖1,pz

〉
for all w± ∈ S◦

± and for all z ∈ Tw±(S◦
±),

where Tw±(S◦
±) denote the tangent space to S◦

± at w±.
(ii) If {w±

n }n∈N ⊆ S◦
± is a (PS)c-sequence for Ψ̂, then {m±(w±

n )}n∈N ⊆ N ◦
± is a 

(PS)c-sequence for Jλ. If {un}n∈N ⊆ N ◦
± is a bounded (PS)c-sequence for Jλ, then 

{m−1
± (un)}n∈N ⊆ S◦

± is a (PS)c-sequence for Ψ̂.
(iii) w± ∈ S◦

± is a critical point of Ψ̂ if and only if m±(w±) ∈ N ◦
± is a nontrivial critical 

point of Jλ. Moreover, infS◦
± Ψ̂ = infN◦

± Jλ.
(iv) If Jλ is even, then so is Ψ̂.

Proof. The lemma follows from Szulkin-Weth [25, Proposition 9 and Corollary 10] and 
Lemmas 2.3 and 2.4. We omit the details. �
Remark 2.6.

(i) Set

c◦ (Ωλ) = inf
u∈N◦

λ

Jλ(u).

Then it follows from Lemma 2.5 (iii) that

c◦ (Ωλ) = inf
w∈S◦

Ψ̂(w).

From Lemmas 2.3 and 2.4 it is easy to see that c◦(Ωλ) has the following minimax 
characterization:

c◦ (Ωλ) = inf
w∈W 1,p

0 (Ωλ)◦\{0}
max
t>0

Jλ(tw) = inf
w∈S◦

max
t>0

Jλ(tw).

We know from the proof of Lemma 2.3 that there exists a unique tw > 0 such that 
max
t>0

Jλ(tw) = J (tww) for w ∈ S◦. Lemma 2.3 (ii) implies that there exists δ > 0
such that tw � δ uniformly for w ∈ S◦. Thus, for any w ∈ S◦, we have
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J (tww) = max
t>0

Jλ(tw) � σ,

for some σ > 0 independent of w and consequently

inf
w∈S◦

max
t>0

Jλ(tw) � σ,

that is

c◦ (Ωλ) � σ > 0.

(ii) Set

c(Ωλ) = inf
u∈Nλ

Jλ(u). (2.6)

By an argument similar to that of (i), we can show that c(Ωλ) > 0. We can also 
show that c◦(Ωλ) ≥ 2c(Ωλ). It is similar to the proof of Lemma 3.2 and we omit it.

3. (PS)-condition and some estimates

Our first result is that Ψ̂ satisfies the (PS)-condition on S◦
±. We set

Iλ(u) = 1
p
‖u‖p1,p + μ

q
‖∇u‖qq and Kλ(u) =

∫
Ωλ

F (u) dx.

Then Jλ(u) = Iλ(u) −Kλ(u). We denote the derivative operator of Iλ in the weak sense 
by Aλ. It is well known that the operator Aλ is of type (S+). We also denote by ∂S◦

±
the boundary of S◦

±.

Lemma 3.1. Let hypotheses (H1) and (H2) be satisfied.

(i) Let {w±
n }n∈N ⊆ S◦

± be a sequence such that dist(w±
n , ∂S◦

±) → 0 as n → +∞. Then 
‖m(w±

n )‖ → +∞ and Ψ̂(w±
n ) → +∞ as n → +∞.

(ii) For any λ > 0, Ψ̂ satisfies the (PS)-condition on S◦
±.

Proof. (i) Recall that we denote u+ (resp. u−) the positive (resp. negative) part of u, 
given in (2.1) and write

S◦
± =

{
u± : u ∈ S◦} .

Let w ∈ S◦
± and γ ∈ [1, p∗]. By the embedding theorem, we have



W. Liu et al. / Bull. Sci. math. 191 (2024) 103393 11
‖w+‖Lγ(Ωλ) = inf
v∈S◦

±

‖w − v‖Lγ(Ωλ) ≤ inf
v∈∂S◦

±
‖w − v‖Lγ(Ωλ)

≤ Cγ inf
v∈∂S◦

±
‖w − v‖1,p = Cγ dist

(
w, ∂S◦

±
)
.

Here we denote by S◦
± the closure of S◦

±.
Similarly, it holds

‖w−‖Lγ(Ωλ) ≤ Cγ dist
(
w, ∂S◦

±
)
.

Let {wn}n∈N ⊆ S◦
± be a sequence such that dist(wn, ∂S◦

±) → 0 as n → +∞ and let

Ω>
λ = {x ∈ Ωλ : wn(x) > 0} ,

Ω<
λ = {x ∈ Ωλ : wn(x) < 0} ,

Ω=
λ = {x ∈ Ωλ : wn(x) = 0} .

For every t > 0, using (2.2), we have

|Kλ(twn)| =

∣∣∣∣∣∣∣
∫

Ω<
λ

F (twn) dx +
∫

Ω>
λ

F (twn) dx +
∫

Ω=
λ

F (twn) dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Ωλ

F (tw+
n ) dx +

∫
Ωλ

F (tw−
n ) dx

∣∣∣∣∣∣
≤ εtq

(∥∥w+
n

∥∥q
Lq(Ωλ) +

∥∥w−
n

∥∥q
Lq(Ωλ)

)
+ Cεt

r
(∥∥w+

n

∥∥r
Lr(Ωλ) +

∥∥w−
n

∥∥r
Lr(Ωλ)

)
≤ C

[
tq
(
dist(wn, ∂S◦

±)
)q + tr

(
dist(wn, ∂S◦

±)
)r] → 0 as n → +∞.

Note that for any t > 1,(
1
p

+ μCpq

q

)
‖twn‖p1,p + |Kλ(twn)| ≥ Jλ(twn) ≥ 1

p
‖twn‖p1,p − |Kλ(twn)|

= tp

p
− |Kλ(twn)|.

Consequently

lim inf
n→+∞

(
1
p

+ μCpq

q

)
‖m(wn)‖p1,p ≥ lim inf

n→+∞
Ψ̂(wn) ≥ lim inf

n→+∞
Jλ(twn) ≥ tp

p

for every t > 1. Hence, ‖m(wn)‖ → +∞ and Ψ̂(wn) → +∞ as n → +∞.
(ii) For any c > 0, let {w±

n }n∈N ⊆ S◦
± be a (PS)c-sequence for Ψ̂. Let u±

n := m±(w±
n )

for all n ∈ N. It follows from Lemma 2.5 that {u±
n }n∈N ⊆ N ◦

± is a (PS)c-sequence for 
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Jλ. First we will prove that {u±
n }n∈N is bounded. Let us assume this is not the case, so 

there exists a subsequence (still denoted by u±
n ) such that ‖u±

n ‖1,p → +∞. We define 

v±n := u±
n

‖u±
n ‖1,p

, then ‖v±n ‖1,p = 1. Thus we may assume that

v±n ⇀ v± in W 1,p
0 (Ωλ).

If v± = 0, then it follows from Lemma 2.3 and Remark 2.6 that

c + o(1) � Jλ(u±
n ) = Jλ(tv±

n
v±n ) � Jλ(tv±n ) for all t > 0.

Recalling that Kλ is weakly continuous, we have that

Jλ(tv±n ) ≥ 1
p
tp −

∫
Ωλ

F (tv±n ) dx → 1
p
tp as n → +∞.

Choosing t > 2(pc)
1
p yields a contradiction. If v± 	= 0, then we know from (H2)(iii) that

0 ≤ Jλ(u±
n )

‖u±
n ‖p1,p

≤ 1
p

+ μCpq

q
−

∫
Ωλ

F (‖u±
n ‖1,pv

±
n )

‖u±
n ‖p1,p

dx → −∞ as n → +∞.

This is again a contradiction. Hence {u±
n }n∈N is bounded in W 1,p(Ωλ) and so there 

exists a subsequence of {u±
n }n∈N (not relabeled) such that

u±
n ⇀ u± in W 1,p

0 (Ωλ).

It is clear that K ′
λ(u±

n ) → K ′
λ(u±), see Liu-Dai [22]. Since

J ′
λ(u±

n ) = Aλ(u±
n ) −K ′

λ(u±
n ) → 0 as n → +∞,

one has

Aλ(u±
n ) → K ′

λ(u±) as n → +∞.

Therefore, we conclude that u±
n → u± since Aλ is a mapping of type (S+). Consequently, 

m−1
± (u±

n ) → m−1
± (u±) by Lemma 2.4, that is, w±

n → w±. Therefore, Ψ̂ satisfies the (PS)c-
condition on S◦

±. �
We say that u changes sign m times if the set {x ∈ Ωλ : u(x) 	= 0} has m + 1

connected components. It is clear that a solution of problem (1.1) changes sign an odd 
number of times. Following the ideas of Castro-Clapp [14], we can show the following 
energy estimate.
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Lemma 3.2. Let hypotheses (H1) and (H2) be satisfied. If u is a solution of problem (1.1)
which changes sign 2m − 1 times, then Jλ(u) ≥ mc◦(Ωλ).

Proof. From the assumptions we know that the set {x ∈ Ω : u(x) > 0} has m connect 
components Ω1, Ω2, · · · , Ωm. Let

ui(x) =
{
u(x), if x ∈ −Ωi ∪ Ωi,

0, otherwise.

Since u is a solution of problem (1.1), it is a critical point of Jλ. This gives

0 = 〈J ′
λ(u), ui〉

=
∫
Ωλ

(
|∇u|p−2∇u · ∇ui + |u|p−2uui

)
dx + μ

∫
Ωλ

|∇u|q−2∇u · ∇ui dx−
∫
Ωλ

f(u)ui dx

= ‖ui‖p1,p + μ‖∇ui‖q1,q −
∫
Ωλ

f(ui)ui dx,

which implies that ui ∈ N ◦
λ for all i = 1, 2, · · · , m. Consequently

Jλ(u) = Jλ(u1) + Jλ(u2) + · · · + Jλ(um) � mc◦(Ωλ). �
We denote the limiting energy functional by

J∞(u) :=
∫
RN

(
1
p
|∇u|p + 1

p
|u|p + μ

q
|∇u|q − F (u)

)
dx.

The corresponding Nehari manifold is

N∞ :=
{
u ∈ W 1,p

r (RN ) \ {0} : 〈J ′
∞(u), u〉 = 0

}
,

where

W 1,p
r (RN ) :=

{
u ∈ W 1,p(RN ) : u is radially symmetric

}
.

The least energy level is given by

0 < c
(
RN

)
:= inf

u∈N∞
J∞(u).

Lemma 3.3. Let hypotheses (H1) and (H2) be satisfied. Then c(RN ) is achieved by a 
positive radially symmetric function.
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Proof. We define

f+(t) =
{

0 if t � 0,
f(t) if t > 0

with primitive F+(s) =
∫ s

0 f+(t) dt. We set

J+
∞(u) :=

∫
RN

(
1
p
|∇u|p + 1

p
|u|p + μ

q
|∇u|q − F+(u)

)
dx for all u ∈ W 1,p

r (RN ).

It is clear that (H2) remain valid for f+ and F+. Similar to the proof of Lemma 2.3, we 
can define

m̂ : W 1,p
r (RN ) \ {0} → N∞, w �→ m̂(w) := tww,

where tw is similar to the definition in the proof of Lemma 2.3. We set m := m̂|S and 
can show that m is a one-to-one correspondence between S and N∞, where

S =
{
w ∈ W 1,p

r (RN ) : ‖w‖1,p = 1
}
.

Setting Ψ̂+
∞(w) := J+

∞(m̂(w)) we can show that Ψ̂+
∞ satisfies the (PS)-condition on S as 

in Lemma 3.1(ii), since W 1,p
r (RN ) ↪→ Lγ(RN ) is compact for all γ ∈ (p, p∗). Therefore, 

it follows from Theorem 1 in Szulkin-Weth [25] that inf
S

Ψ̂+
∞ is attained by a function 

w ∈ W 1,p
r (RN ). Just like Lemma 2.5 (iii), we are able to show that inf

S
Ψ̂+

∞ = inf
N∞

J+
∞, that 

is, inf
N∞

J+
∞ is attained by m(w), which is obviously radially symmetric. By an argument 

similar to that in the proof of Theorem 1.4 of the first two authors [23], we can also 
prove that m(w) is positive. �

We also need the auxiliary functional which is defined as in (1.2) replacing Ωλ by 
BR := BR(0) with R > 0, that is,

JR(u) =
∫
BR

(
1
p
|∇u|p + 1

p
|u|p + μ

q
|∇u|q − F (u)

)
dx.

The corresponding Nehari manifold is denoted by

NR :=
{
u ∈ W 1,p

0 (BR) \ {0} : 〈J ′
R(u), u〉 = 0

}
.

We write

c (BR) := inf
u∈NR

JR(u). (3.1)
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Then c (BR) is achieved by a positive radially symmetric function ΨR. Indeed, similar 
to the proof of Lemma 3.3, we can show that c (BR) is attained by a positive function 
v ∈ W 1,p

0 (BR).
Let v∗ be the Schwartz symmetrization of v, then we have that v∗ ∈ W 1,p

0 (BR) and∫
BR

(
1
p
|∇v∗|p + μ

q
|∇v∗|q

)
dx ≤

∫
BR

(
1
p
|∇v|p + μ

q
|∇v|q

)
dx,

∫
BR

1
p
|v∗|p dx =

∫
BR

1
p
|v|p dx,

∫
BR

F (v∗) dx =
∫
BR

F (v) dx

are satisfied.
Just as in the proof of Lemma 2.3, we can show that there exists a unique tv∗ > 0

such that tv∗v∗ ∈ NR. Moreover,

c (BR) ≤ JR (tv∗v∗) ≤ JR (tv∗v) ≤ max
t�0

JR(tv) = JR(v) = c (BR) .

Setting ΨR := tv∗v∗, then it has all the required properties. Furthermore, we can deter-
mine the asymptotic behavior of c (BR).

Lemma 3.4. Let hypotheses (H1) and (H2) be satisfied and let c (BR) and c (Ωλ) be defined 
as in (3.1) and (2.6), respectively. Then it holds

lim
R→+∞

c (BR) = c
(
RN

)
and lim

λ→+∞
c (Ωλ) = c

(
RN

)
.

Proof. We only prove the second equality, the other works very similarly.
We follow the ideas of Alves [2] who studied the p-Laplacian equation. To this end, fix 

λ̃ > 0 and R > 0 such that BR ⊆ Ωλ̃. Let ηR : [0, +∞) → R be a smooth, nonincreasing 
cut-off function such that

ηR(t) = 1 if 0 ≤ t ≤ R

2 , ηR(t) = 0 if t ≥ R, 0 ≤ ηR ≤ 1 and |η′R(t)| ≤ 2.

We write wR(x) = ηR(x)w(x), where w ∈ N∞ such that J∞(w) = c(RN ). Let tR > 0 be 
such that tRwR ∈ Nλ. Then

c (Ωλ) ≤ Jλ (tRwR) for all λ > λ̃.

Passing to the limit as λ → +∞ we obtain

lim sup
λ→+∞

c (Ωλ) ≤ J∞ (tRwR) .
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As in the proof of Lemma 2.3 we can show that tR → 1 as R → +∞. Then we have 
J∞(tRwR) → J∞(w) = c 

(
RN

)
as R → +∞. Therefore,

lim sup
λ→+∞

c (Ωλ) ≤ c
(
RN

)
. (3.2)

On the other hand, from the definition of c (Ωλ) and c 
(
RN

)
it follows that

c
(
RN

)
≤ c (Ωλ) for all λ > 0,

which implies that

c
(
RN

)
≤ lim inf

λ→+∞
c (Ωλ) . (3.3)

From (3.2) and (3.3) we get the assertion. �
4. Proof of Theorem 1.1

Now we are ready to prove Theorem 1.1. In what follows, without any loss of generality, 
we shall assume that 0 ∈ Ω. Moreover, we choose R̃ ≥ diam(Ω) and R̃ > R > 0 such 
that BR(0) ⊆ Ω ⊆ BR̃(0) and the sets

Ω+
R :=

{
x ∈ RN : dist (x,Ω) ≤ R

}
and Ω−

R := {x ∈ Ω : dist (x, ∂Ω ∪ {0}) ≥ R}

are homotopically equivalent to Ω. For λ > 0, let ΨλR ∈ NλR be given as in Section 3
satisfying JλR(ΨλR) = c(BλR). We define Φλ : λΩ−

R → N ◦
λ by

[Φλ(ξ)] (x) =
{
tλ [ΨλR (|x− ξ|) − ΨλR (|x + ξ|)] , if x ∈ BλR(ξ),
0, if x ∈ Ωλ \BλR(ξ),

where tλ > 0 is such that Φλ(ξ) ∈ N ◦
λ . Note that

[Φλ(ξ)] (−x) = − [Φλ(ξ)] (x) and Φλ(−ξ) = −Φλ(ξ).

Hence Φλ(ξ)± ∈ N ◦
±.

Then we have the following lemma.

Lemma 4.1. Let hypotheses (H1) and (H2) be satisfied. Then we have

lim
λ→+∞

Jλ
(
Φλ(ξ)±

)
= c

(
RN

)
uniformly in ξ ∈ λΩ−

R.
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Proof. For any ξ ∈ λΩ−
R, by the definition of λΩ−

R, we have |ξ| ≥ λR and | − ξ| ≥ λR, 
and so |ξ − (−ξ)| ≥ 2λR. Following the same arguments as in the proofs of Lemmas 2.3
and 3.2 as well as Remark 2.6, it is easy to see that

c (Ωλ) ≤ Jλ
(
Φλ(ξ)±

)
=

{
Jλ (tλΨλR (|x− ξ|))
Jλ (−tλΨλR (|x + ξ|))

= Jλ (tλΨλR (|x|)) ≤ Jλ (ΨλR (|x|)) = c(BλR).

Here we have used translation invariance of the Lebesgue integral the in second equality. 
From Lemma 3.4 we then deduce that

lim
λ→+∞

c (BλR) = lim
λ→+∞

c (Ωλ) = c
(
RN

)
Hence the assertion of the lemma follows. �

Given ξ ∈ λΩ−
R, we set

h(λ) :=
∣∣Jλ (Φλ(ξ)±

)
− c

(
RN

)∣∣ .
From Lemma 4.1 we conclude that h(λ) → 0 as λ → +∞. We define the sublevel set

Ñ ◦
± =

{
u ∈ N ◦

± : Jλ(u) � c
(
RN

)
+ h(λ)

}
.

It is clear that Φλ(ξ)± ∈ Ñ ◦
± which implies Ñ ◦

λ 	= ∅ for any λ > 0.
For u ∈ W 1,p(RN ) with compact support in BR̃(0), we define the barycenter map

β+ : W 1,p(RN ) \ {0} → RN , β+(u) =

∫
RN

x|u+(x)|p dx

∫
RN

|u+(x)|p dx
,

β− : W 1,p(RN ) \ {0} → RN , β−(u) =

∫
RN

x|u−(x)|p dx

∫
RN

|u−(x)|p dx
.

(4.1)

Proof of Theorem 1.1. From Lemmas 4.1 and 2.5 we know that

lim
λ→+∞

Ψ̂
(
m−1 (Φλ(ξ)±

))
= lim

λ→+∞
Jλ

(
Φλ(ξ)±

)
= c

(
RN

)
uniformly in ξ ∈ λΩ−

R. We set
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S̃◦
± :=

{
u ∈ S◦

± : Ψ̂(u) ≤ c
(
RN

)
+ h(λ)

}
,

where h is given in the definition of Ñ ◦
±. It is clear that S̃◦

± 	= ∅ since m−1
± (Φλ(ξ)±) ∈

S̃◦
±. From Lemma 3.1 and Krasnosel’skii’s genus theory, see for example Ambrosetti-

Malchiodi [6, Theorem 10.9], it follows that Ψ̂ has at least γ(S̃◦
±) pairs of critical points 

on S̃◦
±.

We claim that γ(S̃◦
±) ≥ 2γ(Ωλ \ {0}). Indeed, suppose that γ(S̃◦

±) = 2n. For a set A, 
we denote A∗ = {(x, −x) : x ∈ A}. From Theorem 3.9 of Rabinowitz [24] it follows that

γ(S̃◦
±) = cat(

W 1,p
0 (Ωλ)\{0}

)∗ S̃◦
±
∗
.

Therefore, there exists a smallest positive integer n such that

S̃◦
±
∗
⊆ D∗

±1 ∪ D∗
±2 ∪ · · · ∪ D∗

±n,

where D∗
±i, i = 1, 2, · · · , n are closed and contractible in (W 1,p

0 (Ωλ) \{0})∗, that is, there 
exist

h∗
i ∈ C

(
[0, 1] ×D∗

±i,
(
W 1,p

0 (Ωλ) \ {0}
)∗)

for i = 1, 2, · · · , n

such that

h∗
i (0, u±) = (u±,−u±) for all (u±,−u±) ∈ D∗

±i,

h∗
i (1, u±) =

(
ω±
i ,−ω±

i

)
∈
(
W 1,p

0 (Ωλ) \ {0}
)∗

for all (u±,−u±) ∈ D∗
±i.

Here we have used the fact that −u±(x) = u∓(−x) ∈ D∗
±i.

Let

Di =
{
u± ∈ W 1,p

0 (Ωλ) : (u±,−u±) ∈ D∗
i

}
.

Then there exists a homotopy

hi ∈ C
(
[0, 1] ×Di,

(
W 1,p

0 (Ωλ) \ {0}
))

such that hi(0, ·) = id, hi(1, ·) = ω±
i or − ω±

i and hi(t, u±) = −hi(t, −u±).
We define Φ∗

λ = (Φ±
λ , −Φ±

λ ) :
(
λΩ−

R

)∗ →
(
N ◦

±
)∗ by

[Φ∗
λ(ξ,−ξ)] (x) =

([
Φ±

λ (ξ)
]
(x),−

[
Φ±

λ (ξ)
]
(x)

)
=

([
Φλ(ξ)±

]
(x),

[
Φλ(−ξ)∓

]
(x)

)
.

Note that for any (ξ, −ξ) ∈
(
λΩ−

R

)∗ we have

β±
(
Φλ(ξ)±

)
= ξ and β∓

(
Φλ(−ξ)∓

)
= −ξ,



W. Liu et al. / Bull. Sci. math. 191 (2024) 103393 19
that is,

β∗ (Φλ(ξ)±,−Φλ(ξ)±
)

=
(
β±

(
Φλ(ξ)±

)
, β∓

(
Φλ(−ξ)∓

))
= (ξ,−ξ),

where β∗(·, ·) = (β±(·), β∓(·)) and β± is given in (4.1). We set

K∗
±i = (Φ∗

λ)−1 (
m∗ (D∗

±i

))
,

where m∗(·, ·) = (m±(·), m±(·)). It is clear that K∗
±i are closed subsets of 

(
λΩ−

R \ {0}
)∗

and 
(
λΩ−

R \ {0}
)∗ ⊆ K∗

±1 ∪ · · · ∪ K∗
±n. Moreover, for i = 1, . . . , n, K∗

±i is contractible in (
RN \ {0}

)∗ by using the deformation hi : [0, 1] ×K∗
±i →

(
RN \ {0}

)∗ defined by

hi(t, x) = (β∗ ◦ h∗
i )

(
t, (m∗)−1 (Φ∗

λ(ξ,−ξ))
)
.

From Lemma 4.1 and the definition of β± we conclude that

hi ∈ C
(
[0, 1] ×K∗

±i,
(
RN \ {0}

)∗)
,

hi(0, x) = (β∗ ◦ h∗
i )

(
0, (m∗)−1 (Φ∗

λ(ξ,−ξ))
)

= (ξ,−ξ) for all (ξ,−ξ) ∈ K∗
±i,

hi(1, x) = (β∗ ◦ h∗
i )

(
1, (m∗)−1 (Φ∗

λ(ξ,−ξ))
)

= β∗ (ω±
i ,−ω±

i

)
=

(
ξ0
i ,−ξ0

i

)
∈
(
RN \ {0}

)∗ for all (ξ,−ξ) ∈ K∗
±i.

Hence

γ (Ωλ \ {0}) = cat(RN\{0})∗ (Ωλ \ {0})∗ = cat(RN\{0})∗
(
λΩ−

R \ {0}
)∗ ≤ n,

which implies that S̃◦
± contains at least 2γ(Ωλ \ {0}) pairs of critical points of Ψ̂. Thus 

we conclude from Lemma 2.5 that there exist at least 2γ(Ωλ \ {0}) pairs (u±, −u±) of 
critical points of Jλ. It is clear that u = u+ + u− is odd, and is also the critical point of 
Jλ, that is, problem (1.1) has at least γ(Ωλ \ {0}) pairs of odd solutions. �
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