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Abstract: This article focuses on the study of the existence, multiplicity and concentration behavior of ground

states as well as the qualitative aspects of positive solutions for a (p,N)-Laplace Schrödinger equation with

logarithmic nonlinearity and critical exponential nonlinearity in the sense of Trudinger-Moser in the whole

Euclidean space ℝN . Through the use of smooth variational methods, penalization techniques, and the applica-

tion of the Lusternik–Schnirelmann category theory, we establish a connection between the number of positive

solutions and the topological properties of a set in which the potential function achieves its minimum values.
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1 Introduction

In this article, we deal with the following singularly perturbed (p,N)-Laplace Schrödinger equation

⎧⎪⎪⎨⎪⎪⎩

 p𝜀
(u)+ N𝜀

(u) = |u|N−2u log |u|N + f (u) in ℝN ,

∫
ℝN

V(x)
(|u| p + |u|N) dx < +∞, u ∈ W 1, p(ℝN ) ∩W 1,N (ℝN ),

(𝜀 )

where

t𝜀
(u) = −𝜀tΔtu+ V(x)|u|t−2u for t ∈ {p,N}

with N ≥ 2. Further, we assume that 1 < p < N and 𝜀 is a very small positive parameter. The operator Δtu =
div(|∇u|t−2∇u) with t ∈ {p,N} is the standard t-Laplace operator and the scalar potential V :ℝN → ℝ is a con-

tinuous function. The nonlinearity f :ℝ→ ℝ has critical exponential growth at infinity, i.e., it behaves like

exp(𝛼|u| N

N−1 ) when |u|→∞ for some 𝛼 > 0, which means that there exists a positive constant 𝛼0 such that

the following condition holds:
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lim|u|→∞
| f (u)| exp(−𝛼|u| N

N−1

)
=

⎧⎪⎨⎪⎩
0 if 𝛼 > 𝛼0,

+∞ if 𝛼 < 𝛼0.

Throughout the paper, we suppose the following assumptions on the scalar potential V :ℝN → ℝ:
(V1) V ∈ C(ℝN ;ℝ) and there exists a constant V0 > 0 such that infx∈ℝN V(x) ≥ V0.

(V2) There exists an open and bounded setΛ ⊂ ℝN such that

V0 = inf
x∈Λ

V(x) < min
𝜕Λ

V(x).

We define

M = {x ∈ Λ:V(x) = V0} and M𝛿 = {x ∈ ℝN : dist(x,M ) ≤ 𝛿}
for 𝛿 > 0 small enough such that M𝛿 ⊂ Λ. Moreover, the nonlinearity f :ℝ→ ℝ is supposed to satisfy the fol-

lowing conditions:

(f1) Let f ∈ C1(ℝ,ℝ) be an odd function such that f (0) = 0, f (s) < 0 for all s < 0 and f (s) > 0 for all s > 0.

Further, there exists a constant 𝛼0 ∈ (0, 𝛼) with the property that for all 𝜏 > 0, there exists 𝜅𝜏 > 0 such

that for all s ∈ ℝ, we have

| f (s)| ≤ 𝜏|s|N−1 + 𝜅𝜏Φ(
𝛼0|s|N′

)
with Φ(t) = exp(t)−

N−2∑
j=0

t j

j! and N′ = N

N − 1
.

(f2) There exists 𝜇 > N such that

s f (s)− 𝜇F(s) ≥ 0 for all s ∈ ℝ, where F(s) =
s

∫
0

f (t) dt for all s ∈ ℝ.

(f3) The mapping s ↦ f (s)

|s|N−2s is increasing for all s > 0 and decreasing for all s < 0.

(f4) There exists a constant 𝛾 > 0 such that f (s) ≥ 𝛾s𝜇−1 for all s ≥ 0.

Remark 1.1. A typical example of a function that satisfies (f1)–(f4) can be considered as

f (s) = |s|N−2s Φ(|s|N′
) for all s ∈ ℝ,

with 𝛼0 > 1, where N ≥ 2, N′ = N

N−1 andΦ is defined as in (f1).

In order to familiarize the reader with the special behaviors of the classical Sobolev spaces, it is worth

pointing out that the spaceW 1, p(ℝN ) can be distinguished in three different ways, namely:

(a) the Sobolev case: p < N, (b) the Sobolev limiting case: p = N, (c) the Morrey case: p > N .

The Sobolev embedding theorem says that for p < N , there holdsW1, p(ℝN ) ↪ Lq(ℝN ) for any q ∈ [p, p∗], where

p∗ = N p

N− p
is the critical Sobolev exponent to p. In this scenario, to study variational problems, the nonlinear-

ity cannot exceed the polynomial of degree p∗. In contrast to this, for the Sobolev limiting case commonly

known as the Trudinger-Moser case, one can notice that p∗ converges to ∞ as p converges to N and thus,

we might except that W 1,N (ℝN ) is continuously embedded in L∞(ℝN ). This is, however, wrong for N > 1. In

order to see this, let 𝜑 ∈ C∞
c
(ℝN , [0, 1]) be such that 𝜑 ≡ 1 in B1(0) and 𝜑 ≡ 0 in Bc

2
(0), then the function

u(x) = 𝜑(x) log
(
log

(
1+ 1

|x|
))

belongs toW 1,N (ℝN ) but not to L∞(ℝN ). Moreover, in this situation, every polyno-

mial growth is allowed. To fill this gap, it is fairly natural to look for themaximal growth of a function g:ℝ→ ℝ+

such that

sup
u∈W1,N (ℝN )‖u‖

W1,N≤1
∫
ℝN

g(u)|x|𝛽 dx < +∞ for all 0 ≤ 𝛽 < N,
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where ‖u‖W1,N =
(‖∇u‖N

N
+ ‖u‖N

N

) 1

N and ‖ ⋅ ‖N is the usual norm of the Lebesgue space LN (ℝN ). It is noteworthy

that many authors have independently proved that the maximum growth of such a function g is of exponential

type. In that context, we mention the works of Adimurthi-Yang [1] and Li-Ruf [2]. In recent years, the existence

and multiplicity of solutions to elliptic equations involving the N-Laplace operator with subcritical and critical

growth in the sense of Trudinger-Moser inequality have been extensively studied, motivated by their appli-

cability in many fields of modern mathematics. For a detailed study, we refer to Beckner [3], Chang-Yang [4],

Chen-Lu-Zhu [5], Lam-Lu [6], Zhang-Zhu [7] and the references therein.

It should be pointed out here that the Trudinger-Moser type inequalities and the Adams type inequalities

have beenwidely studied bymany authors across diverse domains such as Euclidean spaces, Heisenberg groups,

Riemannian manifolds, and so on. In this context, we recommend that readers take a look at some works by

Chen-Wang-Zhu [8], Cohn-Lu [9], do Ó-Lu-Ponciano [10], Duy-Phi [11], Jiang-Xu-Zhang-Zhu [12], Lam-Lu [13], [14],

Li-Lu-Zhu [15], Wang [16], Xue-Zhang-Zhu [17] and the references cited therein.

In the last decade, great attention has been focused on the study of (p, q)-Laplace equations aswell as double

phase problems in the whole Euclidean space ℝN due to the broad applications in biophysics, plasma physics,

solid state physics, and chemical reaction design, see, for example, the books of Aris [18], Fife [19] and Murray

[20] as well as the papers of Myers-Beaghton-Vvedensky [21] and Wilhelmsson [22] and the references therein.

On the other hand, concerning the Sobolev limiting case, that is, p < q and q = N , such types of problems are

often comparatively less looked upon. This is one of the main motivations for the study in this article. More

details on (p,N)-Laplace equations can be found in the papers of Carvalho-Figueiredo-Furtado-Medeiros [23],

Chen-Fiscella-Pucci-Tang [24], Fiscella-Pucci [25], Mahanta-Mukherjee-Sarkar [26] and Mahanta-Winkert [27], as

well as the references therein.

Moreover, we make a note that one of the hypotheses on the potential function V that appears in (V1) says

that the corresponding first-order weighted Sobolev spaces make sense and are well-behaved; see, for instance,

Lemma 2.2 and Lemma 2.3, respectively. To address the challenge posed by the lack of compactness, Bartsch-

Wang [28]were the first to place assumptions on the potential functionV . Further, as an application, they studied

the existence andmultiplicity of solutions for a superlinear Schrödinger type equation inℝN . Afterwards, reduc-

ing the conditions on the potential and the nonlinearity, Tang [29] achieved some more general results. Later

on, Chen-Lu-Zhu [5], [30]–[32] developed and introduced some more generalized form of assumptions on the

potential function V , called degenerated and trapping types of potentials, to establish the Trudinger-Moser type

inequalities as well as the consequences of the Adams type inequalities, and by employing such inequalities,

they studied elliptic and subelliptic PDEs. In addition, we also mention here that Chen-Lu-Zhu [33] showed the

existence of extremals for Trudinger-Moser inequalities in ℝ2 in the presence of trapping potential.

Nowadays, there is a great interest in the study of the time-dependent nonlinear logarithmic Schrödinger

equation of the form

i𝜀𝜕tΨ = −𝜀2ΔΨ+ (V(x)+ E)Ψ−Ψ log |Ψ|2 for all (x, t) ∈ ℝN × [0,+∞), (NLS)

where Ψ:ℝN × [0,+∞)→ ℂ, N ≥ 2, E ∈ ℝ, 𝜀 is a positive parameter and V is a continuous function satisfy-

ing certain hypotheses. It is worth noting that the standing wave solution of (NLS) is of the form Ψ(x, t) =
exp(−iEt∕𝜀)u(x), where u is a solution of the equation

⎧⎪⎨⎪⎩
−𝜀2Δu+ V(x)u = u log u2 in ℝN ,

u ∈ H1(ℝN ).
(1.1)

From the point of view of the application, such equations are the main tools for studying quantum physics,

quantum optics, effective quantum gravity, nuclear physics, transport and diffusion phenomena, theory of

superfluidity and Bose–Einstein condensation. For more information in this direction, we refer to Białynicki-

Birula-Mycielski [34], Carles-Gallagher [35], Cazenave [36], Cazenave-Lions [37], Zloshchastiev [38] and the ref-

erences therein. In addition, in order to study (1.1), there have been several technical difficulties due to the

presence of logarithmic nonlinearity. For example, let u be a smooth function satisfying
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u(x) =
⎧⎪⎨⎪⎩

(|x| N2 log |x|)−1
if |x| ≥ 3,

0 if |x| ≤ 2.

By direct computation, one has u ∈ H1(ℝN ) but ∫ℝN u2 log u2 dx = −∞. So, the Euler–Lagrange functional asso-

ciated to (1.1) is not finite and is no longer C1 on H1(ℝN ). As a result, we cannot directly use the classical critical

point theory to study the behavior of solutions of (1.1). To overcome these difficulties, several approaches have

been developed in the mathematical literature so far. We will discuss some of them below.

Initially, Cazenave [36] studied the following time-dependent logarithmic Schrödinger equation

iut +Δu+ u log u2 = 0 in ℝ ×ℝN (1.2)

by considering the N-function A and the function spaceW defined as

A(s) =
⎧⎪⎨⎪⎩
− 1

2
s2 log s2 if 0 ≤ s ≤ e−3,

3s2 + 4e−3s− e−6 if s ≥ e−3,
and W =

⎧⎪⎨⎪⎩
u ∈ H1(ℝN ):∫

ℝN

|u2 log u2| dx < +∞
⎫⎪⎬⎪⎭
,

endowed with the Luxemburg norm ‖ ⋅ ‖W = ‖ ⋅ ‖H1(ℝN ) + ‖ ⋅ ‖A, where

‖u‖A = inf

⎧⎪⎨⎪⎩
𝜆 > 0:∫

ℝN

A(𝜆−1|u|) dx ≤ 1

⎫⎪⎬⎪⎭
.

The author defined the associated functional L:W → ℝ given by

L(u) = 1

2∫
ℝN

|∇u|2 dx − 1

2∫
ℝN

u2 log u2 dx for all u ∈ W

and proved the existence of infinitely many critical points of L on the set
{
u ∈ W : ∫ℝN |u|2 dx = 1

}
. As a result,

he also provided a lot of information about the behavior of the solutions of equation (1.2).

Later, Squassina-Szulkin [39], [40] investigated the following logarithmic Schrödinger equation

⎧⎪⎨⎪⎩
−Δu+ V(x)u = Q(x)u log u2 in ℝN ,

u ∈ H1(ℝN ),
(1.3)

where V ,Q ∈ C(ℝN ,ℝ) are 1-periodic functions of the variables x1, x2,… , xN satisfying the hypotheses

min
x∈ℝN

Q(x) > 0 and min
x∈ℝN

(V + Q)(x) > 0.

Employing the standard nonsmooth critical point theory of lower semicontinuous functionals, which was devel-

oped by Szulkin [41], the authors showed first the existence of positive ground state solutions by adopting

the deformation lemma. Then, by using the genus theory, they proved the existence of infinitely many high-

energy solutions, which are geometrically distinct underℤN -action. Moreover, several authors used nonsmooth

variational techniques to study the logarithmic Schrödinger equations, such as Alves-Ambrosio [42], Alves-de

Morais Filho [43], Alves-Ji [44], [45], d’Avenia-Montefusco-Squassina [46], Deng-He-Pan-Zhong [47], Ji-Szulkin

[48], Li-Peng-Shuai [49] and Liu-Peng-Zou [50]. In contrast to this, Tanaka-Zhang [51] have also studied (1.3)

by considering V ,Q as spatially 1-periodic functions of class C1. The authors showed the existence of infinitely

many multi-bump solutions for (1.3), which are distinct under ℤN -action, by taking an approach using spatially

2L-periodic problems with L≫ 1.
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During the last decade, Wang-Zhang [52] introduced an advanced way of studying logarithmic equations,

which is known as the power approximation method. First, they considered the following semiclassical scalar

field equation with power-law nonlinearity

⎧⎪⎨⎪⎩
−Δu+ 𝜆u = |u| p−2u in ℝN ,

lim|x|→∞
u(x) = 0,

(1.4)

where p ∈ (2, 2∗) with 2∗ = 2N

N−2 if N ≥ 3 and 2∗ = +∞ if N ≤ 2. The authors showed that when p ↘ 2, then

the ground state solutions of (1.4) either blow up or vanish, and converge to the ground state solutions of the

logarithmic-scalar field equation ⎧⎪⎨⎪⎩
−Δu = 𝜆u log |u| in ℝN ,

lim|x|→∞
u(x) = 0.

In addition, they also proved that the same result holds for bound-state solutions. Later, the authors studied the

concentration behavior of nodal solutions of (1.1) in [53] by employing the same idea discussed above.

On the other hand, concerning the penalization method and the Lusternik–Schnirelmann category theory,

which are generally used to study the multiplicity of the positive solutions of nonlinear PDEs and their concen-

tration phenomena, we recommend the readers to study the papers of Alves-Figueiredo [54], Ambrosio-Repovš

[55], Thin [56] and Zhang-Sun-Liang-Thin [57], see also the references therein. The most important features and

novelties of our problem are listed below:

(a) The appearance of the (p,N)-Laplace operator in our problem is nonhomogeneous, and thus, the calcula-

tions are more complicated.

(b) Due to the lack of compactness caused by the unboundedness of the domain, the Palais-Smale sequences

do not have the compactness property.

(c) The reaction combines the multiple effects generated by the logarithmic term and a term with critical

growth with respect to the exponential nonlinearity, making our study more delicate and challenging.

(d) The concentration phenomena create a bridge between the global maximum point of the solution and the

global minimum of the potential function.

(e) The proofs combine refined techniques, including variational and topological tools.

To the best of our knowledge, this is the first time in the literature, in which two penalized functions are used

simultaneously, one corresponds to the logarithmic nonlinearity and the other one corresponds to the expo-

nential growth. Motivated by all the cited works, especially by the papers of Alves-da Silva [58], Alves-Ji [44]

and Squassina-Szulkin [39], we study the existence, multiplicity and concentration phenomena of solutions for

problem (𝜀).
Note that, by the change of variable x ↦ 𝜀x, we can see that (𝜀) is equivalent to the problem

⎧⎪⎪⎨⎪⎪⎩

̃ p𝜀
(u)+ ̃N𝜀

(u) = |u|N−2u log |u|N + f (u) in ℝN ,

∫
ℝN

V(𝜀x)
(|u| p + |u|N) dx < +∞, u ∈ W 1, p(ℝN ) ∩W 1,N (ℝN ),

(𝜀 )

where

̃t𝜀
(u) = −Δtu+ V(𝜀x)|u|t−2u for t ∈ {p,N}.

Definition 1.2. We say u ∈ X𝜀 (see (2.1) for its definition) is a (weak) solution of (𝜀), if
|u|N−2u𝜓 log |u|N ∈ L1(ℝN )

and
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⟨u, 𝜓⟩ p,V𝜀 + ⟨u, 𝜓⟩N,V𝜀 = ∫
ℝN

|u|N−2u𝜓 log |u|N dx + ∫
ℝN

f (u)𝜓 dx

is satisfied for all 𝜓 ∈ X𝜀, where ⟨⋅, ⋅⟩t,V𝜀 for t ∈ {p,N} is defined as

⟨u, 𝜓⟩t,V𝜀 = ∫
ℝN

|∇u|t−2∇u ⋅∇𝜓 dx + ∫
ℝN

V(𝜀x)|u|t−2u𝜓 dx for all u, 𝜓 ∈ X𝜀.

Now, we state the main results of this article.

Theorem 1.3 (Concentration phenomena). Let hypotheses (V1)–(V2) and (f1)–(f4) be satisfied. Then there exists

𝜀0 > 0 such that for any 𝜀 ∈ (0, 𝜀0), problem (𝜀) has a positive solution 𝑣𝜀. Further, if 𝜂𝜀 is the global maximum
point of 𝑣𝜀, then it holds

lim
𝜀→0

V(𝜂𝜀 ) = V0.

Theorem 1.4 (Multiplicity of positive solutions). Let hypotheses (V1)–(V2) and (f1)–(f4) be satisfied and let 𝛿 >

0 be sufficiently small. Then there exists 𝜀1 > 0 such that for 𝜀 ∈ (0, 𝜀1), the following hold:

(a) problem (𝜀) has at least catM𝛿 (M )

2
positive solutions, whenever catM𝛿 (M ) is an even number;

(b) problem (𝜀) has at least catM𝛿 (M )+1
2

positive solutions, whenever catM𝛿 (M ) is an odd number.

The paper is organized as follows. In Section 2,we introduce the underlying function spaces, themain tools of the

variational framework and some preliminary results. Section 3 is devoted to the study of the penalized problem

by using the mountain pass geometry and some topological tools. In Section 4, the properties of the Nehari man-

ifold associated with the penalized problem and the concentration behavior of the positive solutions for (𝜀) are
studied. Finally, in Section 5, we prove Theorem 1.4 by invoking the Lusternik–Schnirelmann category theory.

2 Some preliminary results

This section is devoted to somebasic results on Sobolev spaces, Orlicz spaces and related lemmas thatwill be used

to establish the main results of this article. To this end, for t ∈ (1,+∞), Lt(ℝN ) denotes the standard Lebesgue

space with the norm ‖ ⋅ ‖t. Further, if Ω ⊂ ℝN , then we define the norm of Lt(Ω) by ‖ ⋅ ‖Lt(Ω). For nonnegative

measurable functions V :ℝN → ℝ, the space Lt
V𝜀
(ℝN ) consists of all real-valued measurable functions such that

V(𝜀x)|u|t ∈ L1(ℝN ) and is equipped with the seminorm

‖u‖t,V𝜀 =
⎛⎜⎜⎝∫ℝN

V(𝜀x)|u|t dx⎞⎟⎟⎠

1

t

for all u ∈ Lt
V𝜀
(ℝN ),

which turns into a norm due to hypothesis (V1). The space
(
Lt
V𝜀
(ℝN ), ‖ ⋅ ‖t,V𝜀

)
is a separable and uniform con-

vex Banach space (see Pucci-Xiang-Zhang [59]). Note that under the assumption (V1), the embedding Lt
V𝜀
(ℝN ) ↪

Lt(ℝN ) is continuous.

Next, we define

W 1,t(ℝN ) =
{
u ∈ Lt(ℝN ): |∇u| ∈ Lt(ℝN )

}
,

endowed with the norm ‖u‖W1,t =
(‖∇u‖t

t
+ ‖u‖t

t

) 1

t .

It is well-known that the space
(
W 1,t(ℝN ), ‖ ⋅ ‖W1,t

)
is a separable and uniformly convex Banach space. Note that
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C∞
c
(ℝN ) is a dense subset ofW 1,t(ℝN ). Moreover, the critical Sobolev exponent of t is defined by t∗ = Nt

N−t if t < N

and t∗ = +∞ otherwise. Further, we set

X = W 1, p(ℝN ) ∩W 1,N (ℝN )

and endow it with the norm

‖u‖
X
= ‖u‖W1, p + ‖u‖W1,N .

Then, the space (X, ‖ ⋅ ‖
X
) is a reflexive and separable Banach space.

The weighted Sobolev spaceW1,t

V𝜀
(ℝN ) is defined by

W 1,t

V𝜀
(ℝN ) =

⎧⎪⎨⎪⎩
u ∈ W 1,t(ℝN ):∫

ℝN

V(𝜀x)|u|t dx < +∞
⎫⎪⎬⎪⎭
,

equipped with the norm

‖u‖W1,t

V𝜀

=
(‖∇u‖t

t
+ ‖u‖t

t,V𝜀

) 1

t
.

The space
(
W 1,t

V𝜀
(ℝN ), ‖ ⋅ ‖W1,t

V𝜀

)
is a separable and uniformly convex Banach space, see Proposition 2.1 in Bartolo-

Candela-Salvatore [60], thanks to (V1). Moreover, C∞
c
(ℝN ) is a dense subset of W 1,t

V𝜀
(ℝN ), see Bartolo-Candela-

Salvatore [60] and Chen-Chen [61]. From now on, our function space is given by

X𝜀 = W
1, p

V𝜀
(ℝN ) ∩W 1,N

V𝜀
(ℝN ), (2.1)

which is endowed with the norm

‖u‖
X𝜀

= ‖u‖
W

1, p

V𝜀

+ ‖u‖W1,N

V𝜀

for all u ∈ X𝜀.

Because of assumptions (V1) and Proposition 2.1 in Bartolo-Candela-Salvatore [60], it is easy to see that (X𝜀, ‖ ⋅
‖
X𝜀
) is a reflexive and separable Banach space. In the entire paper, C, C1, C2, C3,… denote some fixed positive

constants possibly different at different places. Moreover, for any Banach space (X, ‖ ⋅ ‖X ), we denote its contin-
uous dual by

(
X∗, ‖ ⋅ ‖X∗

)
and on(1) denotes the real sequence such that on(1)→ 0 as n→∞. By⇀we mean the

weak convergence and→means the strong convergence, while u± = max {±u, 0} stand for the positive and
negative part of a function u, respectively. Furthermore, Br(x0) is an open ball centered at x0 ∈ ℝN with radius

r > 0 and Br = Br(0). Finally, for any set S ⊂ ℝN , we denote its Lebesgue measure by |S| and its complement by
Sc.

Now, we shall discuss some basic properties of Orlicz spaces.

Definition 2.1. We say that a continuous function  :ℝ→ [0,+∞) is a N-function if there hold

(a)  is an even function.

(b)  (s) = 0 if and only if s = 0 and  is convex.

(c) lims→0
 (s)
s

= 0 and lims→∞
 (s)
s

= ∞.

Further, we say that a N-function  satisfies the Δ2-condition, which is denoted by  ∈ Δ2, if there exists a

constant c > 0 such that

 (2s) ≤ c (s) for all s ≥ 0.

The conjugate of the N-function  is denoted by ̃ and defined as

̃ = max
s≥0 { ts−  (s)} for all t ≥ 0.
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Note that ̃ is always an N-function and
̃̃ =  , i.e.,  and ̃ are complementary to each other. Now, we define

the Orlicz space associated with the N-function  by

L (ℝN ) =
⎧⎪⎨⎪⎩
u ∈ L1loc(ℝ

N ):∫
ℝN

(|u|
𝜆

)
dx < +∞ for some 𝜆 > 0

⎫⎪⎬⎪⎭
,

endowed with the Luxemburg norm

‖u‖ = inf

⎧⎪⎨⎪⎩
𝜆 > 0:∫

ℝN

(|u|
𝜆

)
dx ≤ 1

⎫⎪⎬⎪⎭
.

Clearly, the space
(
L (ℝN ), ‖ ⋅ ‖) is a Banach space. Consequently, the Young’s type and Hölder’s type inequal-

ities in Orlicz spaces are given by

st ≤  (s)+ ̃ (t) for all s, t ≥ 0

and |||||||∫ℝN

u𝑣 dx

|||||||
≤ 2‖u‖‖𝑣‖̃ for all u ∈ L (ℝN ), 𝑣 ∈ L̃ (ℝN ).

Moreover, if  , ̃ ∈ Δ2, then the space L (ℝN ) is reflexive and separable. Again, the Δ2-condition implies at

once that

L (ℝN ) =
⎧⎪⎨⎪⎩
u ∈ L1loc(ℝ

N ):∫
ℝN

 (|u|) dx < +∞
⎫⎪⎬⎪⎭

and

un → u in L (ℝN ) if and only if ∫
ℝN

 (|un − u|) dx→ 0 as n→∞. (2.2)

Now, we shall characterize an important property of the N-function. It states that if  is an N-function of class

C1 and ̃ be its conjugate such that the following condition holds

1 < l ≤  ′(s)s
 (s) ≤ m < +∞ for all s ≠ 0, (2.3)

then  , ̃ ∈ Δ2.

Due to some mathematical difficulties in (𝜀), we cannot directly apply smooth variational techniques to
study the problem (𝜀). Indeed, if we set the energy functional I𝜀 associated with (𝜀), which is defined on the
space X𝜀 as

I𝜀(u) =
1

p
‖u‖ p

W
1, p

V𝜀

+ 1

N
‖u‖N

W1,N

V𝜀

− ∫
ℝN

(u) dx − ∫
ℝN

F(u) dx for all u ∈ X𝜀, (2.4)

where

(s) = 1

N
|s|N log |s|N − 1

N
|s|N ,

then the energy functional I𝜀 is not well-defined on X𝜀, since it may happen that there exists u ∈ X𝜀 satisfying∫ℝN |u|N log |u|N dx = −∞ and hence, I𝜀(u) = +∞. Inspired by the works of [39], [43], [44], we can avoid this

difficulty by choosing

2(s)−1(s) =
1

N
|s|N log |s|N for all s ∈ ℝ,
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where1 is a nonnegative C
1-function, which is also convex and2 is also a nonnegative C

1-function satisfying

some growth condition. Hence, one can easily obtain from (2.4) that

I𝜀(u) =
1

p
‖u‖ p

W
1, p

V𝜀

+ 1

N
‖u‖N

W1,N

V𝜀

+ 1

N
‖u‖N

N
+ ∫

ℝN

1(u) dx − ∫
ℝN

2(u) dx − ∫
ℝN

F(u) dx.

This technique guarantees that I𝜀 may be expressed as the combination of a C1-functional with a convex and

lower semicontinuous functional. Therefore, the critical point theory for lower semicontinuous functionals, as

established by Szulkin [41], can be used to examine solutions of (𝜀).
Another feature and novelty of (𝜀) is the fact that the corresponding energy functional defined in (2.4) is

not a C1-functional and hence, we shall not be able to find the multiplicity of solutions of (𝜀) by using smooth
variational methods together with the Lusternik–Schnirelmann category theory. To overcome this difficulty,

we shall work with a newly constructed Banach space, where the functional I𝜀 is C
1. Inspired by the work of

Shen-Squassina [62], we fix 𝛿 > 0 sufficiently small and define1 and2 by

1(s) =

⎧⎪⎪⎨⎪⎪⎩

0 if s = 0,

− 1

N
|s|N log |s|N if 0 < |s| < (N − 1)𝛿,

− 1

N
|s|N(log((N − 1)𝛿

)N + N + 1
)
+ N𝛿|s|N−1 −

(
(N − 1)𝛿

)N
N(N − 1)

if |s| ≥ (N − 1)𝛿,

and

2(s) =

⎧⎪⎪⎨⎪⎪⎩

0 if |s| ≤ (N − 1)𝛿,

1

N
|s|N log

( |s|N(
(N − 1)𝛿

)N
)
+ N𝛿|s|N−1 − (

N + 1

N

)|s|N −
(
(N − 1)𝛿

)N
N(N − 1)

if |s| ≥ (N − 1)𝛿,

so that

2(s)−1(s) =
1

N
|s|N log |s|N for all s ∈ ℝ. (2.5)

The functions1 and2 have the following properties, respectively.

(1 ) (a) For 𝛿 > 0 small enough,1 is convex, even and of class C
1(ℝ,ℝ).

(b) 1(s) ≥ 0 and′
1
(s)s ≥ 0 for all s ∈ ℝ.

(c) For any q > N , there exists constants C1, C2 > 0 such that

|′
1
(s)| ≤ C1|s|q−1 + C2 for all s ∈ ℝ.

(d) There exists constants C1, C2 > 0 such that

|1(s)| ≤ C1|s|N + C2 for all s ∈ ℝ.

(2 ) (a) There hold′
2
(s) ≥ 0 for all s > 0 and′

2
(s) > 0 for all s > (N − 1)𝛿.

(b) 2 ∈ C2(ℝ,ℝ) and for any q > N , there exists a constant C = Cq > 0 such that

|′
2
(s)| ≤ C|s|q−1 and |2(s)| ≤ C|s|q for all s ∈ ℝ.

(c) The map s ↦
′

2
(s)

sN−1
is nondecreasing for s > 0 and strictly increasing for s > (N − 1)𝛿.

(d) ′
2
is an odd function and there holds lims→∞

′
2
(s)

sN−1
= ∞.

The following lemmas can be directly obtained from the classical Sobolev embedding theorem.

Lemma 2.2. Let (V1) be satisfied. If q ∈ [p, p∗], then the following embeddings are continuous

W
1, p

V𝜀
(ℝN ) ↪ W 1, p(ℝN ) ↪ Lq(ℝN )
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with min{1,V0}‖u‖ p

W1, p
≤ ‖u‖ p

W
1, p

V𝜀

for all u ∈ W
1, p

V𝜀
(ℝN ). Furthermore, the embedding W

1, p

V𝜀
(ℝN ) ↪ L

q

loc(ℝ
N ) is

compact for any q ∈ [1, p∗).

Lemma 2.3. Let (V1) be satisfied. If s ∈ [N,+∞), then the following embeddings are continuous

W 1,N

V𝜀
(ℝN ) ↪ W 1,N (ℝN ) ↪ Ls(ℝN )

with min{1,V0}‖u‖NW1,N
≤ ‖u‖N

W1,N

V𝜀

for all u ∈ W 1,N

V𝜀
(ℝN ). Furthermore, the embedding W 1,N

V𝜀
(ℝN ) ↪ Lsloc(ℝ

N ) is

compact for any s ∈ [1,+∞).

Corollary 2.4. Let (V1) be satisfied. Then, in view of Lemma 2.2 and Lemma 2.3, the embeddings

X𝜀 ↪ W 1, p(ℝN ) ∩W 1,N (ℝN ) ↪ L𝜗(ℝN )

are continuous for any𝜗 ∈ [p, p∗] ∪ [N,+∞). Also, the embeddingX𝜀 ↪ L𝜗loc(ℝ
N ) is compact for any𝜗 ∈ [1,+∞).

Remark 2.5. Let (V1) be satisfied. Then, the following continuous embeddings hold:

X𝜀 ↪ W 1,t

V𝜀
(ℝN ) ↪ W 1,t(ℝN ) for t ∈ {p,N}.

The next two results can be found in Shen-Squassina [62].

Lemma 2.6. The function1 is anN-function and there holds1,̃1 ∈ Δ2. In particular, the Orlicz space L
1 (ℝN )

is a reflexive and separable Banach space, where

L1 (ℝN ) =
⎧⎪⎨⎪⎩
u ∈ L1loc(ℝ

N ):∫
ℝN

1(|u|)dx < +∞
⎫⎪⎬⎪⎭
,

equipped with the Luxemburg norm

‖u‖1
= inf

⎧⎪⎨⎪⎩
𝜆 > 0:∫

ℝN

1

(|u|
𝜆

)
dx ≤ 1

⎫⎪⎬⎪⎭
.

Corollary 2.7. The functionalΘ: L1 (ℝN )→ ℝ given by u ↦ ∫ℝN1(u) dx is of class C
1
(
L1 (ℝN ),ℝ

)
with

⟨Θ′
(u), 𝑣⟩ = ∫

ℝN

′
1
(u)𝑣 dx for all u, 𝑣 ∈ L1 (ℝN ).

Remark 2.8. Note that the condition (2.3) is satisfied by the N-function1 with l ∈ (1,N) andm = N .

We define now the spaces

Y = X ∩ L1 (ℝN ) and Y𝜀 = X𝜀 ∩ L1 (ℝN )

endowed with the norms

‖u‖
Y
= ‖u‖

X
+ ‖u‖1

for all u ∈ Y and ‖u‖
Y𝜀
= ‖u‖

X𝜀
+ ‖u‖1

for all u ∈ Y𝜀.

Thanks to Lemma 2.6, the spaces (Y, ‖ ⋅ ‖
Y
) and (Y𝜀, ‖ ⋅ ‖

Y𝜀
) are reflexive and separable Banach spaces.Moreover,

we have the continuous embeddings

Y𝜀 ↪ X𝜀 and Y𝜀 ↪ L1 (ℝN ).
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Similarly, these continuous embeddings are also true, if we replace Y𝜀 by Y and X𝜀 by X, respectively. Next, we

denote by Sr (or by Sr) the best constant in the embedding from Y𝜀 (or Y) into some Lebesgue space L
r(ℝN ).

Lemma 2.9. The embedding Y ↪ L𝜃(ℝN ) is continuous for any 𝜃 ∈ [p, p∗] ∪ [N,+∞). Consequently, the embed-

ding Y ↪ L𝜃loc(ℝ
N ) is compact for any 𝜃 ∈ [1,+∞). Moreover, under (V1), these embeddings also hold true if we

replace Y by Y𝜀.

Now, we recall the following version of Lions’ compactness lemma, see Alves-Figueiredo [[54],

Proposition 4].

Lemma 2.10. Let {un}n∈ℕ ⊂ Y𝜀 be a bounded sequence in Y𝜀 and there holds

lim inf
n→∞

sup
y∈ℝN ∫

BR( y)

|un|N dx = 0

for some R > 0, then we have un → 0 in L𝜐(ℝN ) as n→∞ for any 𝜐 ∈ (N,+∞).

The next lemma can be found in Alves-da Silva [58].

Lemma 2.11. In view of Remark 2.8, we have for any u ∈ L1 (ℝN ) that

min
{‖u‖l1

, ‖u‖N1

} ≤ ∫
ℝN

1(|u|) dx ≤ max
{‖u‖l1

, ‖u‖N1

}
.

From Yang [63], we have the following result.

Corollary 2.12. The functionΦ(t) = exp(t)−∑N−2
j=0

t j

j! is increasing and convex in [0,+∞). Moreover, for any℘ ≥
1, t ≥ 0 real numbers and N ≥ 2, it holds that

(
exp(t)−

N−2∑
j=0

t j

j!

)℘

≤ exp(℘t)−
N−2∑
j=0

(℘t) j

j! .

The inequality in the following lemma is known as the Trudinger-Moser inequality, which was first studied

by Adimurthi-Yang [1].

Lemma 2.13. For all 𝛼 > 0, 0 ≤ 𝛽 < N and u ∈ W1,N (ℝN )with N ≥ 2, we have
Φ
(
𝛼|u|N′)
|x|𝛽 ∈ L1(ℝN ). Furthermore,

we have for all 𝛼 ≤ (
1− 𝛽

N

)
𝛼N and 𝛾 > 0

sup‖u‖
W
1,N
𝛾

≤1 ∫
ℝN

Φ
(
𝛼|u|N′)
|x|𝛽 dx < +∞, where ‖u‖W1,N

𝛾
=

(‖∇u‖N
N
+ 𝛾‖u‖N

N

) 1

N ,

Φ is defined as in (f1) and 𝛼N = N𝜔
1

N−1
N−1, with 𝜔N−1 being the volume of the unit sphere S

N−1. Also, the above
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inequality is sharp for 𝛼 >
(
1− 𝛽

N

)
𝛼N, i.e., the supremum is infinity.

Remark 2.14. To study problem (𝜀), we are going to use Lemma 2.13 with 𝛽 = 0 and 𝛾 = 1.

3 Existence of solution for the penalized problem

In this section,we shall establish the existence of a solution for the penalized problem (̃𝜀) by using themountain
pass theorem stated in Pucci-Serrin [[64], p. 142].

Note that for thewell-definedness of the functional I𝜀 defined in Section 2,we shall restrict I𝜀 to the spaceY𝜀,

which will be denoted by E𝜀(u) = I𝜀(u) for all u ∈ Y𝜀. Hence, in view of the conditions on1, V and Lemma 2.13,

the functional I𝜀 is a C
1-functional on the space Y𝜀 and its Gâteaux derivative is given by

⟨E′
𝜀
(u), 𝜓⟩ = ⟨u, 𝜓⟩ p,V𝜀 + ⟨u, 𝜓⟩N,V𝜀 + ∫

ℝN

|u|N−2u𝜓 dx + ∫
ℝN

′
1
(u)𝜓 dx

− ∫
ℝN

′
2
(u)𝜓 dx − ∫

ℝN

f (u)𝜓 dx

for all 𝜓 ∈ Y𝜀, where ⟨⋅, ⋅⟩ is the duality pairing between Y∗𝜀 and Y𝜀.
Let 𝓁,𝓁′ > 0 be small enough such that V0 + 1 ≥ 2(𝓁 + 𝓁′) and take a > (N − 1)𝛿 such that

′
2
(a)

aN−1
= 𝓁. Then,

we define

̂′
2
(s) =

⎧⎪⎨⎪⎩
′

2
(s) if 0 ≤ s ≤ a,

𝓁sN−1 if s ≥ a.

Further, let t1 > (N − 1)𝛿 be such that a ∈ (t1, t2) and h ∈ C1
(
[t1, t2]

)
satisfying the following properties:

(h1) h(s) ≤ ̂′
2
(s) for all s ∈ [t1, t2].

(h2) h(ti ) = ̂′
2
(ti ) and h

′(ti ) = ̂′′
2
(ti ) for i ∈ {1, 2}.

(h3) The map s ↦ h(s)

sN−1
is nondecreasing on [t1, t2].

Define another function

̃′
2
(s) =

⎧⎪⎨⎪⎩
̂′

2
(s) if s ∉ [t1, t2],

h(s) if s ∈ [t1, t2].

If 𝜒Λ denotes the characteristic function corresponding to the set Λ, then we introduce the first penalized

nonlinearity G′
2
:ℝN × [0,+∞)→ ℝ, which is defined by

G′
2
(x, s) = 𝜒Λ(x)′

2
(s)+ (1− 𝜒Λ(x))̃′

2
(s) for all (x, s) ∈ ℝN × [0,+∞).

Note that′
2
is an odd function and hence, we can extend the definition of G′

2
to ℝN ×ℝ by setting

G′
2
(x, s) = −G′

2
(x,−s) for all (x, s) ∈ ℝN × (−∞, 0].

The following properties can be proved by using the definition of G′
2
:

() (a) There exists a constant C = Cq > 0 and q > N such that

|G′
2
(x, s)| ≤ 𝓁|s|N−1 + C|s|q−1 for all (x, s) ∈ ℝN ×ℝ.

(b) |G′
2
(x, s)| ≤ |′

2
(s)| for all (x, s) ∈ ℝN ×ℝ. Consequently, in view of (2 )(b), we have

|G2(x, s)| ≤ C|s|q for all (x, s) ∈ ℝN ×ℝ.
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(c) |G′
2
(x, s)| ≤ 𝓁|s|N−1 for all (x, s) ∈ Λc ×ℝ.

(d)
1

N
|s|N +

[2(s)− 1

N
′

2
(s)s+ 1

N
G′
2
(x, s)s− G2(x, s)

] ≥ 0 for all (x, s) ∈ ℝN ×ℝ.

(e) The map s ↦
G′
2
(x,s)

sN−1
is nondecreasing for all (x, s) ∈ ℝN × (0,+∞).

On the other hand, we set f (a)

aN−1
= 𝓁′ and define

f̂ (s) =
⎧⎪⎨⎪⎩

f (s) if 0 ≤ s ≤ a,

𝓁′sN−1 if s ≥ a.

Now, we consider the function 𝜂 such that 𝜂 ∈ C1
(
[t1, t2]

)
satisfying the following properties:

(𝜂1) 𝜂(s) ≤ f̂ (s) for all s ∈ [t1, t2].

(𝜂2) 𝜂(ti ) = f̂ (ti ) and 𝜂
′(ti ) = f̂ ′(ti ) for i ∈ {1, 2}.

(𝜂3) The map s ↦ 𝜂(s)

sN−1
is nondecreasing on [t1, t2].

Further, we define another function

f̃ (s) =
⎧⎪⎨⎪⎩
f̂ (s) if s ∉ [t1, t2],

𝜂(s) if s ∈ [t1, t2].

Next, we introduce the second penalized nonlinearity g:ℝN × [0,+∞)→ ℝ, which is defined by

g(x, s) = 𝜒Λ(x) f (s)+ (1− 𝜒Λ(x))̃f (s) for all (x, s) ∈ ℝN × [0,+∞).

Observe that f is an odd function, therefore we can extend the definition of g to ℝN ×ℝ by setting

g(x, s) = −g(x,−s) for all (x, s) ∈ ℝN × (−∞, 0].

Moreover, we also define

Λ𝜀 = {x ∈ ℝN : 𝜀x ∈ Λ},

G2(x, s) =
s

∫
0

G′
2
(x, t) dt for all (x, s) ∈ ℝN ×ℝ,

(x, s) =
s

∫
0

g(x, t) dt for all (x, s) ∈ ℝN ×ℝ.

By using the definition of g, one can prove the following properties:

() (a) g(x, s) ≤ 0 for all (x, s) ∈ ℝN × (−∞, 0] and g(x, s) ≥ 0 for all (x, s) ∈ ℝN × [0,+∞).

(b) |g(x, s)| ≤ | f (s)| for all (x, s) ∈ ℝN ×ℝ.
(c) 𝜇(x, s) ≤ sg(x, s) for all (x, s) ∈ Λ ×ℝ.
(d) N(x, s) ≤ sg(x, s) ≤ 𝓁′|s|N for all (x, s) ∈ Λc ×ℝ.
(e) The map s ↦ g(x,s)

|s|N−2s is nondecreasing for all (x, s) ∈ ℝN ×
(
ℝ∖{0}

)
.

Since our goal is to study the positive solutions of (𝜀), we deal with the following penalized problem:
⎧⎪⎪⎨⎪⎪⎩

̃ p𝜀
(u)+ ̃N𝜀

(u)+ |u|N−2u = G′
2
(𝜀x, u)−′

1
(u)+ g(𝜀x, u) in ℝN ,

∫
ℝN

V(𝜀x)
(|u| p + |u|N) dx < +∞, u ∈ Y𝜀.

(̃𝜀 )
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Note that if u𝜀 is a positive solution of (̃𝜀) with 0 < u𝜀(x) < t1 for all x ∈ ℝN∖Λ𝜀, then G′
2
(𝜀x, u𝜀 ) = ′

2
(u𝜀 ) and

g(𝜀x, u𝜀) = f (u𝜀). Due to this fact, we conclude that 𝑣𝜀(x) = u𝜀(
x

𝜀
) is a positive solution of (𝜀). Now, we define

the functional J𝜀:Y𝜀 → ℝ associated with (̃𝜀) by

J𝜀(u) =
1

p
‖u‖ p

W
1, p

V𝜀

+ 1

N

(
‖u‖N

W1,N

V𝜀

+ ‖u‖N
N

)
+ ∫

ℝN

1(u) dx

− ∫
ℝN

G2(𝜀x, u) dx − ∫
ℝN

(𝜀x, u) dx for all u ∈ Y𝜀.

(3.1)

Clearly, J𝜀 is well-defined, of class C
1(Y𝜀,ℝ) and the critical points of J𝜀 are weak solutions of (̃𝜀). Note that,

from the assumptions (f1), (f2) and Corollary 2.12, one can easily verify that for any 𝜏 > 0, 𝜗 > N , there exists a

constant 𝜅𝜏 > 0 and 0 < 𝛼0 < 𝛼 such that for all s ∈ ℝ, we have

| f (s)| ≤ 𝜏|s|N−1 + 𝜅𝜏 |s|𝜗−1Φ(𝛼|s|N′
),

|F(s)| ≤ 𝜏|s|N + 𝜅𝜏 |s|𝜗Φ(𝛼|s|N′
).

(3.2)

The following two lemmas show that the functional J𝜀 satisfies the mountain pass geometry.

Lemma 3.1 (Mountain Pass Geometry-I). There exist 𝜌 ∈ (0, 1] very small enough and 𝚥 > 0 such that J𝜀(u) ≥ 𝚥
for all u ∈ Y𝜀 with ‖u‖

Y𝜀
= 𝜌.

Proof. From ()(b) and (3.2), we have
|(x, s)| ≤ 𝜏|s|N + 𝜅𝜏 |s|𝜗Φ(𝛼|s|N′

) for all (x, s) ∈ ℝN ×ℝ. (3.3)

Let 𝜎 ∈ (0, 1] be sufficiently small such that 0 < ‖u‖
Y𝜀

≤ 𝜎. Further, we choose r, r′ > 1 satisfying 1

r
+ 1

r′
= 1,

then, by using Hölder’s inequality, Corollary 2.12 and Lemma 2.9, we obtain from (3.3) that

∫
ℝN

|(x, u)| dx ≤ 𝜏S−N
N

‖u‖N
Y𝜀
+ 𝜅𝜏S−𝜗𝜗r ‖u‖𝜗Y𝜀

⎛⎜⎜⎝∫ℝN

Φ
(
r′𝛼‖u‖N′

Y𝜀
|ũ|N′

)
dx

⎞⎟⎟⎠

1

r′

, (3.4)

where ũ = u∕‖u‖
Y𝜀
. Since ‖u‖

Y𝜀
is very small, we can choose r′ > 1 close to 1 and 𝛼 > 𝛼0 close to 𝛼0 such that

r′𝛼‖u‖N′

Y𝜀
≤ 𝛼N holds. Take 𝛾 > 0 with 𝛾 ≤ V0, then we have ‖ũ‖W1,N

𝛾
≤ ‖ũ‖W1,N

V𝜀

≤ ‖ũ‖
Y𝜀
= 1. Consequently, by

using (3.4) and Lemma 2.13, there exists a constant C̃ > 0 such that

∫
ℝN

|(x, u)| dx ≤ 𝜏S−N
N

‖u‖N
Y𝜀
+ 𝜅𝜏 C̃S−𝜗𝜗r ‖u‖𝜗Y𝜀 . (3.5)

Note that ‖u‖
Y𝜀

≤ 1, therefore it follows from ()(b) and Lemma 2.9 that

∫
ℝN

|G2(x, u)| dx ≤ CS
−q
q ‖u‖q

Y𝜀
≤ CS

−q
q ‖u‖N

Y𝜀
. (3.6)

Hence, in view of Lemma 2.11, we obtain from (3.1), (3.5) and (3.6) that

J𝜀(u) ≥ 1

N

(
‖u‖N

W
1, p

V𝜀

+ ‖u‖N
W1,N

V𝜀

+ ‖u‖N1

)
− CS

−q
q ‖u‖N

Y𝜀
− 𝜏S−N

N
‖u‖N

Y𝜀
− 𝜅𝜏 C̃S−𝜗𝜗r ‖u‖𝜗Y𝜀

≥
(
31−N

N
−

(
CS

−q
q + 𝜏S−N

N

))‖u‖N
Y𝜀
− C𝜗‖u‖𝜗Y𝜀 ,
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for all u ∈ Y𝜀 satisfying ‖u‖Y𝜀 ≤ 𝜎, where C𝜗 = 𝜅𝜏 C̃S−𝜗𝜗r . Choose CS−qq + 𝜏S−N
N

= 2

3NN
and define the function

𝜓 (t) = 1

3N+1N
tN − C𝜗t

𝜗 for all t ∈ [0, 𝜎].

By using elementary calculus, we infer that 𝜓 admits a positive maximum 𝚥 in [0, 𝜎] at a point 𝜌 ∈ (0, 𝜎].

Moreover, for all u ∈ Y𝜀 satisfying ‖u‖Y𝜀 = 𝜌, we obtain
J𝜀(u) ≥ 1

3NN
𝜌N − C𝜗𝜌

𝜗 ≥ 𝜓 (𝜌) = 𝚥 > 0.

This completes the proof. □

Lemma 3.2 (Mountain Pass Geometry-II). Let 𝜌 ∈ (0, 1] be as in Lemma 3.1, then there exists a nonnegative func-

tion e ∈ Y𝜀 with ‖e‖
Y𝜀
> 𝜌 satisfying J𝜀(e) < 0.

Proof. Define

𝜀 = {u ∈ Y𝜀: | supp(|u|) ∩ Λ𝜀| > 0}

and let u ∈ 𝜀∖{0} be such that u(x) ≥ 0 a.e. in ℝN . Define

Ψ(t) = t−𝜇(x, tu)− (x, u) for all x ∈ Λ and t ≥ 1.

From ()(c), we have
Ψ′
(t) = t−𝜇−1

(
g(x, tu)tu− 𝜇G(x, tu)

) ≥ 0 for all x ∈ Λ and for all t ≥ 1.

It follows that Ψ is an increasing function on [1,+∞). Hence, we obtain G(x, tu) ≥ t𝜇G(x, u) for all x ∈ Λ and

t ≥ 1. Further, since 𝜇 > N and u(x) ≥ 0 a.e. in ℝN , we infer that G(x, tu) ≥ tNG(x, u) for all x ∈ Λ and t ≥ 1.

Similarly, by using ()(d), we can prove thatG(x, tu) ≥ tNG(x, u) for all x ∈ Λc and t ≥ 1. Consequently, we obtain

G(x, tu) ≥ tNG(x, u) for all x ∈ ℝN and for all t ≥ 1. (3.7)

Notice that for each x ∈ ℝN and t > 0, we can write

1(tu) = 𝜒Λ𝜀 (x)1(tu)+ (1− 𝜒Λ𝜀 (x))1(tu).

Now, by using the definition of G2 and (2.5), it follows that

∫
ℝN

(1(tu)− G2(𝜀x, tu)
)
dx

= − 1

N ∫
ℝN

𝜒Λ𝜀 |tu|N log |tu|N dx − 1

N ∫
{tu≤t1}

(1− 𝜒Λ𝜀 )|tu|N log |tu|N dx

+ ∫
{tu>t1}

(1− 𝜒Λ𝜀 )
(1(tu)− ̃2(tu)

)
dx.

(3.8)

By the definition of ̃2 and (1 )(d), we have

̃2(s) ≥ 0 and 0 ≤ 1(s) ≤ C1s
N + C2 for all s ≥ 0.

In addition, it follows from u ∈ Y𝜀 that

∫
{tu>t1}

| tu|N dx ≤ KtN and |{tu > t1}| ≤ K1t
N ,
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where K = ‖u‖N
N
and K1 = Kt−N

1
. Consequently, from the above information, we can deduce that

∫
{tu>t1}

(1− 𝜒Λ𝜀 )
(1(tu)− ̃2(tu)

)
dx ≤ CtN , (3.9)

where C = C1K + C2K1 > 0. Let t ≥ 1 be large enough, then by using (3.7), (3.8) and (3.9), we obtain from (3.1) that

J𝜀(tu) ≤ tN
⎡⎢⎢⎣
1

p

⎛⎜⎜⎝‖u‖
N

W
1, p

V𝜀

+ ‖u‖N
W1,N

V𝜀

+ ‖u‖N
N
− p∫

ℝN

(𝜀x, u) dx
⎞⎟⎟⎠−

1

N ∫
ℝN

𝜒Λ𝜀 |u|N log |u|N dx

− log t

⎛⎜⎜⎜⎝∫ℝN

𝜒Λ𝜀 |u|N dx + ∫
{tu≤t1}

(1− 𝜒Λ𝜀 )|u|N dx
⎞⎟⎟⎟⎠

− 1

N ∫
{tu≤t1}

(1− 𝜒Λ𝜀 )|u|N log |u|N dx + C

⎤⎥⎥⎥⎦
.

(3.10)

Due to the application of Lebesgue’s dominated convergence theorem, we obtain

∫
{tu≤t1}

(1− 𝜒Λ𝜀 )|u|N dx→ 0 as t→∞. (3.11)

Now, by using (2.5), (2 )(b), Lemma 2.9 and the fact that u ∈ L1 (ℝN ), we have

|||||||
− 1

N ∫
{tu≤t1}

(1− 𝜒Λ𝜀 )|u|N log |u|N dx
|||||||
≤ ∫

ℝN

|1(u)| dx + ∫
ℝN

|2(u)| dx < +∞. (3.12)

Sending t→∞ in (3.10) and using (3.11) as well as (3.12), we deduce that J𝜀(tu)→−∞ as t→∞. Taking e = tu

with t sufficiently large shows that assertion of the lemma. □

To use the mountain pass theorem, it is necessary to verify the Palais-Smale compactness condition at a

suitable level c. We say that a sequence {un}n∈ℕ ⊂ Y𝜀 is a (PS)c sequence for J𝜀 at any suitable level c ∈ ℝ if

J𝜀(un )→ c and sup‖𝜑‖
Y𝜀
=1
|⟨ J′
𝜀
(un ), 𝜑⟩|→ 0 as n→∞. (3.13)

If this sequence has a convergent subsequence in Y𝜀, we say that J𝜀 satisfies (PS)c condition at any suitable level

c ∈ ℝ.
Note that the following logarithmic inequality is useful to prove the boundedness of (PS)c sequences for J𝜀.

Lemma 3.3. Let N ≥ 2 with N < s and u ∈ LN (Λ𝜀) ∩ Ls(Λ𝜀). Then, we have

∫
Λ𝜀

|u|N log

( |u|‖u‖LN (Λ𝜀 )
)
dx ≤ s

s− N
‖u‖LN (Λ𝜀 ) log

( ‖u‖Ls(Λ𝜀 )‖u‖LN (Λ𝜀 )
)
.

Proof. By using the logarithmic interpolation inequality in Del Pino-Dolbeault [[65], p. 153] and applying a simi-

lar procedure as in Alves-Ambrosio [[42], Lemma 3.2], the lemma can be proved. □

Remark 3.4. To study quasilinear elliptic problems involving N-Laplace operator, generally one requires the

following condition

lim sup
n→∞

‖un‖N′

W1,N <
𝛼N
𝛼0

(3.14)
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to handle terms containing critical exponential growth. Such type of inequality originates by default from the

well-known Palais-Smale condition or Cerami condition at a suitable level c.

Whereas, in this article, due to the presence of logarithmic nonlinearity, by using the (PS)c condition it is

difficult to directly prove the boundedness of the corresponding Palais-Smale sequence as well as we can not

obtain inequality of type (3.14). To show the boundedness of such type of sequence, we need the inequality (3.14)

along with some extra computational work. Moreover, one can see that the inequality (3.14) can be assumed

because of Lemma 2.3 due to the fact that the bounedness of ‖un‖W1,N does not imply the boundedness of ‖un‖W1,N

V𝜀

in general.

Lemma 3.5. Let {un}n∈ℕ ⊂ Y𝜀 be a (PS)c sequence for J𝜀 satisfying lim supn→∞‖un‖N′

W1,N
<
𝛼N
𝛼0
. Then, the sequence

{un}n∈ℕ is bounded in Y𝜀.

Proof. Let {un}n∈ℕ ⊂ Y𝜀 be a (PS)c sequence for J𝜀 and let lim supn→∞‖un‖N′

W1,N
<
𝛼N
𝛼0
be satisfied. Now, by using

(3.13) and the properties of (), there exists d > 0 such that, as n→∞, we have

c + d‖un‖Y𝜀 + on(1)

≥ J𝜀(un )−
1

N
⟨ J′
𝜀
(un ), un⟩

≥
(
1

p
− 1

N

)
‖un‖ p

W
1, p

V𝜀

+ ∫
ℝN

(1(un )−
1

N
′

1
(un )un +

1

N
G′
2
(𝜀x, un )un − G2(𝜀x, un )

)
dx

≥ 1

N ∫
ℝN

|un|N dx + ∫
ℝN

(2(un )−
1

N
′

2
(un )un +

1

N
G′
2
(𝜀x, un )un − G2(𝜀x, un )

)
dx

=:  (un ),

(3.15)

where we have used

∫
ℝN

(1(un )−
1

N
′

1
(un )un +

1

N
′

2
(un )un −2(un )

)
dx = 1

N ∫
ℝN

|un|N dx.
Observe that

ℝN =
(
Λ𝜀 ∪ {|un| ≤ t1}

)
∪
(
Λc
𝜀
∩ {|un| > t1}

)
.

Consequently, by using ()(d), one can easily deduce that

 (un ) ≥ 1

N ∫
Λ𝜀

|un|N dx + ∫
Λc
𝜀
∩{|un|>t1}

(
1

N
|un|N +2(un )−

1

N
′

2
(un )un

+ 1

N
G′
2
(𝜀x, un )un − G2(𝜀x, un )

)
dx

≥ 1

N ∫
Λ𝜀

|un|N dx.
(3.16)

Combining (3.15) and (3.16), we obtain

1

N ∫
Λ𝜀

|un|N dx ≤ c + d‖un‖Y𝜀 + on(1) as n→∞. (3.17)

By using (1 )(d) and (3.17), we can find constants c̃, d̃ > 0 such that

∫
Λ𝜀

1(un ) dx ≤ c̃ + d̃‖un‖Y𝜀 + on(1) as n→∞. (3.18)
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On the other hand, by using Lemma 3.3 with D = s

s−N and Lemma 2.9, we have

∫
Λ𝜀

|un|N log |un|N dx

≤ (
N‖un‖NLN (Λ𝜀 ) − DN‖un‖LN (Λ𝜀 )

)
log

(‖un‖LN (Λ𝜀 ))+ DN‖un‖LN (Λ𝜀 ) log(‖un‖Ls(Λ𝜀 ))

≤ (
N‖un‖NLN (Λ𝜀 ) + DN‖un‖LN (Λ𝜀 )

)|||log
(‖un‖LN (Λ𝜀 ))|||+ D̃‖un‖Y𝜀 ||||log

(
D̃‖un‖Y𝜀

)||||,
(3.19)

where the constant D̃ > 0 is independent of 𝜀. Recall that in view of Lemma 4.2 of Alves-da Silva [58], there exists

𝜉 ∈ (0, 1) and a constant A > 0 such that

|t log t| ≤ A(1+ t1+𝜉 ) for all t ≥ 0. (3.20)

Due to the above inequality and (3.17), we obtain

‖un‖NLN (Λ𝜀 )|||log
(‖un‖LN (Λ𝜀 ))||| ≤ A

N

(
1+

(‖un‖NLN (Λ𝜀 )
)1+𝜉) ≤ Ã1

(
1+ ‖un‖1+𝜉Y𝜀

)
+ on(1) (3.21)

as n→∞. Likewise, by using (3.20) and Lemma 2.9, we have

‖un‖LN (Λ𝜀 )|||log
(‖un‖LN (Λ𝜀 ))||| ≤ A

(
1+

(‖un‖LN (Λ𝜀 ))1+𝜉
) ≤ Ã2

(
1+ ‖un‖1+𝜉Y𝜀

)
,

D̃‖un‖Y𝜀 ||||log
(
D̃‖un‖Y𝜀

)|||| ≤ A

(
1+

(
D̃‖un‖Y𝜀

)1+𝜉)
) ≤ Ã3

(
1+ ‖un‖1+𝜉Y𝜀

)
,

(3.22)

where in the above estimates Ãi with i = 1, 2, 3 are positive constants. Now, by using (3.21) and (3.22) in (3.19), we

deduce that there exists a constant Ã > 0 such that

∫
Λ𝜀

|un|N log |un|N dx ≤ Ã
(
1+ ‖un‖1+𝜉Y𝜀

)
+ on(1) as n→∞. (3.23)

In virtue of ()(b), (f1) and Corollary 2.12, we can deduce that
|(x, s)| ≤ 𝜏|s|N + 𝜅𝜏 |s|Φ(𝛼|s|N′

) for all (x, s) ∈ ℝN ×ℝ. (3.24)

From the assumption, it follows that there existsm0 > 0 and n0 ∈ ℕ sufficiently large such that

‖un‖N′

W1,N < m0 <
𝛼N
𝛼0

for all n ≥ n0.

Take r ≥ N with r′ = r

r−1 > 1 and satisfying 1

r
+ 1

r′
= 1. Let r′ close to 1 and 𝛼 > 𝛼0 close to 𝛼0 such that we still

have r′𝛼‖un‖N′

W1,N
< m0 < 𝛼N for all n ≥ n0. Consequently, by applying Hölder’s inequality, Corollary 2.12 and

Lemma 2.9, we obtain from (3.24) that

∫
ℝN

|(𝜀x, un )| dx ≤ 𝜏‖un‖NN + 𝜅𝜏‖un‖r
⎛⎜⎜⎝∫ℝN

Φ
(
r′𝛼‖un‖N′

W1,N |ũn|N′
)
dx

⎞⎟⎟⎠

1

r′

≤ 𝜏‖un‖NN + 𝜅𝜏CS−1r ‖un‖Y𝜀
(3.25)

for n large enough, where ũn = un‖un‖W1,N
. Moreover, due to Lemma 2.13, we have

C =
⎛⎜⎜⎝supn≥n0∫

ℝN

Φ
(
r′𝛼‖un‖N′

W1,N |ũn|N′
)
dx

⎞⎟⎟⎠

1

r′

< +∞.
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By using (2.5), (3.18), (3.23) and the growth |G2(𝜀x, s)| ≤ 𝓁|s|N for all (x, s) ∈ Λc
𝜀
×ℝ, we have, as n→∞, that

∫
ℝN

(1(un )− G2(𝜀x, un )
)
dx

≥ ∫
Λc
𝜀

1(un ) dx − 𝓁‖un‖NN − 1

N ∫
Λ𝜀

|un|N log |un|N dx

≥ ∫
ℝN

1(un ) dx − (c̃ + d̃‖un‖Y𝜀 )− Ã

N

(
1+ ‖un‖1+𝜉Y𝜀

)
− 𝓁‖un‖NN + on(1).

(3.26)

In view of (3.25), (3.26) and the fact that {un}n∈ℕ is a (PS)c sequence for J𝜀, we obtain, as n→∞, that

c + on(1) = J𝜀(un ) ≥ 1

p
‖un‖ p

W
1, p

V𝜀

+ 1

N
‖un‖NW1,N

V𝜀

+
(
1

N
− 𝜏 − 𝓁

)‖un‖NN − 𝜅𝜏CS−1r ‖un‖Y𝜀
+ ∫

ℝN

1(un ) dx − (c̃ + d̃‖un‖Y𝜀 )− Ã

N

(
1+ ‖un‖1+𝜉Y𝜀

)
.

(3.27)

Since 𝜏 > 0 is arbitrary and 𝓁 > 0 is small enough, we can choose 𝜏 small enough such that 𝜏 + 2𝓁 ≤ 1

N
. Con-

sequently, by using (3.27) and Lemma 2.11, there exists constants C1, C2, C3 > 0 such that, as n→∞, we have

C1 + C2‖un‖Y𝜀 + C3‖un‖1+𝜉Y𝜀
+ on(1) ≥ 1

N

(
‖un‖ p

W
1, p

V𝜀

+ ‖un‖NW1,N

V𝜀

)
+min

{‖un‖l1
, ‖un‖N1

}
, (3.28)

where 1 < l < N . For the rest of the proof, we fix 𝜉 ∈ (0, 1) such that 1+ 𝜉 < p < l. If possible, let ‖un‖1
≤ 1,

then we obtain from (3.28) that

C1 + C2‖un‖Y𝜀 + C3‖un‖1+𝜉Y𝜀
+ on(1) ≥ 1

N

(
‖un‖ p

W
1, p

V𝜀

+ ‖un‖NW1,N

V𝜀

)
+ ‖un‖N1

as n→∞. (3.29)

In this case, we have three possibilities as follows:

Case-1: Let ‖un‖W1, p

V𝜀

→∞ and ‖un‖W1,N

V𝜀

→∞ as n→∞. It follows that ‖un‖NW1,N

V𝜀

≥ ‖un‖ p

W1,N

V𝜀

> 1 for n large

enough. Consequently, we obtain from (3.29) that

C1 + C2‖un‖Y𝜀 + C3‖un‖1+𝜉Y𝜀
+ on(1) ≥ 21− p

N
‖un‖ p

X𝜀
+ ‖un‖N1

as n→∞.

Dividing ‖un‖ p

X𝜀
on both sides and letting n→∞, we get 0 ≥ 21− p

N
> 0, which is a contradiction.

Case-2: Let ‖un‖W1, p

V𝜀

→∞ as n→∞ and ‖un‖W1,N

V𝜀

is bounded. Dividing ‖un‖W1, p

V𝜀

on both the sides of (3.29)

and letting n→∞, we get 0 ≥ 1

N
> 0, which is again a contradiction.

Case-3: Let ‖un‖W1,N

V𝜀

→∞ as n→∞ and ‖un‖W1, p

V𝜀

is bounded. Similar to Case-2, we get a contradiction.

Suppose that ‖un‖1
→∞ as n→∞, then we can assume that ‖un‖1

> 1 for n large enough and hence, we

obtain from (3.28) that

C1 + C2‖un‖Y𝜀 + C3‖un‖1+𝜉Y𝜀
+ on(1) ≥ 1

N

(
‖un‖ p

W
1, p

V𝜀

+ ‖un‖NW1,N

V𝜀

)
+ ‖un‖l1

as n→∞. (3.30)

In this case, we have four possibilities as follows:

Case-1: If ‖un‖W1, p

V𝜀

and ‖un‖W1, p

V𝜀

are bounded, then dividing ‖un‖l1
on both sides of (3.30) and letting n→∞,

we get 0 ≥ 1 > 0, which is a contradiction.
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Case-2: Let ‖un‖W1, p

V𝜀

→∞ and ‖un‖W1,N

V𝜀

→∞ as n→∞. It follows that ‖un‖NW1,N

V𝜀

≥ ‖un‖ p

W1,N

V𝜀

> 1 and ‖un‖l1
≥

‖un‖ p

1
> 1 for n large enough. Hence, we obtain from (3.30) that

C1 + C2‖un‖Y𝜀 + C3‖un‖1+𝜉Y𝜀
+ on(1) ≥ 31− p

N
‖un‖ p

Y𝜀
as n→∞.

Dividing ‖un‖ p

Y𝜀
on both sides and letting n→∞, we get 0 ≥ 31− p

N
> 0, which is again contradiction.

Case-3: Let ‖un‖W1, p

V𝜀

→∞ as n→∞ and ‖un‖W1,N

V𝜀

is bounded. It follows that ‖un‖l1
≥ ‖un‖ p

1
> 1 for n large

enough. Consequently, from (3.30), we have

C1 + C2‖un‖Y𝜀 + C3‖un‖1+𝜉Y𝜀
+ on(1) ≥ 21− p

N

(‖un‖W1, p

V𝜀

+ ‖un‖1

) p

as n→∞.

Dividing
(‖un‖W1, p

V𝜀

+ ‖un‖1

) p

on both sides and letting n→∞, we get 0 ≥ 21− p

N
> 0, which is a contradiction.

Case-4: Let ‖un‖W1,N

V𝜀

→∞ as n→∞ and ‖un‖W1, p

V𝜀

is bounded. Similar to Case-3, we get a contradiction.

Hence,we conclude from the above seven cases that {un}n∈ℕ ⊂ Y𝜀must be bounded. This finishes the proof.

□

The following lemma is devoted to the tightness of the Palais-Smale sequences for J𝜀.

Lemma 3.6. Let {un}n∈ℕ ⊂ Y𝜀 be a (PS)c sequence for J𝜀 as stated in Lemma 3.5. Then, for all 𝜉 > 0, there exists

R = R(𝜉) > 0 such that

lim sup
n→∞ ∫

Bc
R

[(|∇un| p + V(𝜀x)|un| p)+ (|∇un|N + (V(𝜀x)+ 1)|un|N)] dx < 𝜉.

Proof. For R > 0, let 𝜓R ∈ C∞(ℝN ) be a such that 0 ≤ 𝜓R ≤ 1 in ℝN , 𝜓R ≡ 0 in BR

2

, 𝜓R ≡ 1 in Bc
R
and |∇𝜓R| ≤

C

R
, where C > 0 is a constant independent of R. Further, we choose R > 0 in such a way that Λ𝜀 ⊂ BR

2

. Due to

Lemma 3.5,we infer that the sequence{un𝜓R}n∈ℕ is bounded inY𝜀 and there holds ⟨ J′𝜀(un ), un𝜓R⟩→ 0 asn→∞.

Consequently, by using (1 )(b), ()(c) and ()(d), we obtain

∫
ℝN

[(|∇un| p + V(𝜀x)|un| p)+ (|∇un|N + (V(𝜀x)+ 1)|un|N)]𝜓R dx ≤ I1 + I2 + on(1) as n→∞, (3.31)

where

I1 = (𝓁 + 𝓁′ )∫
ℝN

|un|N𝜓R dx and I2 =
|||||||∫ℝN

un
(|∇un| p−2 + |∇un|N−2)∇un ⋅∇𝜓R dx

|||||||
.

In view of (V1) and the fact that V0 + 1 ≥ 2(𝓁 + 𝓁′), we get

I1 ≤ V0 + 1

2 ∫
ℝN

|un|N𝜓R dx ≤ 1

2∫
ℝN

(V(𝜀x)+ 1)|un|N𝜓R dx

≤ 1

2∫
ℝN

[(|∇un| p + V(𝜀x)|un| p)+ (|∇un|N + (V(𝜀x)+ 1)|un|N)]𝜓R dx.
(3.32)

Moreover, due to the boundedness of {un}n∈ℕ in Y𝜀 and Hölder’s inequality, we have

I2 ≤ C

R

(‖un‖ p‖∇un‖ p−1
p + ‖un‖N‖∇un‖N−1N

) ≤ C

R

(
S−1
p
‖un‖ p

Y𝜀
+ S−1

N
‖un‖NY𝜀

) ≤ C̃

R
, (3.33)
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where C̃ > 0 is a constant. Now, it follows from (3.31), (3.32) and (3.33) that

∫
ℝN

[(|∇un| p + V(𝜀x)|un| p)+ (|∇un|N + (V(𝜀x)+ 1)|un|N)]𝜓R dx ≤ 2C̃

R
+ on(1) as n→∞.

Fix 𝜉 > 0 and take R > 0 sufficiently large such that
2C̃

R
< 𝜉. Passing to n→∞ in the above inequality, we obtain

lim sup
n→∞ ∫

Bc
R

[(|∇un| p + V(𝜀x)|un| p)+ (|∇un|N + (V(𝜀x)+ 1)|un|N)] dx ≤ 2C̃

R
< 𝜉.

This finishes the proof. □

Lemma 3.7. Let u ∈ Y𝜀 and {un}n∈ℕ be a (PS)c sequence for J𝜀 satisfying lim supn→∞‖un‖N′

W1,N
<
𝛼N
𝛼0
. If un ⇀ u in

Y𝜀 as n→∞, then we have∇un →∇u a.e. in ℝN as n→∞. Consequently, we deduce that u is a critical point for

J𝜀, that is, J
′
𝜀
(u) = 0.

Proof. Note that by Lemma 3.5, we conclude that the sequence {un}n∈ℕ is bounded in Y𝜀. By the hypothesis, we
have un ⇀ u in Y𝜀 as n→∞. Due to Remark 2.5 and Lemma 2.9, we infer that

un ⇀ u inW 1,t

V𝜀
(ℝN ) for t ∈ {p,N}, un → u in L𝜃(BR ), un → u a.e. in ℝN as n→∞ (3.34)

for any R > 0 and 𝜃 ∈ [1,+∞). Consequently, there exists gR ∈ L℘(BR) with ℘ ≥ N such that |un| ≤ gR a.e. in

BR. Fix R > 0 and 𝜓 ∈ C∞
c
(ℝN ) such that 0 ≤ 𝜓 ≤ 1 in ℝN , 𝜓 ≡ 1 in BR, 𝜓 ≡ 0 in Bc

2R
and ‖∇𝜓‖∞ ≤ C for some

constant C > 0 independent of R. Note that J𝜀 ∈ C1(Y𝜀,ℝ), un ⇀ u in Y𝜀, and J′
𝜀
(un )→ 0 in Y

∗
𝜀
as n→∞, thus

we obtain

⟨ J′
𝜀
(un )− J′

𝜀
(u), (un − u)𝜓⟩ = on(1) as n→∞. (3.35)

For any n ∈ ℕ and t ∈ {p,N}, we define

D

t
n
=

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un −∇u
)
+ V(𝜀x)

(|un|t−2un − |u|t−2u)(un − u).

Moreover, by convexity and (V1), we can see that

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅ (∇un −∇u
) ≥ 0 a.e. in ℝN ,

V(𝜀x)
(|un|t−2un − |u|t−2u)(un − u) ≥ 0 a.e. in ℝN

for any n ∈ ℕ and t ∈ {p,N}. Due to Simon’s inequality (see [66]) withN ≥ 2 and (3.35), there exists cN > 0 such

that as n→∞, we have

c−1
N ∫

BR

|∇un −∇u|N dx

≤ c−1
N

⎛⎜⎜⎝∫BR
|∇un −∇u|N dx + ∫

BR

V(𝜀x)|un − u|N dx

⎞⎟⎟⎠
≤ ∫

BR

D

N
n
dx ≤ ∑

t∈{ p,N}

⎛⎜⎜⎝∫BR
D

t
n
dx

⎞⎟⎟⎠ ≤
∑

t∈{ p,N}

⎛⎜⎜⎝∫ℝN

D

t
n
𝜓 dx

⎞⎟⎟⎠
= on(1)−

∑
t∈{ p,N}

⎛⎜⎜⎝∫ℝN

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅∇𝜓 (un − u) dx

⎞⎟⎟⎠
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− ∫
ℝN

(|un|N−2un − |u|N−2u)(un − u)𝜓 dx − ∫
ℝN

(′
1
(un )−′

1
(u)

)
(un − u)𝜓 dx

+ ∫
ℝN

(
G′
2
(𝜀x, un )− G′

2
(𝜀x, u)

)
(un − u)𝜓 dx + ∫

ℝN

(
g(𝜀x, un )− g(𝜀x, u)

)
(un − u)𝜓 dx. (3.36)

Using Hölder’s inequality and (3.34), for t ∈ {p,N}, we get

|||||||∫ℝN

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅∇𝜓 (un − u) dx

|||||||
≤ ‖∇𝜓‖∞(‖∇un‖t−1t

+ ‖∇u‖t−1
t

)⎛⎜⎜⎝∫B2R
|un − u|t dx⎞⎟⎟⎠

1

t

→ 0 as n→∞.

It follows that for t ∈ {p,N}, we have

lim
n→∞∫

ℝN

(|∇un|t−2∇un − |∇u|t−2∇u) ⋅∇𝜓 (un − u) dx = 0. (3.37)

Likewise, we can also prove that

lim
n→∞∫

ℝN

(|un|N−2un − |u|N−2u)(un − u)𝜓 dx = 0. (3.38)

In view of Hölder’s inequality, (1 )(c) and (3.34), we obtain

|||||||∫ℝN

(′
1
(un )−′

1
(u)

)
(un − u)𝜓 dx

|||||||
≤ C1

(‖un‖q−1q + ‖u‖q−1q

)⎛⎜⎜⎝∫B2R
|un − u|q dx⎞⎟⎟⎠

1

q

+ 2C2∫
B2R

|un − u| dx→ 0 as n→∞.

This yields

lim
n→∞∫

ℝN

(′
1
(un )−′

1
(u)

)
(un − u)𝜓 dx = 0. (3.39)

Similarly, by using Hölder’s inequality, ()(a) and (3.34), we have

|||||||∫ℝN

(
G′
2
(𝜀x, un )− G′

2
(𝜀x, u)

)
(un − u)𝜓 dx

|||||||
≤ 𝓁

(‖un‖N−1N
+ ‖u‖N−1

N

)⎛⎜⎜⎝∫B2R
|un − u|N dx⎞⎟⎟⎠

1

N

+ C
(‖un‖q−1q + ‖u‖q−1q

)⎛⎜⎜⎝∫B2R
|un − u|q dx⎞⎟⎟⎠

1

q

→ 0 as n→∞.
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It follows that

lim
n→∞∫

ℝN

(
G′
2
(𝜀x, un )− G′

2
(𝜀x, u)

)
(un − u)𝜓 dx = 0. (3.40)

Due to Hölder’s inequality and (3.34), we have

J1 = 𝜏∫
B2R

(|un|N−1 + |u|N−1)|un − u| dx ≤ 𝜏(‖un‖N−1N
+ ‖u‖N−1

N

)⎛⎜⎜⎝∫B2R
|un − u|N dx⎞⎟⎟⎠

1

N

→ 0

as n→∞. From the hypothesis, it follows that there exists m1 > 0 and n0 ∈ ℕ sufficiently large such that

‖un‖N′

W1,N
< m1 <

𝛼N
𝛼0

for all n ≥ n0. Take r > 1 with r′ = r

r−1 > 1 and satisfying 1

r
+ 1

r′
= 1. Let r′ close to 1 and

𝛼 > 𝛼0 close to 𝛼0 such that we still have r′𝛼‖un‖N′

W1,N
< m1 < 𝛼N for all n ≥ n0 and ũn = un‖un‖W1,N

. By using

Hölder’s inequality, Corollary 2.12 and (3.34), we obtain

J2 = 𝜅𝜏∫
B2R

(
Φ
(
𝛼0|un|N′

)
+Φ

(
𝛼0|u|N′

))|un − u| dx

≤ 𝜅𝜏
(‖‖‖‖Φ

(
𝛼0|un|N′

)‖‖‖‖r′ +
‖‖‖‖Φ

(
𝛼0|u|N′

)‖‖‖‖r′
)⎛⎜⎜⎝∫B2R

|un − u|r dx⎞⎟⎟⎠

1

r

≤ 𝜅𝜏
⎛⎜⎜⎜⎝
⎡⎢⎢⎣∫ℝN

Φ
(
r′𝛼‖‖un‖‖N′

W1,N |ũn|N′
)
dx

⎤⎥⎥⎦

1

r′

+
⎡⎢⎢⎣∫ℝN

Φ
(
r′𝛼0|u|N′

)
dx

⎤⎥⎥⎦

1

r′ ⎞⎟⎟⎟⎠
⎛⎜⎜⎝∫B2R

|un − u|r dx⎞⎟⎟⎠

1

r

≤ Ĉ

⎛⎜⎜⎝∫B2R
|un − u|r dx⎞⎟⎟⎠

1

r

→ 0 as n→∞,

where

Ĉ = 𝜅𝜏

⎛⎜⎜⎜⎝
⎡⎢⎢⎣supn≥n0∫

ℝN

Φ
(
r′𝛼‖un‖N′

W1,N |ũn|N′
)
dx

⎤⎥⎥⎦

1

r′

+
⎡⎢⎢⎣∫ℝN

Φ
(
r′𝛼0|u|N′

)
dx

⎤⎥⎥⎦

1

r′ ⎞⎟⎟⎟⎠
< +∞,

thanks Lemma 2.13. Consequently, by using ()(b) and (f1), we obtain
|||||||∫ℝN

(
g(𝜀x, un )− g(𝜀x, u)

)
(un − u)𝜓 dx

|||||||
≤ ∫

B2R

(| f (un )|+ | f (u)|)|un − u| dx ≤ J1 + J2 → 0

as n→∞. This shows that

lim
n→∞∫

ℝN

(
g(𝜀x, un )− g(𝜀x, u)

)
(un − u)𝜓 dx = 0. (3.41)

Passing n→∞ in (3.36) and using (3.37), (3.38), (3.39), (3.40) and (3.41), we get∇un →∇u in
[
LN (BR )

]N
as n→∞

for all R > 0. Hence, up to a subsequence, still denoted by itself,∇un →∇u a.e. in ℝN as n→∞.

Now, fix 𝑣 ∈ C∞
c
(ℝN ) and let R > 0 be large enough such that supp(v)⊂ BR. Using the boundedness of

{un}n∈ℕ in Y𝜀, we deduce that
{|∇un|t−2∇un}n∈ℕ and

{
V(𝜀x)

t−1
t |un|t−2un}

n∈ℕ
are bounded in [L

t

t−1 (ℝN )]N and

L
t

t−1 (ℝN ), respectively, for t ∈ {p,N}. Note that for t ∈ {p,N}, we have

|∇un|t−2∇un → |∇u|t−2∇u and V(𝜀x)
t−1
t |un|t−2un → V(𝜀x)

t−1
t |u|t−2u a.e. in ℝN as n→∞.
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Consequently, for t ∈ {p,N}, we have

|∇un|t−2∇un ⇀ |∇u|t−2∇u in
[
L

t

t−1 (ℝN )
]N
,

V(𝜀x)
t−1
t |un|t−2un ⇀ V(𝜀x)

t−1
t |u|t−2u in L

t

t−1 (ℝN )

as n→∞. Exploiting the density of C∞
c
(ℝN ) inW 1,t

V𝜀
(ℝN ) for t ∈ {p,N}, we obtain for t ∈ {p,N} that

∫
ℝN

|∇un|t−2∇un ⋅∇𝑣 dx→ ∫
ℝN

|∇u|t−2∇u ⋅∇𝑣 dx as n→∞ (3.42)

and

∫
ℝN

V(𝜀x)|un|t−2un𝑣 dx→ ∫
ℝN

V(𝜀x)|u|t−2u𝑣 dx as n→∞. (3.43)

Similarly, we can also prove that

∫
ℝN

|un|N−2un𝑣 dx→ ∫
ℝN

|u|N−2u𝑣 dx as n→∞. (3.44)

On the other hand, by using Hölder’s inequality, (1 )(c), ()(a) and (3.34), we get

|′
1
(un )𝑣| ≤ (

C1|un|q−1 + C2
)|𝑣| ≤ (

C1g
q−1
R

+ C2

)|𝑣| ∈ L1(BR )

and |G′
2
(𝜀x, un )𝑣| ≤ (

𝓁 |un|N−1 + C|un|q−1)|𝑣| ≤ (
𝓁 gN−1

R
+ Cg

q−1
R

)|𝑣| ∈ L1(BR ).

Due to Lebesgue’s dominated convergence theorem, we conclude that

∫
ℝN

′
1
(un )𝑣 dx→ ∫

ℝN

′
1
(u)𝑣 dx as n→∞ (3.45)

and

∫
ℝN

G′
2
(𝜀x, un )𝑣 dx→ ∫

ℝN

G′
2
(𝜀x, u)𝑣 dx as n→∞. (3.46)

Taking into account the notations used on the previous page to handle the exponential nonlinearity, we obtain

by using ()(b), (f1), Hölder’s inequality, Corollary 2.12 and Lemma 2.9 that for all n ≥ n0

∫
ℝN

g(𝜀x, un )𝑣 dx ≤ C

⎡⎢⎢⎢⎣
⎛⎜⎜⎝∫ℝN

|𝑣|N dx⎞⎟⎟⎠

1

N

+
⎛⎜⎜⎝∫ℝN

|𝑣|r dx⎞⎟⎟⎠

1

r ⎤⎥⎥⎥⎦
< +∞, (3.47)

where

C = 𝜏S−(N−1)
N

sup
n∈N

‖un‖N−1Y𝜀
+ 𝜅𝜏

⎛⎜⎜⎝supn≥n0∫
ℝN

Φ
(
r′𝛼‖un‖N′

W1,N |ũn|N′
)
dx

⎞⎟⎟⎠

1

r′

,

which is finite because of Lemma 2.13 and the fact that {un}n∈ℕ is uniformly bounded in Y𝜀. It follows from

(3.47) that {g(𝜀x, un )𝑣}n≥n0 is bounded L1(ℝN ). Consequently, it is not difficult to verify that {g(𝜀x, un )𝑣}n≥n0
is uniformly absolutely integrable and tight over ℝN . Since un → u a.e. in ℝN as n→∞, therefore we have

g(𝜀x, un)𝑣→ g(𝜀x, u)𝑣 a.e. in ℝN as n→∞. Now, by applying Vitali’s convergence theorem, we obtain

∫
ℝN

g(𝜀x, un )𝑣 dx→ ∫
ℝN

g(𝜀x, u)𝑣 dx as n→∞. (3.48)
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Observe that ⟨ J′
𝜀
(un ), 𝑣⟩ = on(1) as n→∞, therefore using (3.42), (3.43), (3.44), (3.45), (3.46), (3.47) and (3.48), we

infer that ⟨ J′
𝜀
(u), 𝑣⟩ = 0 for all 𝑣 ∈ C∞

c
(ℝN ). Exploiting the density of C∞

c
(ℝN ) in Y𝜀, we deduce that u is a critical

point for J𝜀, that is, J
′
𝜀
(u) = 0. This completes the proof. □

Lemma 3.8. Under the assumptions of Lemma 3.5, Lemma 3.6 and Lemma 3.7, the functional J𝜀 satisfies the (PS)c
condition at any level c ∈ ℝ.

Proof. Let c ∈ ℝ and{un}n∈ℕ ⊂ Y𝜀 be a (PS)c sequence for J𝜀 at level c ∈ ℝ. By Lemma 3.5, the sequence{un}n∈ℕ
is bounded in Y𝜀. Then, without loss of generality, up to a subsequence, we have un ⇀ u in Y𝜀 as n→∞ for some

u ∈ Y𝜀. By using Lemma 3.7, we have ⟨ J′𝜀(u), 𝑣⟩ = 0 for all 𝑣 ∈ Y𝜀. In particular, we have ⟨ J′𝜀(u), u⟩ = 0, that is,

‖u‖ p

W
1, p

V𝜀

+ ‖u‖N
W1,N

V𝜀

+ ∫
ℝN

′
1
(u)u dx = ∫

ℝN

G′
2
(𝜀x, u)u dx + ∫

ℝN

g(𝜀x, u)u dx − ∫
ℝN

|u|N dx. (3.49)

Note that (3.34) holds. In view of (V1) and Lemma 3.6, we obtain

lim sup
n→∞ ∫

Bc
R

|un| p dx < 𝜉

V0
and lim sup

n→∞ ∫
Bc
R

|un|N dx < 𝜉

V0 + 1
.

It follows from u ∈ Lt(ℝN ) for t ∈ {p,N} that there exists R > 0 large enough such that ∫
Bc
R

|u|t dx < 𝜉. Now,
using all these information and (3.34), we get

lim sup
n→∞

‖un − u‖ p
p = lim sup

n→∞

(
‖un − u‖ p

L p(BR )
+ ‖un − u‖ p

L p(BcR)

)
= lim

n→∞
‖un − u‖ p

L p(BR )
+ lim sup

n→∞
‖un − u‖ p

L p(BcR)
= lim sup

n→∞
‖un − u‖ p

L p(BcR)

≤ 2 p−1
(
lim sup
n→∞

‖un‖ p

L p(BcR)
+ ‖u‖ p

L p(BcR)

)
< 2 p−1

(
𝜉

V0
+ 𝜉

)
= C̃1𝜉 with C̃1 > 0.

Similarly, we can also prove that

lim sup
n→∞

‖un − u‖N
N
< 2N−1

(
𝜉

V0 + 1
+ 𝜉

)
= C̃2𝜉 with C̃2 > 0.

Due to the arbitrariness of 𝜉 > 0, it follows that un → u in Lt(ℝN ) for t ∈ {p,N} as n→∞. Applying the bound-

edness of {un}n∈ℕ in Y𝜀, we obtain by using Lemma 2.9 and the interpolation inequality that

un → u in L𝜃(ℝN ) for 𝜃 ∈ [p, p∗ ) ∪ [N,+∞) as n→∞. (3.50)

By using (3.34), (3.50) and Lebesgue’s dominated convergence theorem, it follows that

lim
R→∞

lim sup
n→∞

‖un‖𝜃L𝜃(BcR) = 0 for any 𝜃 ∈ [p, p∗ ) ∪ [N,+∞).

This implies that for all 𝜉 > 0, there exists R = R(𝜉) large enough such that

lim sup
n→∞ ∫

Bc
R

|un|𝜃 dx < 𝜉 for any 𝜃 ∈ [p, p∗ ) ∪ [N,+∞). (3.51)

In view of (3.51) and ()(a), we have

lim sup
n→∞

||||||||∫BcR
G′
2
(𝜀x, un )un dx

||||||||
≤ lim sup

n→∞ ∫
Bc
R

(
𝓁|un|N + C|un|q) dx < (𝓁 + C)𝜉 = C̃3𝜉
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with C̃3 > 0. Note that G′
2
(𝜀x, u)u ∈ L1(ℝN ), therefore choosing R > 0 large enough, we may assume that

∫
Bc
R

G′
2
(𝜀x, u)u dx < 𝜉. Gathering all these information, we have

lim sup
n→∞

||||||||∫BcR
G′
2
(𝜀x, un )un dx − ∫

Bc
R

G′
2
(𝜀x, u)u dx

||||||||
< C̃𝜉,

for all 𝜉 > 0 and some suitable constant C̃ > 0. By the arbitrariness of 𝜉 > 0, we conclude that

∫
Bc
R

G′
2
(𝜀x, un )un dx→ ∫

Bc
R

G′
2
(𝜀x, u)u dx as n→∞. (3.52)

On the other hand, from ()(a) and (3.34), we get

|G′
2
(𝜀x, un )un| ≤ 𝓁|un|N + C|un|q ≤ 𝓁gN

R
+ Cg

q

R
∈ L1(BR ).

Consequently, by (3.34) and Lebesgue’s dominated convergent theorem, it follows that

∫
BR

G′
2
(𝜀x, un )un dx→ ∫

BR

G′
2
(𝜀x, u)u dx as n→∞. (3.53)

Combining (3.52) and (3.53) together, we obtain

∫
ℝN

G′
2
(𝜀x, un )un dx→ ∫

ℝN

G′
2
(𝜀x, u)u dx as n→∞. (3.54)

From the hypothesis, there existsm2 > 0 and n0 ∈ ℕ sufficiently large such that ‖un‖N′

W1,N
< m2 <

𝛼N
𝛼0
for all n ≥

n0. Choose r > 1 with r′ = r

r−1 > 1 and satisfying
1

r
+ 1

r′
= 1. Let r′ close to 1 and 𝛼 > 𝛼0 close to 𝛼0 such that we

still have r′𝛼‖un‖N′

W1,N
< m2 < 𝛼N for all n ≥ n0 and ũn = un‖un‖W1,N

. It follows from ()(b), (3.2), Hölder’s inequality,
Corollary 2.12 and (3.34) that for all n ≥ n0, we have

∫
BR

g(𝜀x, un )un dx ≤ C

⎡⎢⎢⎢⎣∫BR
gN
R
dx +

⎛⎜⎜⎝∫BR
gr𝜗
R
dx

⎞⎟⎟⎠

1

r ⎤⎥⎥⎥⎦
< +∞, (3.55)

where

C = max

⎧⎪⎨⎪⎩
𝜏, 𝜅𝜏

⎛⎜⎜⎝supn≥n0∫
ℝN

Φ
(
r′𝛼‖un‖N′

W1,N |ũn|N′
)
dx

⎞⎟⎟⎠

1

r′⎫⎪⎬⎪⎭
< +∞,

due to Lemma 2.13. Then, from (3.55), we get that {g(𝜀x, un )un}n≥n0 is bounded L
1(BR). Consequently, it is not

difficult to verify that {g(𝜀x, un )un}n≥n0 is uniformly absolutely integrable and tight over BR. In virtue of (3.34),
we have un → u a.e. in BR as n→∞ and hence, g(𝜀x, un)un → g(𝜀x, u)u a.e. in BR as n→∞. Now, by applying

Vitali’s convergence theorem, we obtain

∫
BR

g(𝜀x, un )un dx→ ∫
BR

g(𝜀x, u)u dx as n→∞. (3.56)

Similarly, by using ()(b), (3.2), Hölder’s inequality, Corollary 2.12 and (3.51), we have for all n ≥ n0

||||||||∫BcR
g(𝜀x, un )un dx

||||||||
≤ C

⎡⎢⎢⎢⎢⎣
∫
Bc
R

|un|N dx +
⎛⎜⎜⎜⎝∫BcR

|un|r𝜗 dx
⎞⎟⎟⎟⎠

1

r ⎤⎥⎥⎥⎥⎦
< C

(
𝜉 + 𝜉

1

r

)
,
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where C is defined below (3.55). It follows that

lim sup
n→∞

||||||||∫BcR
g(𝜀x, un )un dx

||||||||
≤ C

(
𝜉 + 𝜉

1

r

)
.

One can observe that g(𝜀x, u)u ∈ L1(ℝN ). So, there exists R > 0 large enough such that ∫
Bc
R

g(𝜀x, u)u dx < 𝜉.

Consequently, we deduce that

lim sup
n→∞

||||||||∫BcR
g(𝜀x, un )un dx − ∫

Bc
R

g(𝜀x, u)u dx

||||||||
< Ĉ

(
𝜉 + 𝜉

1

r

)
,

for some suitable constant Ĉ > 0. Now, letting 𝜉 → 0+ in the above inequality, we obtain

∫
Bc
R

g(𝜀x, un )un dx→ ∫
Bc
R

g(𝜀x, u)u dx as n→∞. (3.57)

Combining (3.56) and (3.57) together, we get

∫
ℝN

g(𝜀x, un )un dx→ ∫
ℝN

g(𝜀x, u)u dx as n→∞. (3.58)

Using the fact that ⟨ J′
𝜀
(un ), un⟩ = on(1) as n→∞, we have as n→∞

‖un‖ p

W
1, p

V𝜀

+ ‖un‖NW1,N

V𝜀

+ ∫
ℝN

′
1
(un )un dx

= ∫
ℝN

G′
2
(𝜀x, un )un dx + ∫

ℝN

g(𝜀x, un )un dx − ∫
ℝN

|un|N dx + on(1).

(3.59)

Therefore, by using (3.50), (3.54) and (3.58), we obtain from (3.49) and (3.59) that

‖un‖ p

W
1, p

V𝜀

+ ‖un‖NW1,N

V𝜀

+ ∫
ℝN

′
1
(un )un dx = ‖u‖ p

W
1, p

V𝜀

+ ‖u‖N
W1,N

V𝜀

+ ∫
ℝN

′
1
(u)u dx + on(1)

as n→∞. From this, one has

‖un‖tW1,t

V𝜀

→ ‖u‖t
W1,t

V𝜀

for t ∈ {p,N} and ∫
ℝN

′
1
(un )un dx→ ∫

ℝN

′
1
(u)u dx as n→∞. (3.60)

Consequently, by using (3.34) and Corollary A.2 of Autuori-Pucci [67], we obtain from (3.60) that un → u in

W 1,t

V𝜀
(ℝN ) as n→∞ for t ∈ {p,N}. By Remark 2.8 and (2.3), one can notice that 0 ≤ 1(s) ≤ ′

1
(s)s for all s ∈ ℝ.

Using this fact together with the generalized dominated convergence theorem of Lebesgue, see Royden [[68],

Theorem 19] and (3.60), we conclude that

∫
ℝN

1(un ) dx→ ∫
ℝN

1(u) dx as n→∞.

Recall that1 is a N-function, which satisfies theΔ2-condition. Hence, by using a Brézis-Lieb type result found

in Alves-da Silva [[69], Proposition 2.2], we can prove that

∫
ℝN

1(un − u) dx→ 0 as n→∞.

This shows that un → u in L1 (ℝN ) as n→∞ and hence, un → u in Y𝜀 as n→∞. This finishes the proof. □
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Now, we can give the main result in this section.

Theorem 3.9. For each 𝜀 > 0, the functional J𝜀 has a nontrivial critical point u𝜀 ∈ Y𝜀 such that J𝜀(u𝜀) = c𝜀, where

c𝜀 denotes the mountain pass level associated with J𝜀. Consequently, we deduce that u𝜀 is a solution of (̃𝜀).
Proof. Due to Lemmas 3.1, 3.2 and 3.8, the functional J𝜀 fulfills the geometry of the mountain pass theorem,

see [[64], p. 142]. Consequently, for each 𝜀 > 0, there exists a nontrivial critical point u𝜀 ∈ Y𝜀 of J𝜀 such that

J𝜀(u𝜀) = c𝜀, where the mountain pass level c𝜀 is characterized as

c𝜀 = inf
𝛾∈Γ𝜀

max
t∈[0,1]

J𝜀(𝛾(t))

with

Γ𝜀 =
{
𝛾 ∈ C

(
[0, 1],Y𝜀

)
: 𝛾(0) = 0 and J𝜀(𝛾(1)) < 0

}
.

The proof is now complete. □

4 Existence of positive solution to the main problem via Nehari

manifold method

This section is devoted to the study of the existence of a positive solution of (𝜀) by using the Nehari manifold
technique and the characterization of the mountain pass levels c𝜀 as 𝜀→ 0+. To this end, we define the Nehari

manifold associated with the functional J𝜀, which is defined by

𝜀 =
{
u ∈ Y𝜀∖{0}: ⟨ J′

𝜀
(u), u⟩ = 0

}
.

A very nice introduction to this method has been done by Szulkin-Weth [70]. It is obvious that𝜀 contains all

nontrivial critical points of J𝜀. Define

c𝜀 = inf
u∈𝜀

J𝜀(u).

Note that, if c𝜀 is achieved by some 𝑣𝜀 ∈ 𝜀, then we say that 𝑣𝜀 is a critical point of J𝜀. In addition, since c𝜀 is

the lowest level for J𝜀, therefore, 𝑣𝜀 is said to be a ground state solution of (̃𝜀). Furthermore, we define

Ψ𝜀(u) =
1

N
⟨ J′
𝜀
(u), u⟩ = J𝜀(u)−

(
1

p
− 1

N

)
‖u‖ p

W
1, p

V𝜀

− 1

N
‖u‖N

N
− ∫

ℝN

(
1

N
g(𝜀x, u)u− (𝜀x, u)) dx

−
⎛⎜⎜⎝∫ℝN

[2(u)−
1

N
′

2
(u)u+ 1

N
G′
2
(𝜀x, u)u− G2(𝜀x, u)

]
dx

⎞⎟⎟⎠.
(4.1)

It follows that

𝜀 = Ψ−1
𝜀
({0}).

Now, we prove some properties of𝜀, which will be used in the sequel of this paper.

Proposition 4.1. The set 𝜀 is bounded away from the origin, that is, there exists a constant 𝛽 > 0 such that

‖u‖
Y𝜀

≥ 𝛽 > 0 for all u ∈ 𝜀 and for all 𝜀 > 0.

Proof. By Lemma 2.3, one can easily see that

‖u‖W1,N ≤ (
min{1,V0}

)− 1

N ‖u‖W1,N

V𝜀

≤ (
min{1,V0}

)− 1

N ‖u‖
Y𝜀
. (4.2)
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If ‖u‖
Y𝜀

≥ (
min{1,V0}

) 1

N , the conclusion is obvious. If ‖u‖
Y𝜀
<

(
min{1,V0}

) 1

N , then one has ‖u‖W1,N < 1, thanks

to (4.2). Choose r, r′ > 1 satisfying
1

r
+ 1

r′
= 1. Further, suppose 𝛼 > 𝛼0 close to 𝛼0 and r

′ > 1 close to 1 such that

r′𝛼 ≤ 𝛼N holds. Now, by using ()(b), (3.2), Hölder’s inequality, Corollary 2.12 and Lemma 2.9, we can deduce

that

∫
ℝN

|g(𝜀x, u)u| dx ≤ 𝜏S−N
N

‖u‖N
Y𝜀
+ 𝜅𝜏S−𝜗𝜗r D‖u‖𝜗Y𝜀 , (4.3)

where, due to Lemma 2.13, we have

D =
⎛⎜⎜⎜⎝
sup
u∈Y𝜀

⎧⎪⎨⎪⎩∫ℝN

Φ(r′𝛼|u|N′
) dx: ‖u‖

Y𝜀
<

(
min{1,V0}

) 1

N

⎫⎪⎬⎪⎭

⎞⎟⎟⎟⎠

1

r′

< +∞,

for 𝜗 > N and for all u ∈ 𝜀 with ‖u‖
Y𝜀

small enough. Suppose by contradiction that {un}n∈ℕ ⊂𝜀 is a

sequence such that ‖un‖Y𝜀 → 0 as n→∞. Consequently, we can see that (4.3) holds whenever u is replaced by

un for n large enough. From the definition of𝜀, we have ⟨ J′𝜀(un ), un⟩ = 0 for each n ∈ ℕ. It follows at once that

‖un‖ p

W
1, p

V𝜀

+ ‖un‖NW1,N

V𝜀

+ ‖un‖NN + ∫
ℝN

′
1
(un )un dx = ∫

ℝN

G′
2
(𝜀x, un )un dx + ∫

ℝN

g(𝜀x, un )un dx. (4.4)

Note that ‖un‖W1, p

V𝜀

and ‖un‖1
are small enough for sufficiently large n. Consequently, by using the fact that

0 ≤ 1(s) ≤ ′
1
(s)s for all s ∈ ℝ and Lemma 2.11, we obtain for n large enough that

‖un‖ p

W
1, p

V𝜀

≥ ‖un‖NW1, p

V𝜀

and ∫
ℝN

′
1
(un )un dx ≥ ‖un‖N1

. (4.5)

It follows from ()(a) and Lemma 2.9 that

∫
ℝN

|G′
2
(𝜀x, un )un| dx ≤ 𝓁S−N

N
‖un‖NY𝜀 + CS

−q
q ‖un‖qY𝜀 . (4.6)

In view of (4.2), (4.3), (4.4), (4.5) and (4.6), we get for n large enough that

(𝜏 + 𝓁 )S−N
N

‖un‖NY𝜀 + CS
−q
q ‖un‖qY𝜀 + 𝜅𝜏S−𝜗𝜗r D‖un‖𝜗Y𝜀 ≥ 31−N‖un‖NY𝜀 .

Due to the arbitrariness of 𝜏 and the fact that 𝓁 is very small, we deduce from the above inequality that there

exist constants C1, C2, C3 > 0 such that for n large enough there holds

C1‖un‖qY𝜀 + C2‖un‖𝜗Y𝜀 ≥ C3‖un‖NY𝜀 .
Dividing ‖un‖NY𝜀 on both sides of the above inequality and letting n→∞, we get 0 ≥ C3 > 0, which is a contra-

diction. It follows that there exists 𝛽 > 0 such that ‖u‖
Y𝜀

≥ 𝛽 > 0 for all u ∈ 𝜀 and for all 𝜀 > 0. □

Lemma 4.2. For each u ∈ 𝜀 = {u ∈ Y𝜀: | supp(|u|) ∩ Λ𝜀| > 0}∖{0}, there exists a unique tu > 0 such that

tuu ∈ 𝜀. In particular, for u ∈ 𝜀 ∩ 𝜀, we have J𝜀(u) = maxt≥0 J𝜀(tu). Consequently, if u ∈ 𝜀, then u ∈ 𝜀.
Proof. We define the function h(t) = J𝜀(tu) for t > 0 and u ∈ 𝜀∖{0}. From Lemmas 3.1 and 3.2, we have

h(0) = 0, h(t) > 0 for t > 0 sufficiently small and h(t) < 0 for t > 0 sufficiently large. It follows that maxt>0h(t)

is achieved at some point t = tu such that h′(tu) = 0 and tuu ∈ 𝜀. Next, we claim that tu is the unique criti-

cal point of h. Assume by contradiction that there exist t1 and t2 with 0 < t1 < t2 such that h′(t1) = h′(t2) = 0.

Consequently, we obtain for i = 1, 2 that

1

t
N− p

i

‖u‖ p

W
1, p

V𝜀

+ ‖u‖N
W1,N

V𝜀

+ ‖u‖N
N
+ ∫

ℝN

′
1
(tiu)u

tN−1
i

dx − ∫
ℝN

G′
2
(𝜀x, tiu)u

tN−1
i

dx − ∫
ℝN

g(𝜀x, tiu)u

tN−1
i

dx = 0.
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Subtracting the equalities above gives(
1

t
N− p

1

− 1

t
N− p

2

)
‖u‖ p

W
1, p

V𝜀

+ ∫
ℝN

(
G′
2
(𝜀x, t2u)u

tN−1
2

− G′
2
(𝜀x, t1u)u

tN−1
1

)
dx + ∫

ℝN

(
g(𝜀x, t2u)u

tN−1
2

− g(𝜀x, t1u)u

tN−1
1

)
dx

= ∫
ℝN

(′
1
(t2u)u

tN−1
2

− ′
1
(t1u)u

tN−1
1

)
dx=: J.

Now, it follows from the definitions of G′
2
and g together with ()(e) as well as ()(e) that the right-hand side of

the above equality is positive. On the other hand, we have

J = ∫{
x∈ℝN :|u|< (N−1)𝛿

t2

}

(′
1
(t2u)u

tN−1
2

− ′
1
(t1u)u

tN−1
1

)
dx

+ ∫{
x∈ℝN :

(N−1)𝛿
t2
<|u|< (N−1)𝛿

t1

}

(′
1
(t2u)u

tN−1
2

− ′
1
(t1u)u

tN−1
1

)
dx

+ ∫{
x∈ℝN :|u|> (N−1)𝛿

t1

}

(′
1
(t2u)u

tN−1
2

− ′
1
(t1u)u

tN−1
1

)
dx

= ∫{
x∈ℝN :|u|< (N−1)𝛿

t2

}
|u|N log

(
t1
t2

)N

dx + ∫{
x∈ℝN :|u|> (N−1)𝛿

t1

}
N(N − 1)𝛿|u|N−1

(
1

t2
− 1

t1

)
dx

+ ∫{
x∈ℝN :

(N−1)𝛿
t2
<|u|< (N−1)𝛿

t1

}

[
|u|N log

( |t1u|
(N − 1)𝛿

)N

+ N|u|N−1
(
(N − 1)𝛿

t2
− |u|

)]
dx < 0,

which is a contradiction and thus, tumust be unique. Next, we have to prove that if u ∈ 𝜀, then u ∈ 𝜀. Indeed,
if not, then for |supp(|u|) ∩ Λ𝜀| = 0 and u ∈ 𝜀, we obtain by using (V1), V0 + 1 ≥ 2(𝓁 + 𝓁′), 1(u) ≤ ′

1
(u)u,

()(c), ()(d), and Lemma 2.11 that
‖u‖ p

W
1, p

V𝜀

+ ‖u‖N
W1,N

V𝜀

+ ‖u‖N
N
+min

{‖u‖l1
, ‖u‖N1

} ≤ (𝓁 + 𝓁′ )∫
ℝN

|u|N dx ≤ 1

2∫
ℝN

(
V(𝜀x)+ 1

)|u|N dx

≤ 1

2

(
‖u‖ p

W
1, p

V𝜀

+ ‖u‖N
W1,N

V𝜀

+ ‖u‖N
N

)
.

This shows that

0 <
1

2

(
‖u‖ p

W
1, p

V𝜀

+ ‖u‖N
W1,N

V𝜀

+ ‖u‖N
N

)
+min

{‖u‖l1
, ‖u‖N1

} ≤ 0.

The above inequality implies u = 0 in Y𝜀, which is a contradiction because u ∈ 𝜀. This finishes the proof. □

Proposition 4.3. The set 𝜀 is a C
1-manifold for each 𝜀 > 0. Moreover, the critical points of J𝜀

||𝜀
are critical

points of J𝜀 in Y𝜀.

Proof. To prove that𝜀 is a C
1-manifold, it is sufficient to show that ⟨Ψ′

𝜀
(u), u⟩ ≠ 0 for all u ∈ 𝜀. Now, arguing

by contradiction, we assume that there exists some u ∈ 𝜀 such that ⟨Ψ′
𝜀
(u), u⟩ = 0. Consequently, by using⟨ J′

𝜀
(u), u⟩ = 0, we obtain from (4.1) that

0 = −p

(
1

p
− 1

N

)
‖u‖ p

W
1, p

V𝜀

− ∫
ℝN

|u|N dx − ∫
ℝN

(
1

N
g′(𝜀x, u)u2 −

(
N − 1

N

)
g(𝜀x, u)u

)
dx
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− ∫
ℝN

((
N − 1

N

)′
2
(u)u− 1

N
′′

2
(u)u2

)
dx − ∫

ℝN

(
1

N
G′′
2
(𝜀x, u)u2 −

(
N − 1

N

)
G′
2
(𝜀x, u)u

)
dx.

Observe that g(𝜀x, u) = f (u) andG′
2
(𝜀x, u) = ′

2
(u) for all x ∈ Λ𝜀. Now, simplifying the above equality,we obtain

∫
Λ𝜀

|u|Ndx < −∫
Λc
𝜀

(|u|N +
(
N − 1

N

)′
2
(u)u− 1

N
′′

2
(u)u2

)
dx

− ∫
Λc
𝜀

(
1

N
G′′
2
(𝜀x, u)u2 −

(
N − 1

N

)
G′
2
(𝜀x, u)u

)
dx

− ∫
Λ𝜀

(
1

N
f ′(u)u2 −

(
N − 1

N

)
f (u)u

)
dx

− ∫
Λc
𝜀

(
1

N
g′(𝜀x, u)u2 −

(
N − 1

N

)
g(𝜀x, u)u

)
dx.

(4.7)

By the definition of2 and using the assumption (f3), one can easily obtain

|u|N +
(
N − 1

N

)′
2
(u)u− 1

N
′′

2
(u)u2 ≥ 0 for a.a. x ∈ Λc

𝜀

and
1

N
f ′(u)u2 −

(
N − 1

N

)
f (u)u ≥ 0 for a.a. x ∈ Λc

𝜀
.

Note that

Λc
𝜀
∩ {u > 0} =

[
Λc
𝜀
∩ {0 < u < t1}

]
∪
[
Λc
𝜀
∩ {t1 ≤ u ≤ t2}

]
∪
[
Λc
𝜀
∩ {u > t2}

]
.

Due to (2 )(c) and (f3), one has

1

N
G′′
2
(𝜀x, u)u2 −

(
N − 1

N

)
G′
2
(𝜀x, u)u = 1

N

(′′
2
(u)u2 − (N − 1)′

2
(u)u

) ≥ 0

for a.a. x ∈ Λc
𝜀
∩ {0 < u < t1} and

1

N
g′(𝜀x, u)u2 −

(
N − 1

N

)
g(𝜀x, u)u = 1

N

(
f ′(u)u2 − (N − 1) f (u)u

) ≥ 0

for a.a. x ∈ Λc
𝜀
∩ {0 < u < t1}. Moreover, because of (h3) and (𝜂3), we infer that

1

N
G′′
2
(𝜀x, u)u2 −

(
N − 1

N

)
G′
2
(𝜀x, u)u = 1

N

(
h′(u)u2 − (N − 1)h(u)u

) ≥ 0

for a.a. x ∈ Λc
𝜀
∩ {t1 ≤ u ≤ t2} and

1

N
g′(𝜀x, u)u2 −

(
N − 1

N

)
g(𝜀x, u)u = 1

N

(
𝜂′(u)u2 − (N − 1)𝜂(u)u

) ≥ 0

for a.a. x ∈ Λc
𝜀
∩ {t1 ≤ u ≤ t2}.

By using the definitions of ̂′
2
and f̂ , we have

1

N
G′′
2
(𝜀x, u)u2 −

(
N − 1

N

)
G′
2
(𝜀x, u)u = 1

N
g′(𝜀x, u)u2 −

(
N − 1

N

)
g(𝜀x, u)u = 0

for a.a. x ∈ Λc
𝜀
∩ {u > t2}. Consequently, we deduce that

∫
Λc
𝜀
∩{u>0}

(
1

N
G′′
2
(𝜀x, u)u2 −

(
N − 1

N

)
G′
2
(𝜀x, u)u

)
dx ≥ 0 (4.8)
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and

∫
Λc
𝜀
∩{u>0}

(
1

N
g′(𝜀x, u)u2 −

(
N − 1

N

)
g(𝜀x, u)u

)
dx ≥ 0. (4.9)

From the definitions of G′
2
and (4.8), we have

∫
Λc
𝜀
∩{u<0}

(
1

N
G′′
2
(𝜀x, u)u2 −

(
N − 1

N

)
G′
2
(𝜀x, u)u

)
dx

= ∫
Λc
𝜀
∩{−u>0}

(
1

N
G′′
2
(𝜀x,−u)(−u)2 −

(
N − 1

N

)
G′
2
(𝜀x,−u)(−u)

)
dx

≥ 0.

Similarly, from the definition of g and (4.9), we have

∫
Λc
𝜀
∩{u<0}

(
1

N
g′(𝜀x, u)u2 −

(
N − 1

N

)
g(𝜀x, u)u

)
dx

= ∫
Λc
𝜀
∩{−u>0}

(
1

N
g′(𝜀x,−u)(−u)2 −

(
N − 1

N

)
g(𝜀x,−u)(−u)

)
dx

≥ 0.

Combining all these facts,we obtain from (4.7) that 0 < ∫Λ𝜀 |u|Ndx < 0. This yields thatu = 0 a.e. inΛ𝜀.Moreover,
since ⟨ J′

𝜀
(u), u⟩ = 0, arguing similarly as in Lemma 4.2, we can obtain

0 <
1

2

(
‖u‖ p

W
1, p

V𝜀

+ ‖u‖N
W1,N

V𝜀

+ ‖u‖N
N

)
+min

{‖u‖l1
, ‖u‖N1

} ≤ 0.

This ensures that u = 0 in Y𝜀, which is a contradiction because u ∈ 𝜀. It follows that ⟨Ψ′
𝜀
(u), u⟩ ≠ 0 for all

u ∈ 𝜀.

Now, let u ∈ 𝜀 be a critical point of J𝜀 constrained to𝜀. Due to the application of Lagrange’s multiplier

rule, we infer that

J′
𝜀
(u) = 𝜆Ψ′

𝜀
(u) in Y∗

𝜀
for some 𝜆 ∈ ℝ.

Because of u ∈ 𝜀, we obtain from the above relation that

0 = ⟨ J′
𝜀
(u), u⟩ = 𝜆⟨Ψ′

𝜀
(u), u⟩.

It follows that 𝜆 = 0 and J′
𝜀
(u) = 0 in Y

∗
𝜀
, that is, u is a critical point of J𝜀 on Y𝜀. This completes the proof. □

The last proposition implies at once that a critical point of J𝜀
||𝜀

is a point u ∈ Y𝜀 such that

‖ J′
𝜀
(u)‖

Y
∗
𝜀
= min

𝜆∈ℝ
‖ J′
𝜀
(u)− 𝜆Ψ′

𝜀
(u)‖ = 0, (4.10)

thanks to Proposition 5.12 of Willem [71]. Now, we recall that a (PS)c sequence for J𝜀
||𝜀

is a sequence {un}n∈ℕ in𝜀 such that

J𝜀(un )→ c and ‖ J′
𝜀
(un )‖Y∗

𝜀
→ 0 as n→∞. (4.11)

We say that J𝜀
||𝜀

satisfies the (PS) condition when each (PS)c sequence for J𝜀
||𝜀

has a convergent subsequence

for any c ∈ ℝ.

Proposition 4.4. If {un}n∈ℕ ⊂𝜀 is a (PS)c sequence for J𝜀 satisfying lim supn→∞‖un‖N′

W1,N
<
𝛼N
𝛼0
, then J𝜀

||𝜀
sat-

isfies the (PS) condition.
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Proof. Let {un}n∈ℕ ⊂𝜀 be a (PS)c sequence for J𝜀 satisfying lim supn→∞‖un‖N′

W1,N
<
𝛼N
𝛼0
. Therefore, we infer

that (4.11) is satisfied. Further, in view of (4.10), there exists a real sequence {𝜆n}n∈N ⊂ ℝ such that

J′
𝜀
(un ) = 𝜆nΨ′

𝜀
(un )+ on(1) as n→∞.

Since un ∈ 𝜀 for each n ∈ ℕ, we have J𝜀(un)→ c as n→∞ and ⟨ J′
𝜀
(un ), un⟩ = 0. Repeating the same arguments

as in Lemma 3.5, one can see that {un}n∈ℕ is a bounded sequence. In addition to this, due to Lemma 3.8, we only
have proved that {un}n∈ℕ is a (PS)c sequence for J𝜀. To finish the proof, it is sufficient to show that 𝜆n → 0 as

n→∞. It is obvious that the sequence {un}n∈ℕ satisfies the following relation:

0 = ⟨ J′
𝜀
(un ), un⟩ = 𝜆n⟨Ψ′

𝜀
(un ), un⟩+ on(1) as n→∞. (4.12)

Due to Proposition 4.3, if ⟨Ψ′
𝜀
(un ), un⟩ = on(1) as n→∞, then one has un → 0 in LN (Λ𝜀) as n→∞. From the

boundedness of {un}n∈ℕ in Y𝜀, we deduce from Lemma 2.9 and the interpolation inequality that

un → 0 in L𝜃(Λ𝜀 ) for 𝜃 ∈ [N,+∞) as n→∞. (4.13)

From the hypothesis, it follows that there existm > 0 and n0 ∈ ℕ large enough such that ‖un‖N′

W1,N
< m <

𝛼N
𝛼0
for

all n ≥ n0. Take r > 1 with r′ = r

r−1 > 1 and satisfying
1

r
+ 1

r′
= 1. Let r′ be close to 1 and 𝛼 > 𝛼0 close to 𝛼0 such

that we still have r′𝛼‖un‖N′

W1,N
< m < 𝛼N for all n ≥ n0 and ũn = un‖un‖W1,N

. It follows from ()(b), (3.2), Hölder’s
inequality, Corollary 2.12 and (4.13) that

|||||||∫Λ𝜀
g(𝜀x, un )un dx

|||||||
≤ 𝜏∫

Λ𝜀

|un|N dx + C

⎛⎜⎜⎜⎝∫Λ𝜀
|un|𝜗r dx

⎞⎟⎟⎟⎠

1

r

→ 0 as n→∞,

where

C = 𝜅𝜏
⎛⎜⎜⎝supn≥n0∫

ℝN

Φ
(
r′𝛼‖un‖N′

W1,N |ũn|N′
)
dx

⎞⎟⎟⎠

1

r′

< +∞,

due to Lemma 2.13. Consequently, we get

lim
n→∞∫

Λ𝜀

g(𝜀x, un )un dx = 0. (4.14)

Following similar arguments as in Lemma 4.2 and using the facts in ()(a), (c) and ()(d) as well as (4.12), (4.13)
and (4.14), one can easily obtain

0 <
1

2

(
‖un‖ p

W
1, p

V𝜀

+ ‖un‖NW1,N

V𝜀

+ ‖un‖NN
)
+min

{‖un‖l1
, ‖un‖N1

} ≤ on(1) as n→∞.

It follows that un → 0 in Y𝜀 as n→∞, which contradicts Proposition 4.3 (or Proposition 4.1). Hence, we must

have 𝜆n → 0 as n→∞. This finishes the proof. □

4.1 Existence and concentration phenomena of positive ground state solutions

In this part, we first introduce the autonomous problem related to (𝜀) as follows:
⎧⎪⎨⎪⎩
 p(u)+ N (u) = |u|N−2u log |u|N + f (u) in ℝN ,

u ∈ Y = W 1, p(ℝN ) ∩W 1,N (ℝN ) ∩ L1 (ℝN ),
(0 )

where
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t(u) = −Δtu+ V0|u|t−2u for t ∈ {p,N}.

The corresponding energy functional associated to (0) will be denoted by J0:Y→ ℝ and is defined by

J0(u) =
1

p
‖u‖ p

W
1, p

V0

+ 1

N

(
‖u‖N

W1,N

V0

+ ‖u‖N
N

)
+ ∫

ℝN

1(u) dx − ∫
ℝN

2(u) dx − ∫
ℝN

F(u) dx

for all u ∈ Y. By adopting a similar strategy as in [39], [40], [42]–[44], [48], one sees that (0) has a ground state

solution u0 which fulfills

J0(u0 ) = c0 = inf
u∈0

J0(u) = inf
u∈Y∖{0}

max
t≥0 J0(tu),

where0 is the Nehari set associated with J0 and defined by

0 =
{
u ∈ Y∖{0}: ⟨ J′

0
(u), u⟩ = 0

}
.

Recall that ‖ ⋅ ‖W1,t

V0

and ‖ ⋅ ‖W1,t are two equivalent norms on the Banach spaceW1,t(ℝN ) for any t ∈ {p,N}.
In the next lemma, we demonstrate that the mountain pass level c𝜀 is the ground state level of J𝜀, and we

establish an important relation between the two levels c𝜀 and c0.

Lemma 4.5. The following properties hold:

(a) c𝜀 ≥ 𝛽 > 0 for all 𝜀 > 0,

(b) c𝜀 = infu∈𝜀
J𝜀(u) for all 𝜀 > 0,

(c) lim sup𝜀→0c𝜀 ≤ c0.

Proof. The assertion in (a) follows directly from the definition of c𝜀 (see Theorem 3.9) and Lemma 3.1. Now, we

prove (b). For this, observe that by Lemma 4.2, we have u ∈ 𝜀 for each u ∈ 𝜀. Further, by Lemma 3.2, there

exists t0 > 0 such that J𝜀(t0u) < 0. Define the map 𝛾𝜀: [0, 1]→ Y𝜀 such that 𝛾𝜀(t) = t(t0u) for all t ∈ [0, 1]. It is

easy to see that 𝛾𝜀 ∈ Γ𝜀. Consequently, from the definition of c𝜀, we have

c𝜀 ≤ max
t∈[0,1]

J𝜀(𝛾𝜀(t)) ≤ max
t≥0 J𝜀(tu) = J𝜀(u).

Due to the arbitrariness of u ∈ 𝜀 and from the definition of the infimum, we obtain from the above inequality

that

c𝜀 ≤ inf
u∈𝜀

J𝜀(u). (4.15)

By Theorem 3.9, we have u𝜀 ∈ Y𝜀 ∖{0}, J𝜀(u𝜀) = c𝜀 and J′
𝜀
(u𝜀 ) = 0. It follows that u𝜀 ∈ 𝜀 and hence, we have

inf
u∈𝜀

J𝜀(u) ≤ J𝜀(u𝜀 ) = c𝜀. (4.16)

Combining (4.15) and (4.16), we get c𝜀 = infu∈𝜀
J𝜀(u) = J𝜀(u𝜀 ). This completes the proof of (b).

Next, we aim to prove (c). To prove this, we assume that u0 ∈ 0 is a positive ground state solution of (0),

that is, there hold

c0 = J0(u0 ) = inf
u∈0

J0(u) and J′
0
(u0 ) = 0.

Choose 𝜙 ∈ C∞
c
(ℝN ) be such that 0 ≤ 𝜙 ≤ 1, 𝜙 ≡ 1 in B1, and 𝜙 ≡ 0 in Bc

2
. For each R > 0, let B2R ⊂ Λ𝜀 and

define 𝜙R(⋅) = 𝜙( ⋅
R
). Next, we set uR(⋅) = u( ⋅

R
) and uR(x) = 𝜙R(x)u0(x). It follows that 0 ≤ uR ≤ u0, uR ≡ u0 in

BR, and uR ≡ 0 in Bc
2R
. Note that supp(uR) ⊂ B2R ⊂ Λ𝜀 and hence, uR ∈ 𝜀. By applying Lebesgue’s dominated

convergence theorem, we can easily deduce that

uR → u0 inW 1,t(ℝN ) as R→∞ for t ∈ {p,N}. (4.17)
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It follows that uR → u0 a.e. in ℝN as R→∞. Observe that1 is nondecreasing for all t ≥ 0. This implies at once

that 1(uR ) ≤ 1(u0 ) ∈ L1(ℝN ). Further, due to the continuity of 1, we infer that 1(uR )→1(u0 ) a.e. ℝN as

R→∞. Consequently, by Lebesgue’s dominated convergence theorem, we have

∫
ℝN

1(uR ) dx→ ∫
ℝN

1(u0 ) dx as R→∞.

Employing similar ideas as in Lemma 3.8, we can deduce that uR → u0 in L
1 (ℝN ) as R→∞. Consequently, we

obtain uR → u in Y as R→∞.

Using the fact that uR ∈ 𝜀, we obtain from Lemma 4.2 that there exists t𝜀 > 0 such that t𝜀uR ∈ 𝜀. Now,

arguing similarly as in (b), we have

c𝜀 ≤ max
t≥0 J𝜀(tu) = J𝜀(t𝜀uR ).

Next, we claim that for some 𝜀0 > 0, the family {t𝜀}0<𝜀<𝜀0 is bounded. Indeed, if not, assume that t𝜀 →∞ as

𝜀→ 0. Now, using the fact that t𝜀uR ∈ 𝜀, we have

1

t
N− p
𝜀

‖uR‖ p

W
1, p

V𝜀

+ ‖uR‖NW1,N

V𝜀

+ ‖uR‖NN
= ∫

Λ𝜀

′
2
(t𝜀uR )uR
tN−1
𝜀

dx + ∫
Λc
𝜀

̃′
2
(t𝜀uR )uR
tN−1
𝜀

dx − ∫
ℝN

′
1
(t𝜀uR )uR
tN−1
𝜀

dx

+ ∫
Λ𝜀

f (t𝜀uR )uR
tN−1
𝜀

dx + ∫
Λc
𝜀

f̃ (t𝜀uR )uR
tN−1
𝜀

dx.

(4.18)

Without loss of generality, we can choose V(0) = V0. Note that uR has compact support and V(𝜀x)→ V0 as

𝜀→ 0. Also observe that Λ𝜀 → ℝN as 𝜀→ 0, see Alves-Ji [[44], Lemma 3.7]. This yields that |Λc
𝜀
|→ 0 as 𝜀→ 0.

Consequently, due to Lebesgue’s dominated convergence theorem, we have for each R > 0

∫
ℝN

(|∇uR|t + V(𝜀x)|uR|t) dx→ ∫
ℝN

(|∇uR|t + V0|uR|t) dx as 𝜀→ 0 and t ∈ {p,N}.

Using again Lebesgue’s dominated convergence theorem leads to

∫
Λc
𝜀

̃′
2
(t𝜀uR )uR
tN−1
𝜀

dx→ 0 and ∫
Λc
𝜀

f̃ (t𝜀uR )uR
tN−1
𝜀

dx→ 0 as 𝜀→ 0.

Define

𝜀 = ∫
Λ𝜀

f (t𝜀uR )uR
tN−1
𝜀

dx + ∫
Λ𝜀

′
2
(t𝜀uR )uR
tN−1
𝜀

dx − ∫
ℝN

′
1
(t𝜀uR )uR
tN−1
𝜀

dx.

In view of (f4) and (2.5), we have

𝜀 ≥ 𝛾t𝜇−N𝜀 ∫
Λ𝜀

|uR|𝜇 dx + log(t𝜀 )
N∫
ℝN

|uR|N dx − ∫
Λc
𝜀

′
2
(t𝜀uR )uR
tN−1
𝜀

dx + A,

where A = ∫ℝN |uR|N(1+ log |uR|N) dx. From the definition of2, we have the estimate

′
2
(t𝜀uR )uR
tN−1
𝜀

= |uR|N log |t𝜀uR|N −
(
log((N − 1)𝛿 )N + N

)|uR|N + N(N − 1)𝛿

t𝜀
|uR|N−1.

This yields

∫
Λc
𝜀

′
2
(t𝜀uR )uR
tN−1
𝜀

dx ≤ ∫
Λc
𝜀

|uR|N log |t𝜀uR|N dx + N(N − 1)𝛿

t𝜀 ∫
ℝN

|uR|N−1 dx + B,
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where B = −
(
log((N − 1)𝛿 )N + N

)∫ℝN |uR|N dx. Gathering all these information and the fact that t𝜀 →∞ as 𝜀→

0, we obtain by setting C = A− B that

𝜀 ≥ 𝛾t𝜇−N𝜀 ∫
Λ𝜀

|uR|𝜇 dx + log(t𝜀 )
N∫
Λ𝜀

|uR|N dx − ∫
Λc
𝜀

|uR|N log |uR|N dx + C + o𝜀(1)→∞ as 𝜀→ 0.

It follows that 𝜀 →∞ as 𝜀→ 0. Letting 𝜀→ 0 in (4.18) and using the above estimates, we get a contradiction.

Hence, we conclude that {t𝜀}0<𝜀<𝜀0 is bounded. Choose tR > 0 such that J0(tRuR) = maxt≥0 J0(tuR). It follows that
tRuR ∈ 0.

Now, we claim that tR is bounded for R > 0 large enough. Indeed, if not, let tR →∞ as R→∞. In virtue of

⟨ J′
0
(tRuR ), tRuR⟩ = 0, we have

1

t
N− p

R

‖uR‖ p

W
1, p

V0

+ ‖uR‖NW1,N

V0

+ ‖uR‖NN
= ∫

ℝN

f (tRuR )uR
tN−1
R

dx + ∫
ℝN

′
2
(tRuR )uR
tN−1
R

dx − ∫
ℝN

′
1
(tRuR )uR
tN−1
R

dx.

(4.19)

Due to (4.17), one sees that

t
p−N
R

‖uR‖ p

W
1, p

V0

+ ‖uR‖NW1,N

V0

+ ‖uR‖NN → ‖u0‖NW1,N

V0

+ ‖u0‖NN as R→∞.

Moreover, using (f4), (2.5) and (4.17), one has

∫
ℝN

f (tRuR )uR
tN−1
R

dx + ∫
ℝN

′
2
(tRuR )uR
tN−1
R

dx − ∫
ℝN

′
1
(tRuR )uR
tN−1
R

dx

≥ 𝛾t𝜇−N
R ∫

ℝN

|uR|𝜇dx + (
log(tR )

N + 1
)
∫
ℝN

|uR|Ndx

+ ∫
ℝN

|uR|N log |uR|N dx→∞ as R→∞.

It follows that

∫
ℝN

f (tRuR )uR
tN−1
R

dx + ∫
ℝN

′
2
(tRuR )uR
tN−1
R

dx − ∫
ℝN

′
1
(tRuR )uR
tN−1
R

dx→∞ as R→∞.

We get a contradiction by using all of the above information and letting R→∞ in (4.19). This shows the claim.

Hence, up to a subsequence still denoted by the same symbol, tR → t1 (≥ 0) as R→∞. Employing the same ideas

as in Proposition 4.1, one can prove that 0 is bounded away from the origin. This together with tRuR ∈ 0

implies that there exists some 𝛽 > 0 such that ‖tRuR‖Y ≥ 𝛽 > 0. Now, sending R→∞ and using uR → u0 in Y as

R→∞, we can see that t1‖u0‖Y ≥ 𝛽 > 0. From this, we conclude that t1 ≠ 0. A direct computation implies that

J𝜀(t𝜀uR )− J0(t𝜀uR ) =
t
p
𝜀

p ∫
ℝN

(
V(𝜀x)− V0

)|uR| p dx + tN
𝜀

N ∫
ℝN

(
V(𝜀x)− V0

)|uR|N dx

+ ∫
Λc
𝜀

(2(t𝜀uR )− ̃2(t𝜀uR )
)
dx + ∫

Λc
𝜀

(
F(t𝜀uR )− F̃(t𝜀uR )

)
dx.

Using the fact that {t𝜀}0<𝜀<𝜀0 is bounded, uR has compact support, V(𝜀x)→ V0 as 𝜀→ 0 and 0 ≤ uR ≤ u0, we

obtain from Lebesgue’s dominated convergence theorem that
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t
℘
𝜀

℘ ∫
ℝN

(
V(𝜀x)− V0

)|uR|℘ dx→ 0 as 𝜀→ 0 for ℘ ∈ {p,N}.

In virtue of |Λc
𝜀
|→ 0 as 𝜀→ 0, by using (2 )(b), (3.2) and Lemma 2.13, we obtain from Lebesgue’s dominated

convergence theorem that

∫
Λc
𝜀

(2(t𝜀uR )− ̃2(t𝜀uR )
)
dx→ 0 and ∫

Λc
𝜀

(
F(t𝜀uR )− F̃(t𝜀uR )

)
dx→ 0 as 𝜀→ 0.

Gathering all of the above information, we deduce that

J𝜀(t𝜀uR )− J0(t𝜀uR ) = o𝜀(1) as 𝜀→ 0.

Consequently, we have

lim sup
𝜀→0

c𝜀 ≤ lim sup
𝜀→0

J𝜀(t𝜀uR ) ≤ J0(tRuR ). (4.20)

Notice that1(tRuR )→1(t1u0 ) and ′
1
(tRuR )tRuR →′

1
(t1u0 )t1u0 a.e. inℝN as R→∞. Now, using the fact that

{tR}R>0 is bounded for large R, 0 ≤ uR ≤ u0 and1 is nondecreasing for t ≥ 0, we infer that there exists K > 0

such that tR ≤ K and satisfying1(tRuR ) ≤ 1(Ku0 ) ∈ L1(ℝN ), thanks to u0 ∈ 0. Further, in light of Remark 2.8

and u0 ∈ 0, we also have′
1
(tRuR )tRuR ≤ N1(tRuR ) ≤ N1(Ku0 ) ∈ L1(ℝN ). Consequently, due to Lebesgue’s

dominated convergence theorem, we obtain

∫
ℝN

1(tRuR ) dx→ ∫
ℝN

1(t1u0 ) dx and ∫
ℝN

′
1
(tRuR )tRuR dx→ ∫

ℝN

′
1
(t1u0 )t1u0 dx as R→∞.

By using (2 )(b), (3.2) and Lemma 2.13, we obtain from Lebesgue’s dominated convergence theorem that

∫
ℝN

2(tRuR ) dx→ ∫
ℝN

2(t1u0 ) dx, ∫
ℝN

′
2
(tRuR )tRuR dx→ ∫

ℝN

′
2
(t1u0 )t1u0 dx,

∫
ℝN

F(tRuR ) dx→ ∫
ℝN

F(t1u0 ) dx and ∫
ℝN

f (tRuR )tRuR dx→ ∫
ℝN

f (t1u0 )t1u0 dx as R→∞.

Combining the above information, we deduce that J0(tRuR)→ J0(t1u0) and 0 = ⟨ J′
0
(tRuR ), tRuR⟩→ ⟨ J′

0
(t1u0 ), t1u0⟩

as R→∞. Next, we claim that t1 = 1. Indeed, if not, then either t1 > 1 or t1 < 1. To prove the claim, we first

observe that ⟨ J′
0
(t1u0 ), t1u0⟩ = 0 and hence, we have

1

t
N− p

1

‖u0‖ p

W
1, p

V0

+ ‖u0‖NW1,N

V0

+ ‖u0‖NN + ∫
ℝN

′
1
(t1u0 )u0
tN−1
1

dx

= ∫
ℝN

′
2
(t1u0 )u0
tN−1
1

dx + ∫
ℝN

f (t1u0 )u0
tN−1
1

dx.

(4.21)

On the other hand, since u0 ∈ 0, we have

‖u0‖ p

W
1, p

V0

+ ‖u0‖NW1,N

V0

+ ‖u0‖NN + ∫
ℝN

′
1
(u0 )u0 dx = ∫

ℝN

′
2
(u0 )u0 dx + ∫

ℝN

f (u0 )u0 dx. (4.22)

Subtracting (4.22) from (4.21), we get(
1

t
N− p

1

− 1

)
‖u0‖ p

W
1, p

V0

+ ∫
ℝN

(′
1
(t1u0 )

tN−1
1

−′
1
(u0 )

)
u0 dx

= ∫
ℝN

(′
2
(t1u0 )

tN−1
1

−′
2
(u0 )

)
u0 dx + ∫

ℝN

(
f (t1u0 )

tN−1
1

− f (u0 )

)
u0 dx.

(4.23)
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Now, we consider the case when t1 > 1. Recall that by Lemma 4.2, for any 0 < t1 < t2, we have

∫
ℝN

(′
1
(t2u)u

t
N−1
2

− ′
1
(t1u)u

t
N−1
1

)
dx < 0.

Replacing t1 = 1, t2 = t1 and u = u0, respectively in the above inequality, we infer that the left-hand side of (4.23)

is negative. On the other hand, by using (2 )(c) and (f3), one sees that the right-hand side of (4.23) is nonnegative.

This shows at once that t1 > 1 is impossible. Similarly, when t1 < 1, we can easily arrive at a contradiction. It

follows that t1 = 1 and hence, we obtain J0(tRuR)→ J0(u0) as R→∞. Consequently, we deduce from (4.20) that

lim sup
𝜀→0

c𝜀 ≤ lim
R→∞

J0(tRuR ) = J0(u0 ) = c0.

The proof is now complete. □

Finally, we shall be able to prove the following result.

Proposition 4.6. The problem (̃𝜀) has a positive ground state solution.
Proof. Let u𝜀 be a solution to (̃𝜀) as in Theorem 3.9 and hence, J𝜀(u𝜀) = c𝜀 and J′

𝜀
(u𝜀 ) = 0. Set u𝜀 = u+

𝜀
− u−

𝜀
.

It follows that J𝜀(u𝜀 ) = J𝜀
(
u+
𝜀

)
+ J𝜀

(
u−
𝜀

)
. Moreover, we claim that either u+

𝜀
= 0 or u−

𝜀
= 0. Indeed, if not, then

0 = ⟨ J′
𝜀
(u𝜀 ), u

+
𝜀
⟩ = ⟨ J′

𝜀

(
u+
𝜀

)
, u+
𝜀
⟩. It follows that u+

𝜀
∈ 𝜀. Similarly, we can also prove that u

−
𝜀
∈ 𝜀. Because of

Lemma 4.5(b), one sees that c𝜀 = J𝜀(u𝜀 ) = J𝜀
(
u+
𝜀

)
+ J𝜀

(
u−
𝜀

) ≥ 2c𝜀, which is a contradiction. Using that G
′
2
and

g are odd functions, we can assume that u𝜀 is a nonnegative solution of (̃𝜀). Employing a slight variant of a
Moser iteration argument explored in Lemma 4.10, it follows that u𝜀 ∈ L∞(ℝN ) ∩ C0,𝛼loc (ℝ

N ) for some 0 < 𝛼 < 1,

and therefore, from Harnack’s inequality (see Trudinger [72]), we obtain u𝜀(x) > 0 for a.e. x ∈ ℝN . This finishes

the proof. □

Hereafter, unless otherwise noted, the solution of (̃𝜀) provided in the previous proposition is denoted

by the notation u𝜀. The following corollary is a consequence of the Lions’ compactness result that appears in

Lemma 2.10.

Corollary 4.7. Let {un}n∈ℕ ⊂ Y𝜀 be a bounded sequence in Y𝜀 verifying lim supn→∞‖un‖N′

W1,N
<
𝛼N
𝛼0
. If there exists

R > 0 such that

lim inf
n→∞

sup
y∈ℝN ∫

BR( y)

|un|N dx = 0, (4.24)

then the following holds:

(a) ∫ℝN g(𝜀x, un )un dx→ 0 and ∫ℝN(𝜀x, un ) dx→ 0 as n→∞;

(b) ∫ℝNG′
2
(𝜀x, un )un dx→ 0 and ∫ℝNG2(𝜀x, un ) dx→ 0 as n→∞.

Proof. Given {un}n∈ℕ ⊂ Y𝜀 to be bounded in Y𝜀 and lim supn→∞‖un‖N′

W1,N
<
𝛼N
𝛼0
. It follows from (4.24) and

Lemma 2.10 that un → 0 in L𝜐(ℝN ) as n→∞ for any 𝜐 ∈ (N,+∞).

Now, by the hypothesis, there exist m > 0 and n0 ∈ ℕ large enough such that ‖un‖N′

W1,N
< m <

𝛼N
𝛼0

for all

n ≥ n0. Take r > 1 with r′ = r

r−1 > 1 and satisfying
1

r
+ 1

r′
= 1. Let r′ close to 1 and 𝛼 > 𝛼0 close to 𝛼0 such that we

still have r′𝛼‖un‖N′

W1,N
< m < 𝛼N for all n ≥ n0 and ũn = un‖un‖W1,N

. It follows from ()(b), (3.2), Hölder’s inequality,
Corollary 2.12 and Lemma 2.9 that for n large enough, we have

|||||||∫ℝN

g(𝜀x, un )un dx

|||||||
≤ 𝜏S−N

N
‖un‖NY𝜀 + C‖un‖𝜗𝜗r,



D. K. Mahanta et al.: On singularly perturbed (p, N)-Laplace Schrödinger equation — 39

where

C = 𝜅𝜏
⎛⎜⎜⎝supn≥n0∫

ℝN

Φ
(
r′𝛼‖un‖N′

W1,N |ũn|N′
)
dx

⎞⎟⎟⎠

1

r′

< +∞,

thanks to Lemma 2.13. Consequently, due to the boundedness of the sequence {un}n∈ℕ in Y𝜀 and un → 0 in

L𝜗r(ℝN ) as n→∞, there exists a constant C1 > 0 such that

lim sup
n→∞

|||||||∫ℝN

g(𝜀x, un )un dx

|||||||
≤ 𝜏S−N

N
C1.

Letting 𝜏 → 0, we obtain from the above inequality that

∫
ℝN

g(𝜀x, un )un dx→ 0 as n→∞.

Further, by using (3.3) and employing similar arguments explored as above, one has

∫
ℝN

(𝜀x, un ) dx→ 0 as n→∞.

On the other hand, by using ( )(b), ()(b) and the fact that un → 0 in L𝜐(ℝN ) as n→∞ for any 𝜐 ∈ (N,+∞),

we can easily deduce that (b) holds. This completes the proof. □

Now, we are ready to prove the following important compactness result.

Lemma 4.8. Let 𝜀n → 0 as n→∞ and {un}n∈ℕ = {u𝜀n}n∈ℕ ⊂ Y𝜀n
be a nonnegative sequence such that J𝜀n (un ) =

c𝜀n , J
′
𝜀n
(un ) = 0 and satisfying lim supn→∞‖un‖N′

W1,N
<
𝛼N
𝛼0
. Then, there exists a sequence {ỹn}n∈ℕ ⊂ ℝN such that

the translated sequence

𝑤n(x) = ũn(x) = un(x + ỹn )

has a convergent subsequence in Y. Furthermore, up to a subsequence, yn = 𝜀nỹn → y0 as n→∞ for some y0 ∈ Λ
and V(y0) = V0.

Proof. Following the ideas in the proof of Lemma 3.5, one sees that {un}n∈ℕ is bounded inY𝜀n . Consequently, due
to (V1), we conclude that {un}n∈ℕ is bounded in Y. Now, we claim that there exist R > 0, 𝛼 > 0 and a sequence

{ỹn}n∈ℕ ⊂ ℝN such that there holds

lim inf
n→∞ ∫

BR( ỹn )

|un|N dx ≥ 𝛼 > 0. (4.25)

Indeed, if (4.25) does not hold, it means that (4.24) holds. In virtue of Lemma 2.10, we obtain that un → 0 in L𝜐(ℝN )

as n→∞ for any 𝜐 ∈ (N,+∞). In addition, one can notice that the results of Corollary 4.7 also hold whenever 𝜀

is replaced by 𝜀n. By the hypothesis, we have ⟨ J′𝜀n (un ), un⟩ = 0. This fact together with Corollary 4.7 implies that

‖un‖ p

W
1, p

V𝜀n

+ ‖un‖NW1,N

V𝜀n

+ ‖un‖NN + ∫
ℝN

′
1
(un )un dx = on(1) as n→∞.

Now, employing similar arguments explored in Lemma 4.2, one has

0 ≤ ‖un‖ p

W
1, p

V𝜀n

+ ‖un‖NW1,N

V𝜀n

+ ‖un‖NN +min
{‖un‖l1

, ‖un‖N1

} ≤ on(1) as n→∞.

It follows at once that un → 0 inY𝜀n as n→∞. Consequently, due to (2.2) and Corollary 4.7, we infer that J𝜀n (un ) =
c𝜀n → 0 as n→∞, which is a contradiction because of Lemma 4.5(a). This shows that (4.25) holds. Set 𝑤n(x) =
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ũn(x) = un(x + ỹn ), then using the fact that ‖ ⋅ ‖
Y
is invariant under translation, we deduce that {𝑤n}n∈ℕ is

bounded in Y. Thus, up to a subsequence not relabeled, we may assume that there exists𝑤 ∈ Y such that

𝑤n ⇀ 𝑤 in Y, 𝑤n →𝑤 in Ls(BR ) and 𝑤n →𝑤 a.e. in ℝN as n→∞, (4.26)

and also there exists g ∈ Ls(BR) such that |𝑤n| ≤ g a.e. in ℝN for s ∈ [1,+∞) and for all R > 0, thanks to

Lemma 2.9. In view of (4.26), we obtain from (4.25) that

∫
BR(0)

|𝑤|N dx ≥ 𝛼 > 0.

This infers that𝑤 ≠ 0. Define yn = 𝜀nỹn. Now, our aim is to show that {yn}n∈ℕ is a bounded sequence inℝN . For

this, we prove the following claim.

Claim I: There holds limn→∞ dist(yn,Λ) = 0.

If the claim does not hold, then there exists 𝛿 > 0 and a subsequence of {yn}n∈ℕ, not relabeled, such that

dist(yn,Λ) ≥ 𝛿 for all n ∈ ℕ.

It follows that there exists some r > 0 such that Br(yn) ⊂ Λc for all n ∈ ℕ. Next, let 𝜙 ∈ C∞
c
(ℝN ) be such that

0 ≤ 𝜙 ≤ 1,𝜙 ≡ 1 inB1, and𝜙 ≡ 0 inBc
2
. For each j ∈ ℕ, define𝜙 j(⋅) = 𝜙( ⋅j ). Further, set𝜓 j(⋅) = 𝜓 ( ⋅j ) and𝜓 j(x) =

𝜙 j(x)𝑤(x). It follows that 0 ≤ 𝜓 j ≤ 𝑤, 𝜓 j ≡ 𝑤 in Bj, and 𝜓 j ≡ 0 in Bc
2 j
. Observe that supp(𝜓 j) ⊂ B2 j. By using

similar arguments explored in Lemma 4.5, we can obtain

𝜓 j →𝑤 in Y as j→∞. (4.27)

Now, by fixing j > 0 and using 𝜓 j as a test function along with the change of variable z ↦ x + ỹn and the

invariance by translation, we can see that

∑
t∈{ p,N}

⎛⎜⎜⎝∫ℝN

(|∇𝑤n|t−2∇𝑤n ⋅∇𝜓 j + V(𝜀nx + yn )𝑤
t−1
n
𝜓 j

)
dx

⎞⎟⎟⎠
+ ∫

ℝN

𝑤N−1
n
𝜓 j dx + ∫

ℝN

′
1
(𝑤n )𝜓 j dx

= ∫
ℝN

G′
2
(𝜀nx + yn,𝑤n )𝜓 j dx + ∫

ℝN

g(𝜀nx + yn,𝑤n )𝜓 j dx.

(4.28)

From the definitions of G′
2
together with ()(c), we can see that

∫
ℝN

G′
2
(𝜀nx + yn,𝑤n )𝜓 j dx = ∫

B r
𝜀n

G′
2
(𝜀nx + yn,𝑤n )𝜓 j dx + ∫

Bc r
𝜀n

G′
2
(𝜀nx + yn,𝑤n )𝜓 j dx

≤ 𝓁∫
B r
𝜀n

𝑤N−1
n
𝜓 j dx + ∫

Bc r
𝜀n

′
2
(𝑤n )𝜓 j dx

≤ 𝓁∫
ℝN

𝑤N−1
n
𝜓 j dx + ∫

Bc r
𝜀n

′
2
(𝑤n )𝜓 j dx.

Similarly, by using the definition of g and ()(d), one has

∫
ℝN

g(𝜀nx + yn,𝑤n )𝜓 j dx ≤ 𝓁′∫
ℝN

𝑤N−1
n
𝜓 j dx + ∫

Bc r
𝜀n

f (𝑤n )𝜓 j dx.
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Observe that lim supn→∞‖𝑤n‖N′

W1,N
<
𝛼N
𝛼0
holds. In virtue of

||||Bcr𝜀n (0)
||||→ 0 as n→∞, (2 )(b), (f1) and Lemma 2.13,

we obtain from Lebesgue’s dominated convergence theorem or Vitali’s theorem that

∫
Bc r
𝜀n

′
2
(𝑤n )𝜓 j dx→ 0 and ∫

Bc r
𝜀n

f (𝑤n )𝜓 j dx→ 0 as n→∞.

Using that 𝜓 j has compact support, (4.26) and (1 )(c), due to Lebesgue’s dominated convergence theorem, we

have

∫
ℝN

′
1
(𝑤n )𝜓 j dx→ ∫

ℝN

′
1
(𝑤)𝜓 j dx as n→∞. (4.29)

Note that {𝑤n}n∈ℕ is bounded inY. Now, arguing similarly as in Lemma 3.7, we can easily prove that∇𝑤n →∇𝑤
a.e. in ℝN as n→∞ and for any t ∈ {p,N} there hold

∫
ℝN

|∇𝑤n|t−2∇𝑤n ⋅∇𝜓 j → ∫
ℝN

|∇𝑤|t−2∇𝑤 ⋅∇𝜓 j dx as n→∞,

∫
ℝN

𝑤t−1
n
𝜓 j dx→ ∫

ℝN

𝑤t−1𝜓 j dx as n→∞.

(4.30)

Combining all the above information with (V1) and V0 + 1 ≥ 2(𝓁 + 𝓁′), we obtain by sending n→∞ in (4.28)

that

∫
ℝN

(|∇𝑤| p−2∇𝑤 ⋅∇𝜓 j + V0𝑤
p−1𝜓 j

)
dx + ∫

ℝN

(|∇𝑤|N−2∇𝑤 ⋅∇𝜓 j + 𝜂𝑤N−1𝜓 j

)
dx

+ ∫
ℝN

′
1
(𝑤)𝜓 jdx ≤ 0,

(4.31)

where 𝜂 = V0+1
2
. It follows immediately from (4.27) that𝜓 j ⇀ 𝑤 inLt(ℝN ) and∇𝜓 j ⇀ ∇𝑤 in [Lt(ℝN )]N as j→∞

for t ∈ {p,N}. Moreover, one has |∇𝑤|t−2∇𝑤 ∈ [L
t

t−1 (ℝN )]N and 𝑤t−1 ∈ L
t

t−1 (ℝN ) for t ∈ {p,N}. This shows
that

∫
ℝN

|∇𝑤|t−2∇𝑤 ⋅∇𝜓 j → ∫
ℝN

|∇𝑤|t dx and ∫
ℝN

𝑤t−1𝜓 j dx→ ∫
ℝN

𝑤t dx as j→∞.

Due to Lebesgue’s dominated convergence theorem, we also have

∫
ℝN

′
1
(𝑤)𝜓 j dx→ ∫

ℝN

′
1
(𝑤)𝑤 dx as j→∞.

Letting j→∞ in (4.31) and gathering all these information, we get

0 ≤ ∫
ℝN

(|∇𝑤| p + V0𝑤
p
)
dx + ∫

ℝN

(|∇𝑤|N + 𝜂𝑤N
)
dx + ∫

ℝN

′
1
(𝑤)𝑤 dx ≤ 0.

Following similar ideas explored in Lemma 4.2, we deduce from the above inequality that

0 ≤ ‖𝑤‖ p

W
1, p

V0

+ ‖𝑤‖N
W1,N
𝜂

+min
{‖𝑤‖l1

, ‖𝑤‖N1

} ≤ 0.

It follows that𝑤 = 0 in Y is a contradiction. This completes the proof of the claim. Hence, up to a subsequence,

still denoted by itself, we have yn → y0 ∈ Λ as n→∞.

Claim II: y0 ∈ Λ.
Choose 𝜃 ∈ [N,+∞) and R > 0, then the sequence 𝜒n(x) = 𝜒Λ(𝜀nx + yn) is bounded in L

𝜃(BR). Due to the

reflexivity of the space L𝜃(BR), there exists 𝜒R ∈ L𝜃(BR) such that 𝜒n ⇀ 𝜒R in L𝜃(BR) as n→∞. Suppose 0 <
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R1 < R2, then the functions 𝜒R1 and 𝜒R2 are obtained in the same way of 𝜒R satisfying 𝜒R1 = 𝜒R2 |BR1 . Hence, we
conclude there exists a measurable function 𝜒 ∈ L𝜃loc(ℝ

N ) with 0 ≤ 𝜒 ≤ 1 such that we have

𝜒n ⇀ 𝜒 in L𝜃(BR ) as n→∞ for all 𝜃 ∈ [N,+∞) and for all R > 0. (4.32)

Fix𝜓 ∈ C∞
c
(ℝN ) and R > 0 large enough with supp(𝜓 ) ⊂ BR. Following similar arguments as in Claim I, we can

see that when𝜓 j is replaced by𝜓 in (4.28), then (4.28) is also true for any𝜓 ∈ C∞
c
(ℝN ). Similarly, we can also see

that (4.29) and (4.30) also hold by replacing 𝜓 j by 𝜓 . Further, since 𝜓 has compact support and V ∈ C(ℝN ,ℝ),
therefore by (4.26) and Lebesgue’s dominated convergence theorem, one has

∫
ℝN

V(𝜀nx + yn )𝑤
t−1
n
𝜓 dx→ ∫

ℝN

V(y0 )𝑤
t−1𝜓 dx as n→∞ for t ∈ {p,N}.

Note that C∞
c
(ℝN ) is a dense subset of L℘(ℝN ) for any ℘ ∈ [1,+∞). Therefore, by using (4.26) and the growth

assumptions on′
2
and ̃′

2
, we obtain from Lebesgue’s dominated convergence theorem that

′
2
(𝑤n )𝜓 →′

2
(𝑤)𝜓 and ̃′

2
(𝑤n )𝜓 → ̃′

2
(𝑤)𝜓 in L

q

q−1 (BR ) as n→∞ for all q > N .

This together with (4.32) implies that

∫
ℝN

G′
2
(𝜀nx + yn,𝑤n )𝜓 dx→ ∫

ℝN

G̃′
2
(x,𝑤)𝜓 dx as n→∞,

where
G̃′
2
(x, s) = 𝜒 (x)′

2
(s)+ (1− 𝜒 (x))̃′

2
(s) for all (x, s) ∈ ℝN × [0,+∞),

G̃′
2
(x, s) = −G̃′

2
(x,−s) for all (x, s) ∈ ℝN × (−∞, 0].

Recall that lim supn→∞‖𝑤n‖N′

W1,N
<
𝛼N
𝛼0
holds. Now, by using (4.26), the growth assumptions on f and f̃ as well as

Lemma 2.13, we obtain from Vitali’s convergence theorem that

f (𝑤n )𝜓 → f (𝑤)𝜓 and f̃ (𝑤n )𝜓 → f̃ (𝑤)𝜓 in L
q

q−1 (BR ) as n→∞ for all q > N .

Consequently, from (4.32), we infer that

∫
ℝN

g(𝜀nx + yn,𝑤n )𝜓 dx→ ∫
ℝN

g̃(x,𝑤)𝜓 dx as n→∞,

where
g̃(x, s) = 𝜒 (x) f (s)+ (1− 𝜒 (x))̃f (s) for all (x, s) ∈ ℝN × [0,+∞),

g̃(x, s) = −g̃(x,−s) for all (x, s) ∈ ℝN × (−∞, 0].
Now, replacing 𝜓 in place of 𝜓 j in (4.28) and using the above convergence results, we obtain by letting n→∞
in (4.28) that

∫
ℝN

(|∇𝑤| p−2∇𝑤 ⋅∇𝜓 + V(y0 )𝑤
p−1𝜓

)
dx

+ ∫
ℝN

(|∇𝑤|N−2∇𝑤 ⋅∇𝜓 +
(
V(y0 )+ 1

)
𝑤N−1𝜓

)
dx + ∫

ℝN

′
1
(𝑤)𝜓 dx

= ∫
ℝN

G̃′
2
(x,𝑤)𝜓 dx + ∫

ℝN

g̃(x,𝑤)𝜓 dx.

(4.33)

Note that for q > N , we have

|G̃′
2
(x, s)| ≤ 𝓁|s|N−1 + C|s|q−1 and |g̃(x, s)| ≤ | f (s)| for all (x, s) ∈ ℝN ×ℝ.
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In addition, the maps t ↦
G̃′
2
(x,s)

sN−1
and t ↦ g̃(x,s)

sN−1
are nondecreasing on (0,+∞). Applying the density of C∞

c
(ℝN )

in Y, we infer from (4.33) that𝑤 is a critical point for J̃, that is, J̃′(𝑤) = 0, where J̃:Y→ ℝ is defined by

J̃(u) = 1

p
‖u‖ p

W
1, p

V( y0 )

+ 1

N

(
‖u‖N

W1,N

V( y0 )

+ ‖u‖N
N

)
+ ∫

ℝN

1(u) dx

− ∫
ℝN

G̃2(x, u) dx − ∫
ℝN

̃(x, u) dx for all u ∈ Y,

where

G̃2(x, s) =
s

∫
0

G̃′
2
(x, t) dt and ̃(x, s) =

s

∫
0

g̃(x, t) dt for all (x, s) ∈ ℝN ×ℝ.

We define JV( y0 ):Y→ ℝ by

JV( y0 )(u) =
1

p
‖u‖ p

W
1, p

V( y0 )

+ 1

N

(
‖u‖N

W1,N

V( y0 )

+ ‖u‖N
N

)
+ ∫

ℝN

1(u) dx

− ∫
ℝN

2(u) dx − ∫
ℝN

F(u) dx for all u ∈ Y.

Further, let

V( y0 )
=

{
u ∈ Y∖{0}: ⟨ J′

V( y0 )
(u), u⟩ = 0

}
,

cV( y0 ) = inf
u∈V( y0 )

JV( y0 )(u) = inf
u∈Y∖{0}

max
t≥0 JV( y0 )(tu).

Denote0 = {u ∈ Y𝜀: | supp(|u|) ∩ supp𝜒 | > 0}. Now, using the growth assumptions on G̃′
2
and g̃ and employ-

ing similar arguments explored in Lemma 3.2, we can deduce that for fixed u ∈ 0∖{0} with u ≥ 0 a.e. in ℝN ,

J̃(tu)→ −∞ as t→∞. In virtue of𝑤 ≠ 0 and J̃′(𝑤) = 0, it follows that𝑤 ∈ 0. Consequently, we have

J̃(𝑤) = max
t≥0 J̃(t𝑤) ≥ max

t≥0 JV( y0 )(t𝑤) ≥ cV( y0 ).

Following similarly ideas as in Lemma 3.5 and using the change of variable z ↦ x + ỹn together with ()(d) and

N(x, s) ≤ sg(x, s) for all (x, s) ∈ ℝN × [0,+∞), we get

c𝜀n = J𝜀n (un )−
1

N
⟨ J′
𝜀n
(un ), un⟩

=
(
1

p
− 1

N

)
∫
ℝN

(|∇𝑤n| p + V(𝜀nx + yn )|𝑤n| p) dx

+ ∫
ℝN

(
1

N
g(𝜀nx + yn,𝑤n )𝑤n − (𝜀nx + yn,𝑤n )

)
dx

+ ∫
ℝN

(
1

N
|𝑤n|N +2(𝑤n )−

1

N
′

2
(𝑤n )𝑤n +

1

N
G′
2
(𝜀nx + yn,𝑤n )𝑤n − G2(𝜀nx + yn,𝑤n )

)
dx

≥
(
1

p
− 1

N

)
∫
BR

(|∇𝑤n| p + V(𝜀nx + yn )|𝑤n| p) dx

+ ∫
BR

(
1

N
g(𝜀nx + yn,𝑤n )𝑤n − (𝜀nx + yn,𝑤n )

)
dx
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+ ∫
BR

(
1

N
|𝑤n|N +2(𝑤n )−

1

N
′

2
(𝑤n )𝑤n +

1

N
G′
2
(𝜀nx + yn,𝑤n )𝑤n − G2(𝜀nx + yn,𝑤n )

)
dx

for all R > 0. Now, from (4.26) and the growth assumptions on′
2
and ̃′

2
together with Lebesgue’s dominated

convergence implies that

′
2
(𝑤n )𝑤n →′

2
(𝑤)𝑤 and ̃′

2
(𝑤n )𝑤n → ̃′

2
(𝑤)𝑤 in L

q+1
q (BR ) as n→∞ for all q > N .

The above result together with (4.32) gives

∫
BR

G′
2
(𝜀nx + yn,𝑤n )𝑤n dx→ ∫

BR

G̃′
2
(x,𝑤)𝑤 dx as n→∞.

Likewise, we can prove that

∫
BR

G2(𝜀nx + yn,𝑤n ) dx→ ∫
BR

G̃2(x,𝑤) dx as n→∞.

Further, using lim supn→∞‖𝑤n‖N′

W1,N
<
𝛼N
𝛼0
, (4.26), the growth assumptions on f and f̃ , and Lemma 2.13, we deduce

from Vitali’s convergence theorem that

f (𝑤n )𝑤n → f (𝑤)𝑤 and f̃ (𝑤n )𝑤n → f̃ (𝑤)𝑤 in L
q+1
q (BR ) as n→∞ for all q > N .

Now, it follows from (4.32) that

∫
BR

g(𝜀nx + yn,𝑤n )𝑤 dx→ ∫
BR

g̃(x,𝑤)𝑤 dx as n→∞.

Similarly, we can prove that

∫
BR

(𝜀nx + yn,𝑤n ) dx→ ∫
BR

̃(x,𝑤) dx as n→∞.

In a similar fashion, we obtain from Lebesgue’s dominated convergence theorem that

∫
BR

2(𝑤n ) dx→ ∫
BR

2(𝑤) dx and ∫
BR

′
2
(𝑤n )𝑤n dx→ ∫

BR

′
2
(𝑤)𝑤 dx as n→∞.

Gathering all the above information, we obtain by using Fatou’s lemma and Lemma 4.5(c) that

c0 ≥
(
1

p
− 1

N

)
∫
BR

(|∇𝑤| p + V(y0 )|𝑤| p) dx + ∫
BR

(
1

N
g̃(x,𝑤)𝑤− ̃(x,𝑤)) dx

+ ∫
BR

(
1

N
|𝑤|N +2(𝑤)−

1

N
′

2
(𝑤)𝑤+ 1

N
G̃′
2
(x,𝑤)𝑤− G̃2(x,𝑤)

)
dx.

Letting R→∞ in the above inequality, we get

c0 ≥
(
1

p
− 1

N

)
∫
ℝN

(|∇𝑤| p + V(y0 )|𝑤| p) dx + ∫
ℝN

(
1

N
g̃(x,𝑤)𝑤− ̃(x,𝑤)) dx

+ ∫
ℝN

(
1

N
|𝑤|N +2(𝑤)−

1

N
′

2
(𝑤)𝑤+ 1

N
G̃′
2
(x,𝑤)𝑤− G̃2(x,𝑤)

)
dx
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= J̃(𝑤)− 1

N
⟨̃J(𝑤),𝑤⟩ = J̃(𝑤) ≥ cV( y0 ).

It follows from the above inequality and the definitions of c0 and cV( y0 ) thatV(y0 ) ≤ V0 = inf
x∈Λ

V(x). Consequently,

by (V2), we have V(y0) = V0 and y0 ∈ Λ. This finishes the proof of the claim.
To finish the proof, we only have to prove𝑤n →𝑤 in Y as n→∞. For this, we have the following claim.

Claim III:𝑤n →𝑤 in Y as n→∞.

Notice that

ℝN =
(
Λn ∪ {𝑤n ≤ t1}

)
∪
(
Λc
n
∩ {𝑤n > t1}

)
,

whereΛn = Λ−yn
𝜀n

. From the definitions of G2 and2 along with ()(d), one has
1

N
G′
2
(𝜀nx + yn,𝑤n )𝑤n − G2(𝜀nx + yn,𝑤n ) ≥ 0 on Λc

n
∩ {𝑤n > t1},

1

N
g(𝜀nx + yn,𝑤n )𝑤n − (𝜀nx + yn,𝑤n ) ≥ 0 on Λc

n
∩ {𝑤n > t1},

and

1

N
|𝑤n|N +2(𝑤n )−

1

N
′

2
(𝑤n )𝑤n >

(
(N − 1)𝛿

)N
N

> 0 for 𝑤n > t1.

It follows from𝑤n →𝑤 a.e. in ℝN ,∇𝑤n →∇𝑤 a.e. in ℝN , yn → y0 and 𝜒Λn
→ 1 a.e. in ℝN as n→∞ that

(i)
(|∇𝑤n| p + V(𝜀nx + yn )|𝑤n| p)𝜒Λc

n
∩{𝑤n>t1} → 0 a.e. in ℝN as n→∞,

(ii)
(

1

N
G′
2
(𝜀nx + yn,𝑤n )𝑤n − G2(𝜀nx + yn,𝑤n )

)
𝜒Λc

n
∩{𝑤n>t1} → 0 a.e. in ℝN as n→∞,

(iii)
(

1

N
|𝑤n|N +2(𝑤n )− 1

N
′

2
(𝑤n )𝑤n

)
𝜒Λc

n
∩{𝑤n>t1} → 0 a.e. in ℝN as n→∞,

(iv)
(

1

N
g(𝜀nx + yn,𝑤n )𝑤n − (𝜀nx + yn,𝑤n )

)
𝜒Λc

n
∩{𝑤n>t1} → 0 a.e. in ℝN as n→∞.

In virtue of G̃′
2
(x, s) ≤ ′(s), g̃′

2
(x, s) ≤ f (s) for all (x, s) ∈ ℝN × [0,+∞) and V(y0) = V0, we obtain from

⟨̃J′(𝑤),𝑤⟩ = 0 that ⟨ J′
0
(𝑤),𝑤⟩ ≤ 0. Define 𝜉: (0,+∞)→ ℝ by 𝜉(t) = ⟨ J′

0
(t𝑤), t𝑤⟩. It follows immediately that

𝜉(1) ≤ 0. Choose 0 < t < 1, then by using (1 )(b), (2 )(b), (3.2) with 𝜗 = q > N and Corollary 2.12, we get

𝜉(t) ≥ tN
(
‖𝑤‖ p

W
1, p

V0

+ ‖𝑤‖N
W1,N

V0

+ (1− 𝜏 )‖𝑤‖N
N

)
− tq

⎛⎜⎜⎝C‖𝑤‖qq + 𝜅𝜏∫
ℝN

|𝑤|qΦ(𝛼|𝑤|N′
) dx

⎞⎟⎟⎠.

Due to the arbitrariness of 𝜏 > 0,we can choose 𝜏 > 0 small enough such thatV0 + 1− 𝜏 =:𝜎 > 0. Consequently,

we have

𝜉(t) ≥ tN
(
‖𝑤‖ p

W
1, p

V0

+ ‖𝑤‖N
W1,N
𝜎

)
− tq

⎛⎜⎜⎝C‖𝑤‖qq + 𝜅𝜏∫
ℝN

|𝑤|qΦ(𝛼|𝑤|N′
) dx

⎞⎟⎟⎠.
This shows that there exist constants C1, C2 > 0 such that

𝜉(t) ≥ C1t
N − C2t

q > 0 for t ∈ (0, 1) sufficiently small.

Due to the continuity of 𝜉, we infer that there exists t0 ∈ (0, 1] such that 𝜉(t0) = 0, that is, t0𝑤 ∈ 0. Now, com-

bining all the above information, we obtain from the change of variable, Lemma 4.5(c), Fatou’s Lemma and (f3)

that
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c0 ≥ lim sup
n→∞

c𝜀n = lim sup
n→∞

J𝜀n (un ) = lim sup
n→∞

[
J𝜀n (un )−

1

N
⟨ J′
𝜀n
(un ), un⟩]

= lim sup
n→∞

⎡⎢⎢⎣
(
1

p
− 1

N

)
∫
ℝN

(|∇𝑤n| p + V(𝜀nx + yn )|𝑤n| p)dx

+ ∫
ℝN

(
1

N
|𝑤n|N +2(𝑤n )−

1

N
′

2
(𝑤n )𝑤n

)
dx

+ ∫
ℝN

(
1

N
g(𝜀nx + yn,𝑤n )𝑤n − (𝜀nx + yn,𝑤n )

)
dx

+ ∫
ℝN

(
1

N
G′
2
(𝜀nx + yn,𝑤n )𝑤n − G2(𝜀nx + yn,𝑤n )

)
dx

⎤⎥⎥⎦
≥ lim inf

n→∞

⎡⎢⎢⎣
(
1

p
− 1

N

)
∫
ℝN

(|∇𝑤n| p + V(𝜀nx + yn )|𝑤n| p)𝜒Λn
dx

+ ∫
ℝN

(
1

N
f (𝑤n )𝑤n − F(𝑤n )

)
𝜒Λn

dx

+ ∫
ℝN

1

N
|𝑤n|N𝜒Λn

dx

+
(
1

p
− 1

N

)
∫
ℝN

(|∇𝑤n| p + V(𝜀nx + yn )|𝑤n| p)𝜒Λc
n
∩{𝑤n>t1} dx

+ ∫
ℝN

(
1

N
|𝑤n|N +2(𝑤n )−

1

N
′

2
(𝑤n )𝑤n

)
𝜒Λc

n
∩{𝑤n>t1} dx

+ ∫
ℝN

(
1

N
G′
2
(𝜀nx + yn,𝑤n )𝑤n − G2(𝜀nx + yn,𝑤n )

)
𝜒Λc

n
∩{𝑤n>t1} dx

+ ∫
ℝN

(
1

N
g(𝜀nx + yn,𝑤n )𝑤n − (𝜀nx + yn,𝑤n )

)
𝜒Λc

n
∩{𝑤n>t1}dx

⎤⎥⎥⎦

(4.34)

≥
(
1

p
− 1

N

)
∫
ℝN

(|∇𝑤| p + V0|𝑤| p) dx + 1

N ∫
ℝN

|𝑤|N dx + ∫
ℝN

(
1

N
f (𝑤)𝑤− F(𝑤)

)
dx

≥
(
1

p
− 1

N

)
t
p

0 ∫
ℝN

(|∇𝑤| p + V0|𝑤| p) dx + tN
0

N ∫
ℝN

|𝑤|N dx

+ ∫
ℝN

(
1

N
f (t0𝑤)t0𝑤− F(t0𝑤)

)
dx

= J0(t0𝑤)−
1

N
⟨ J′

0
(t0𝑤, t0𝑤⟩ = J0(t0𝑤) ≥ c0.

It follows that t0 = 1. Moreover, due to the simple change of variable, we obtain the following convergences

∫
ℝN

(|∇𝑤n|t + V(𝜀nx + yn )|𝑤n|t) dx→ ∫
ℝN

(|∇𝑤|t + V0|𝑤|t) dx as n→∞ for t ∈ {p,N}
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and

∫
ℝN

′
1
(𝑤n )𝑤n dx→ ∫

ℝN

′
1
(𝑤)𝑤 dx as n→∞.

Consequently, it is not difficult to show that

∫
ℝN

|𝑤n|t dx→ ∫
ℝN

|𝑤|t dx as n→∞ for t ∈ {p,N}.

This implies that ‖𝑤n‖W1,t

V0

→ ‖𝑤‖W1,t

V0

as n→∞ for t ∈ {p,N}. Now, arguing similarly as in Lemma 3.8, we can
deduce that𝑤n →𝑤 in Y as n→∞. This completes the proof. □

Remark 4.9. In view of (4.34), we deduce that there holds lim𝜀→0c𝜀 = c0.

To study the behavior of the maximum points of the solutions, the following lemma is quite important.

The proof relies on the appropriate Moser iteration argument found in Moser [73] and the notions discussed in

Ambrosio [74].

Lemma 4.10. Let {𝑤n}n∈ℕ be a sequence that appears in Lemma 4.8. Then, {𝑤n}n∈ℕ ⊂ L∞(ℝN ) and there is a

constant K > 0 such that ‖𝑤n‖L∞(ℝN ) ≤ K for all n ∈ ℕ.

In addition, we have

lim|x|→∞
sup
n∈ℕ

|𝑤n(x)| = 0. (4.35)

Proof. For all L > 0 and 𝛽 > 1, we define 𝛾(𝑤n ) = 𝑤n𝑤
N(𝛽−1)
n,L

and un,L = 𝑤n𝑤
𝛽−1
n,L

, where 𝑤n,L = min{𝑤n, L}.
Note that the function 𝛾 is an increasing function, so we have (a− b)(𝛾(a)− 𝛾(b)) ≥ 0 for all a, b ∈ ℝ. Define

Λ(t) = |t|N
N

and Γ(t) =
t

∫
0

(𝛾 ′(s))
1

N ds.

Invoking Lemma 29 of Zhang-Sun-Liang-Thin [57], one sees that

Λ′(a− b)(𝛾(a)− 𝛾(b)) ≥ |Γ(a)− Γ(b)|N for all a, b ∈ ℝ.

Consequently, there holds
1

𝛽
𝑤n𝑤

𝛽−1
n,L

≤ Γ(𝑤n ) ≤ 𝑤n𝑤
𝛽−1
n,L

.

Let 𝜂 > 0 be specified later and S be the best Sobolev constant of the embeddingW1,N (ℝN ) ↪ LN
∗
(ℝN ) for any

N∗ > N . Using the fact that ‖ ⋅ ‖W1,N
𝜂
is an equivalent norm forW 1,N (ℝN ), the last inequality yields

‖𝑤n𝑤
𝛽−1
n,L

‖N
N∗ ≤ C1𝛽

N
⎛⎜⎜⎝∫ℝN

𝑤
N(𝛽−1)
n,L

|∇𝑤n|N dx + 𝜂∫
ℝN

𝑤N
n
𝑤

N(𝛽−1)
n,L

dx

⎞⎟⎟⎠, (4.36)

where C1 = C1(N, 𝛽, S) > 0 is a constant. Due to𝑤n,L ≤ L, we have′
1
(𝑤n )𝛾(𝑤n ) ≤ LN(𝛽−1)′

1
(𝑤n )𝑤n ∈ L1(ℝN ).

By direct calculation, one has

∫
ℝN

|∇𝑤n| p−2∇𝑤n ⋅∇(𝛾(𝑤n )) dx = ∫
ℝN

𝑤
N(𝛽−1)
n,L

|∇𝑤n| p dx + N(𝛽 − 1) ∫
{𝑤n≤L}

𝑤
N(𝛽−1)
n,L

|∇𝑤n| p dx ≥ 0,

∫
ℝN

|∇𝑤n|N−2∇𝑤n ⋅∇(𝛾(𝑤n )) dx = ∫
ℝN

𝑤
N(𝛽−1)
n,L

|∇𝑤n|N dx + N(𝛽 − 1) ∫
{𝑤n≤L}

𝑤
N(𝛽−1)
n,L

|∇𝑤n|N dx
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≥ ∫
ℝN

𝑤
N(𝛽−1)
n,L

|∇𝑤n|N dx,

and

∫
ℝN

V(𝜀nx + yn )(𝑤
p−1
n +𝑤N−1

n
)𝛾(𝑤n ) dx ≥ V0∫

ℝN

𝑤
p
n𝑤

N(𝛽−1)
n,L

dx + V0∫
ℝN

𝑤N
n
𝑤

N(𝛽−1)
n,L

dx

≥ V0∫
ℝN

𝑤N
n
𝑤

N(𝛽−1)
n,L

dx.

Combining all the above information and using (1 )(b), ()(a), ()(b) and (3.2), we obtain by taking 𝛾(𝑤n) as

test function in the weak formulation of the problem solved by𝑤n that

∫
ℝℕ

𝑤
N(𝛽−1)
n,L

|∇𝑤n|N dx + 𝜂∫
ℝℕ

𝑤N
n
𝑤

N(𝛽−1)
n,L

dx

≤ Cq∫
ℝℕ

𝑤
q
n𝑤

N(𝛽−1)
n,L

dx + 𝜅𝜏∫
ℝℕ

𝑤𝜗
n
𝑤

N(𝛽−1)
n,L

Φ
(
𝛼𝑤N′

n

)
dx,

(4.37)

wherewe have used that 𝜏 ∈ (0,𝓁′] to be small enough and 𝜂 = V0 + 1− (𝓁 + 𝓁′) > 0, thanks to V0 + 1 ≥ 2(𝓁 +
𝓁′). Consequently, we obtain from (4.36) and (4.37) that

‖𝑤n𝑤
𝛽−1
n,L

‖N
N∗ ≤ C1𝛽

N
⎛⎜⎜⎝Cq∫ℝN

𝑤
q
n𝑤

N(𝛽−1)
n,L

dx + 𝜅𝜏∫
ℝN

𝑤𝜗
n
𝑤

N(𝛽−1)
n,L

Φ
(
𝛼𝑤N′

n

)
dx

⎞⎟⎟⎠. (4.38)

By the hypothesis, we have lim supn→∞‖𝑤n‖N′

W1,N
<
𝛼N
𝛼0
. Following similar arguments as in Fiscella-Pucci [[25],

Theorem 1.1], up to a subsequence, not relabeled, we may suppose that

sup
n∈ℕ

‖𝑤n‖N′

W1,N <
𝛼N
𝛼0

. (4.39)

Set min{𝜗, q} ≥ 2N and take 𝜇, 𝜇′, 𝜎 > 1 such that
1

𝜇
+ 1

𝜇′
= 1. It is easy to see that 𝜇′(q− N) ≥ N and

𝜎(𝜗− N) ≥ N . Further, we select t > 1 such that 1

t
+ 1

𝜎
+ 1

𝜇
= 1. In view of (4.39), we can find m > 0 such that

‖𝑤n‖N′

W1,N
< m <

𝛼N
𝛼0

for all n ∈ ℕ. Let t > 1 be close to 1 and 𝛼 > 𝛼0 be close to 𝛼0 such that we still have

𝛼t‖𝑤n‖N′

W1,N
< m < 𝛼N for all n ∈ ℕ and 𝑤̃n = 𝑤n‖𝑤n‖W1,N

. Using that {𝑤n}n∈ℕ is bounded in Y, it follows from

the generalized Hölder inequality, Corollary 2.12 and Lemma 2.9 that

Cq∫
ℝℕ

𝑤
q
n𝑤

N(𝛽−1)
n,L

dx + 𝜅𝜏∫
ℝℕ

𝑤𝜗
n
𝑤

N(𝛽−1)
n,L

Φ
(
𝛼𝑤N′

n

)
dx

= Cq∫
ℝℕ

𝑤
q−N
n uN

n,L
dx + 𝜅𝜏∫

ℝℕ

𝑤𝜗−N
n

uN
n,L
Φ
(
𝛼𝑤N′

n

)
dx

≤
⎡⎢⎢⎢⎣
Cq‖𝑤n‖q−N𝜇′(q−N ) + 𝜅𝜏‖𝑤n‖𝜗−N𝜎(𝜗−N )

⎛⎜⎜⎝∫ℝN

Φ
(
𝛼t‖𝑤n‖N′

W1,N |𝑤̃n|N′
)
dx

⎞⎟⎟⎠

1

t ⎤⎥⎥⎥⎦
‖un,L‖NN𝜇

≤ C̃‖un,L‖NN𝜇 = C̃‖𝑤n𝑤
𝛽−1
n,L

‖N
N𝜇

≤ C̃‖𝑤n‖N𝛽N𝛽𝜇,

(4.40)
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where the last inequality is obtained by using𝑤n,L ≤ 𝑤n and C̃ is defined as

C̃ = Cqsup
n∈ℕ

‖𝑤n‖q−N𝜇′(q−N ) + 𝜅𝜏sup
n∈ℕ

‖𝑤n‖𝜗−N𝜎(𝜗−N )

⎛⎜⎜⎝supn∈ℕ∫
ℝN

Φ
(
𝛼t‖𝑤n‖N′

W1,N |𝑤̃n|N′
)
dx

⎞⎟⎟⎠

1

t

< +∞,

thanks to Lemma 2.13. In virtue of (4.38) and (4.40), we deduce that there exists a constant C > 0 such that

‖𝑤n𝑤
𝛽−1
n,L

‖N
N∗ ≤ C𝛽N‖𝑤n‖N𝛽N𝛽𝜇 .

By applying Fatou’s lemma as L→∞, we obtain from the above inequality by setting N𝜇 = N∗∗ < N∗ that

‖𝑤n‖N∗𝛽 ≤ C
1

N𝛽 𝛽
1

𝛽 ‖𝑤n‖N∗∗𝛽 . (4.41)

Define 𝛽 = N∗

N∗∗ > 1, then one has N∗∗𝛽2 = N∗𝛽 . Replacing 𝛽 with 𝛽2 in (4.41), we get

∥ 𝑤n ∥N∗𝛽2 ≤ C
1

N𝛽2 𝛽
2

𝛽2 ∥ 𝑤n ∥N∗∗𝛽2 = C
1

N𝛽2 𝛽
2

𝛽2 ∥ 𝑤n ∥N∗𝛽

≤ C
1

N

(
1

𝛽
+ 1

𝛽2

)
𝛽

1

𝛽
+ 2

𝛽2 ∥ 𝑤n ∥N∗𝛽 .

Using the fact that ‖𝑤n‖N∗𝛽 ≤ C2 for all n ∈ ℕ, where C2 > 0 is a constant and iterating the formula (4.41), we

get

‖𝑤n‖N∗𝛽m ≤ C
Σm
i=1

1

N𝛽i 𝛽
Σm
i=1

i

𝛽i ‖𝑤n‖N∗𝛽 ≤ C2C
Σm
i=1

1

N𝛽i 𝛽
Σm
i=1

i

𝛽i for all n,m ∈ ℕ.

By d’Alembert’s ratio test, the seriesΣ∞
i=1N

−1𝛽−i andΣ∞
i=1i𝛽

−i are convergent. Therefore, by lettingm→∞ in the

above inequality, we obtain ‖𝑤n‖L∞(ℝN ) ≤ K for all n ∈ ℕ (4.42)

for some constant K > 0. Now, employing the standard regularity theory for quasilinear elliptic equations (see

the works in [75]–[80]), we conclude that𝑤n ∈ C0,𝛼loc (ℝ
N ) for some 0 < 𝛼 < 1 and for each n ∈ ℕ. Moreover, due

to the embedding Y ↪ X, Corollary 2.4 and (4.42), we deduce that {𝑤n}n∈ℕ is bounded in X, ‖𝑤n‖𝜃 ≤ C for all

n ∈ ℕ and 𝜃 ∈ [p, p∗] ∪ [N,+∞]. Moreover, 𝑤n →𝑤 in L𝜃(ℝN ),𝑤n →𝑤 a.e. in ℝN as n→∞ and there exists

g ∈ L𝜃(ℝN ) such that |𝑤n| ≤ g a.e. inℝN for all 𝜃 ∈ [p, p∗] ∪ [N,+∞). It is easy to see that𝑤n solves (in a weak

sense) [
−Δ p𝑤n + V0𝑤

p−1
n

]
+

[
−ΔN𝑤n + 𝜂𝑤N−1

n

] ≤ Cq𝑤
q−1
n + 𝜅𝜏𝑤𝜗−1n

Φ
(
𝛼𝑤N′

n

)
in ℝN . (4.43)

Define the operator T:X→ X
∗ by

⟨T(u), 𝑣⟩ = ∫
ℝN

(|∇u| p−2∇u ⋅∇𝑣+ V0|u| p−2u𝑣) dx + ∫
ℝN

(|∇u|N−2∇u ⋅∇𝑣+ 𝜂|u|N−2u𝑣) dx
for all u, 𝑣 ∈ X. By direct computation, we can deduce that T is coercive. Further, employing a slight variant

argument explored by Liu-Zheng [[81], Lemmas 3.1 and 3.2], it follows that T is monotone. Next, we prove that

T is hemicontinuous, that is, the function [0, 1] ∋ t ↦ ⟨T(u+ tv),𝑤⟩ is continuous for all u, 𝑣,𝑤 ∈ X. For this

purpose, let {tn}n∈ℕ ⊂ [0, 1] be such that tn → t as n→∞. By the discrete Hölder inequality, for any 𝛼 ∈ (0, 1)

and a, b, c, d ≥ 0, there holds

a𝛼c1−𝛼 + b𝛼d1−𝛼 ≤ (a+ b)𝛼(c + d)1−𝛼 .

This together with Hölder’s inequality implies that for any 𝜓 ∈ {u, 𝑣} and k > 0, we have

∫
ℝN

(|∇𝜓 |t−1|∇𝑤|+ k|𝜓 |t−1|𝑤|) dx ≤ max{1, k}‖𝜓‖t−1
W1,t‖𝑤‖W1,t < +∞, (4.44)

where t ∈ {p,N}. In virtue of (4.44), for any t ∈ {p,N} and k > 0, we have

||||∇(u+ tn𝑣)|t−2∇(u+ tn𝑣) ⋅∇𝑤+ k|u+ tn𝑣|t−2(u+ tn𝑣)𝑤
|||



50 — D. K. Mahanta et al.: On singularly perturbed (p, N)-Laplace Schrödinger equation

≤ C
[(|∇u|t−1|∇𝑤|+ k|u|t−1|𝑤|)+ (|∇𝑣|t−1|∇𝑤|+ k|𝑣|t−1|𝑤|)] ∈ L1(ℝN )

for some constant C > 0. Hence, by Lebesgue’s dominated convergence theorem, we ensure that

⟨T(u+ tn𝑣),𝑤⟩→ ⟨T(u+ t𝑣),𝑤⟩ as n→∞.

It follows that T is hemicontinuous. Consequently, by the Browder-Minty theorem (see, for example, Zeidler [[82],

Theorem 26.A]), the operator T is surjective, that is, for all 𝑣 ∈ X
∗, there exists u ∈ X such that T(u) = 𝑣.

Note that (r − 1)N > N(N − 1) for any r ∈ {q, 𝜗}. Therefore, by using Hölder’s inequality, (4.39),

Corollary 2.12 and Lemma 2.13, one has Cq𝑤
q−1
n + 𝜅𝜏𝑤𝜗−1n

Φ
(
𝛼𝑤N′

n

)
∈ L

N

N−1 (ℝN ) ⊂ X
∗, thanks to the bounded-

ness of {𝑤n}n∈ℕ in X. Consequently, there exists 𝑣n ∈ X such that it solves (in a weak sense)

[
−Δ p𝑣n + V0|𝑣n| p−2𝑣n]+ [

−ΔN𝑣n + 𝜂|𝑣n|N−2𝑣n] = Cq𝑤
q−1
n + 𝜅𝜏𝑤𝜗−1n

Φ
(
𝛼𝑤N′

n

)
in ℝN . (4.45)

Putting 𝑣n = 𝑣+n − 𝑣−
n
and testing (4.45) by 𝑣−

n
, we obtain by using𝑤n ≥ 0 that

− ‖𝑣−
n
‖ p

W
1, p

V0

− ‖𝑣−
n
‖N
W1,N
𝜂

= ∫
ℝN

[(|∇𝑣n| p−2∇𝑣n ⋅∇𝑣−n + V0|𝑣n| p−2𝑣n𝑣−n )+ (|∇𝑣n|N−2∇𝑣n ⋅∇𝑣−n + 𝜂|𝑣n|N−2𝑣n𝑣−n )] dx

= − ∫
{𝑣n≤0}

(
Cq𝑤

q−1
n + 𝜅𝜏𝑤𝜗−1n

Φ
(
𝛼𝑤N′

n

))
𝑣n dx ≥ 0.

This shows that ‖𝑣−
n
‖
W

1, p

V0

= ‖𝑣−
n
‖W1,N

𝜂
= 0, that is, ‖𝑣−

n
‖
X
= 0. It follows that 𝑣−

n
= 0 a.e. in ℝN , that is, 𝑣n ≥

0 a.e. in ℝN . Inspired by the comparison principle as used in Brasco-Prinari-Zagati [[83], Theorem 4.1] and in

Corrêa-Corrêa-Figueiredo [[84], Lemma 2.2],we get from (4.43) and (4.45) that 0 ≤ 𝑤n ≤ 𝑣n a.e. inℝN . Oncemore,

by testing (4.45) with 𝑣n, we have

‖𝑣n‖ p

W
1, p

V0

+ ‖𝑣n‖NW1,N
𝜂

= ∫
ℝN

(
Cq𝑤

q−1
n + 𝜅𝜏𝑤𝜗−1n

Φ
(
𝛼𝑤N′

n

))
𝑣n dx. (4.46)

Due to the Young’s inequality with 𝜁 ∈ (0, 𝜂

Cq+𝜅𝜏
), that is, ab ≤ 𝜁aN + C𝜁b

N

N−1 for all a, b ≥ 0, we obtain from

(4.46), Corollary 2.12 and by setting 𝜉 = 𝜂 − 𝜁 (Cq + 𝜅𝜏 ) > 0 that

‖𝑣n‖ p

W
1, p

V0

+ ‖𝑣n‖NW1,N

𝜉

≤ CqC𝜁∫
ℝN

|𝑤n| (q−1)NN−1 dx + 𝜅𝜏C𝜁∫
ℝN

𝑤
(𝜗−1)N
N−1

n Φ
(
N′𝛼𝑤N′

n

)
dx ≤ C̃

for some constant C̃ > 0, thanks to Hölder’s inequality, (4.39), Corollary 2.12, Lemma 2.13 and the boundedness

of {𝑤n}n∈ℕ in X. This shows that there exists a constant C > 0 such that ‖𝑣n‖X ≤ C for all n ∈ ℕ. It follows, up
to subsequence not relabeled, that there exists 𝑣 ∈ X such that we obtain from Corollary 2.4 that

𝑣n ⇀ 𝑣 in X and 𝑣n ⇀ 𝑣 in L𝜗(ℝN ) for all 𝜗 ∈ [p, p∗] ∪ [N,+∞) as n→∞.

Observe that 𝑣 solves (in a weak sense)

[
−Δ p𝑣+ V0|𝑣| p−2𝑣]+ [

−ΔN𝑣+ 𝜂|𝑣|N−2𝑣] = Cq𝑤
q−1 + 𝜅𝜏𝑤𝜗−1Φ(𝛼𝑤N′

) in ℝN .

In particular, we have

‖𝑣‖ p

W
1, p

V0

+ ‖𝑣‖N
W1,N
𝜂

= ∫
ℝN

(
Cq𝑤

q−1 + 𝜅𝜏𝑤𝜗−1Φ(𝛼𝑤N′
)
)
𝑣 dx. (4.47)
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Claim I: ∫ℝN𝑤
q−1
n 𝑣n dx→ ∫ℝN𝑤q−1𝑣 dx as n→∞.

By using the fact that𝑤q−1 ∈ L
N

N−1 (ℝN ) and 𝑣n ⇀ 𝑣 in LN (ℝN ) as n→∞, we have

∫
ℝN

𝑤q−1(𝑣n − 𝑣) dx→ 0 as n→∞.

On the other hand, we have

|𝑤q−1
n −𝑤q−1|N′ ≤ 2N

′−1
(
g(q−1)N

′ + |𝑤|(q−1)N′
)
∈ L1(ℝN ).

In virtue of Lebesgue’s dominated convergence theorem, we have

∫
ℝN

|𝑤q−1
n −𝑤q−1|N′

dx→ 0 as n→∞.

Using this and Hölder’s inequality gives

|||||||∫ℝN

(
𝑤

q−1
n −𝑤q−1

)
𝑣n dx

|||||||
≤ ‖𝑣n‖N

⎛⎜⎜⎝∫ℝN

|𝑤q−1
n −𝑤q−1|N′

dx

⎞⎟⎟⎠

1

N′

→ 0 as n→∞.

It follows that

∫
ℝN

(
𝑤

q−1
n −𝑤q−1

)
𝑣n dx→ 0 as n→∞.

The proof of Claim I now follows directly from the above convergences.

Claim II: ∫ℝN𝑤𝜗−1n
Φ
(
𝛼𝑤N′

n

)
𝑣n → ∫ℝN𝑤𝜗−1Φ(𝛼𝑤N′

)𝑣 dx as n→∞.

Due to Lemma 2.13, one has 𝑤𝜗−1Φ(𝛼𝑤N′
) ∈ L

N

N−1 (ℝN ). Now, it follows from 𝑣n ⇀ 𝑣 in LN (ℝN ) as n→∞
that

∫
ℝN

(𝑣n − 𝑣)𝑤𝜗−1Φ(𝛼𝑤N′
) dx→ 0 as n→∞.

Further, by Hölder’s inequality, (4.39), Corollary 2.12 and Lemma 2.13, it is not difficult to see that

||||𝑤𝜗−1n
Φ
(
𝛼𝑤N′

n

)
−𝑤𝜗−1Φ(𝛼𝑤N′

)
||||
N′

≤ 2N
′−1

(
g(𝜗−1)N

′Φ
(
N′𝛼𝑤N′

n

)
+ |𝑤|(𝜗−1)N′Φ(N′𝛼𝑤N′

)
)
∈ L1(ℝN ).

Invoking Lebesgue’s dominated convergence theorem, we get

∫
ℝN

||||𝑤𝜗−1n
Φ
(
𝛼𝑤N′

n

)
−𝑤𝜗−1Φ(𝛼𝑤N′

)
||||
N′

dx→ 0 as n→∞.

Consequently, by Hölder’s inequality, we infer that for n→∞, there holds

|||||||∫ℝN

(
𝑤𝜗−1

n
Φ
(
𝛼𝑤N′

n

)
−𝑤𝜗−1Φ(𝛼𝑤N′

)
)
𝑣n dx

|||||||
≤ ‖𝑣n‖N

⎛⎜⎜⎝∫ℝN

||||𝑤𝜗−1n
Φ
(
𝛼𝑤N′

n

)
−𝑤𝜗−1Φ(𝛼𝑤N′

)
||||
N′

dx

⎞⎟⎟⎠

1

N′

→ 0.

This yields

∫
ℝN

(
𝑤𝜗−1

n
Φ
(
𝛼𝑤N′

n

)
−𝑤𝜗−1Φ(𝛼𝑤N′

)
)
𝑣ndx→ 0 as n→∞.
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Now, the proof of Claim II follows immediately by using these convergences.

In view of Claim I and Claim II, we obtain from (4.46) and (4.47) that

‖𝑣n‖ p

W
1, p

V0

+ ‖𝑣n‖NW1,N
𝜂

= ‖𝑣‖ p

W
1, p

V0

+ ‖𝑣‖N
W1,N
𝜂

+ on(1) as n→∞.

This shows that ‖𝑣n‖ p

W
1, p

V0

→ ‖𝑣‖ p

W
1, p

V0

and ‖𝑣n‖NW1,N
𝜂

→ ‖𝑣‖N
W1,N
𝜂

as n→∞.

Repeating the same procedure as in Lemma 3.8, we get 𝑣n → 𝑣 in X as n→∞ and hence, 𝑣n → 𝑣 in L𝜃(ℝN )

as n→∞ for all 𝜃 ∈ [p, p∗] ∪ [N,+∞). This shows that the first assumption of Lemma 2.1 in Ambrosio [74] is

satisfied.

On the other hand, by using the fact that Cq𝑤
q−1
n + 𝜅𝜏𝑤𝜗−1n

Φ
(
𝛼𝑤N′

n

) ≤ Cq𝑣
q−1
n + 𝜅𝜏𝑣𝜗−1n

Φ
(
𝛼𝑤N′

n

)
and test-

ing (4.45) by 𝑣n𝑣
N(𝛽−1)
n,L

, we obtain by performing a similar Moser iteration as before that

‖𝑣n‖L∞(ℝN ) ≤ K for all n ∈ ℕ. (4.48)

This together with the interior regularity result for quasilinear elliptic equations mentioned above implies

the existence of a fixed x0 ∈ ℝN such that {𝑣n}n∈ℕ ⊂ C0,𝛼(B 1

2

(x0 )) for some 𝛼 ∈ (0, 1) depending on p,N and

independent on n ∈ ℕ and x0. Further, there also holds

[𝑣n]
C0,𝛼

(
B 1
2
(x0 )

) = sup
x,y∈B 1

2
(x0 ),x≠y

|𝑣n(x)− 𝑣n(y)||x − y|𝛼 ≤ C, (4.49)

where the constant C = C(p,N) > 0 is independent on x0. Now, we claim that [𝑣n]C0,𝛼 (ℝN ) ≤ C̃, where C̃ > 0 is a

constant. For this, we first fix x, y ∈ ℝN . Note that when |x − y| ≥ 1, then using (4.48), one has

|𝑣n(x)− 𝑣n(y)| ≤ 2‖𝑣n‖L∞(ℝN ) ≤ 2K ≤ 2K|x − y|𝛼 .
Conversely, when |x − y| < 1, then one sees that

|||x − x+y

2

||| = |||y− x+y

2

||| = |x−y|
2
<

1

2
. Hence, by using (4.49), we

obtain

|𝑣n(x)− 𝑣n(y)| ≤ ||||𝑣n(x)− 𝑣n
(
x + y

2

)||||+
||||𝑣n(y)− 𝑣n

(
x + y

2

)|||| ≤ Ĉ|x − y|𝛼
for some constant Ĉ > 0. This proves the claim. Consequently, we deduce that

‖𝑣n‖C0,𝛼 (ℝN ) = ‖𝑣n‖L∞(ℝN ) + [𝑣n]C0,𝛼 (ℝN ) ≤ C1 for all n ∈ ℕ

for some constant C1 > 0. Take 𝜀 > 0 and choose 𝛿 =
(
𝜀

2C1

)𝛼
, then for all x, y ∈ ℝN with |x − y| < 𝛿 implies that

|𝑣n(x)− 𝑣n(y)| ≤ C1|x − y|𝛼 < 𝜀 for all n ∈ ℕ.

It follows that {𝑣n}n∈ℕ is uniformly equicontinuous in ℝN . Therefore, by applying Lemma 2.1 of Ambrosio [74],

we get

lim|x|→∞
sup
n∈ℕ

|𝑣n(x)| = 0.

Due to 0 ≤ 𝑤n ≤ 𝑣n in ℝN for all n ∈ ℕ, it follows that (4.35) holds. This finishes the proof. □

Finally, we end this section by proving the concentration phenomena of positive solutions of (𝜀).
Proof of Theorem 1.3. Let 𝜀0 be small enough. Note that if u𝜀 is a positive solution of (̃𝜀), which is obtained by
Proposition 4.6, then there must hold

u𝜀(x) < t1 for all x ∈ ℝN∖Λ𝜀 and 𝜀 ∈ (0, 𝜀0 ). (4.50)
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In fact, if (4.50) does not hold, let {𝜀n}n∈ℕ and a solution un = u𝜀n of (̃𝜀) such that 𝜀n → 0 as n→∞ and there

hold J𝜀n (un ) = c𝜀n , J
′
𝜀n
(un ) = 0 and

un(x) ≥ t1 for all x ∈ ℝN∖Λ𝜀n . (4.51)

In view of Lemma 4.8, we can find a sequence {ỹn}n∈ℕ ⊂ ℝN such that𝑤n(⋅) = un(⋅+ ỹn )→𝑤 in Y and 𝜀nỹn →

y0 as n→∞ for some y0 ∈ Λ andV(y0) = V0. Using that y0 ∈ Λ, there exists some r > 0 such that Br(𝜀nỹn ) ⊂ Λ,
that is, B r

𝜀n

(ỹn ) ⊂ Λ𝜀n for all n sufficiently large. Consequently, we obtain for these values of n that

ℝN∖Λ𝜀n ⊂ Bcr
𝜀n

(ỹn ). (4.52)

Further, since 𝑤n →𝑤 in Y as n→∞, by invoking Lemma 4.10, one sees that (4.35) holds. Hence, we can find

R > 0 such that

𝑤n(x) < t1 for all |x| ≥ R and n ∈ ℕ.

In particular, the last inequality together with a simple change of variable yields

un(x) < t1 for all x ∈ Bc
R
(ỹn ) and n ∈ ℕ.

Consequently, there exists n0 ∈ ℕ such that for any n ≥ n0 and
r

𝜀n
> R, we deduce from (4.52) that

ℝN∖Λ𝜀n ⊂ Bcr
𝜀n

(ỹn ) ⊂ Bc
R
(ỹn ) for all n ≥ n0.

It follows immediately that un(x) < t1 for all x ∈ ℝN∖Λ𝜀n and n ≥ n0, which contradicts (4.51) and thus, (4.50)

holds. Now, by setting 𝑣𝜀(x) = u𝜀(
x

𝜀
), we can conclude that 𝑣𝜀 is a positive solution of (𝜀).

Finally, we study the behavior of maximum points of 𝑣𝜀(x) as 𝜀→ 0. For this, we assume that 𝜀n → 0 as

n→∞ and {un}n∈ℕ = {u𝜀n}n∈ℕ ⊂ Y𝜀n
is a nonnegative sequence of solution for (̃𝜀). In virtue of the definition

of G2 and g, we can find 𝜌 ∈ (0, t1) such that

G′
2
(𝜀x, s)s ≤ 𝓁sN and g(𝜀x, s)s ≤ 𝓁′sN for all (x, s) ∈ ℝN × [0, 𝜌]. (4.53)

Employing a similar argument as done above, we can find R > 0 such that

‖un‖L∞(Bc
R
( ỹn ))

< t1 for all n ∈ ℕ. (4.54)

Note that, up to a subsequence not relabeled, we can assume that

‖un‖L∞(BR( ỹn )) ≥ t1 for all n ∈ ℕ. (4.55)

In fact, if (4.55) does not hold, thenwe have ‖un‖L∞(ℝN ) < t1 for all n ∈ ℕ. Consequently, by using (4.53), J′
𝜀n
(un ) =

0, and arguing similarly as in Lemma 4.2, we deduce that

0 ≤ ‖un‖ p

W
1, p

V𝜀n

+ ‖un‖NW1,N

V𝜀n

+ ‖un‖NN +min
{‖un‖l1

, ‖un‖N1

} ≤ 0.

Letting n→∞ in the above inequality, we ensure that un → 0 in Y𝜀n as n→∞. Hence, we get J𝜀n (un ) = c𝜀n → 0

as n→∞, which is a contradiction because of Lemma 4.5(a). It follows that (4.55) holds.

Taking (4.54) and (4.55) into account, we conclude that the global maximum points pn ∈ ℝN of un belong to

BR(ỹn ). It follows that pn = rn + ỹn, where rn ∈ BR. Note that the solution of (𝜀) is of the type 𝑣n(x) = un(
x

𝜀n
) and

thus, a maximumpoint 𝜂𝜀n of 𝑣n(x) is of the form 𝜂𝜀n = 𝜀nrn + 𝜀nỹn. By using rn ∈ BR, 𝜀nỹn → y0 and V(y0) = V0,

we deduce from the continuity of V that

lim
n→∞

V(𝜂𝜀n ) = V(y0 ) = V0.

Hence, the proof is completed. □
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5 Mutiplicity of solutions to the main problem via category theory

This section is focused on the study of the multiplicity of positive solutions to (𝜀) using the Lus-

ternik–Schnirelmann category theory. This theory is a variational techniquewhichhelps us to find critical points

of a functional on amanifold, in connection with the topological properties of that manifold. Formore details on

this theory, we refer to the papers of Benci-Cerami [85], [86], Benci-Cerami-Passaseo [87], Cingolani-Lazzo [88]

and the monograph of Willem [71].

Now, we recall some basic definitions that will be needed in the sequel.

Definition 5.1. A closed subset A is contractible in a topological space X, if there exists a homotopy H ∈
C
(
[0, 1] × A,X

)
such that for any u, 𝑣 ∈ A, there holds H(0, u) = u and H(1, u) = H(1, 𝑣).

Definition 5.2. Let A be a closed subset of a topological space X. Then, the Lusternik–Schnirelmann category of

A in X is denoted by catX (A), which is the least number of closed and contractible sets in X that cover A.

Let  be a Banach space and Ψ: → ℝ be of class C1( ,ℝ). We define a C1-manifold  of the form  =
Ψ−1

({0}), where 0 is the regular value ofΨ. Now, for any functional : → ℝ, we define the following level set

d = {u ∈  :(u) ≤ d}.

Recall the following result for critical points involving the Lusternik–Schnirelmann category, see Theorem 5.20

by Willem [71].

Corollary 5.3. Suppose : → ℝ is of class C1( ,ℝ). Further, if | is bounded from below and  satisfies the

(PS)c condition for c ∈ [ inf| , d], then | has at least catd (d ) critical points in d.

To implement Corollary 5.3, the following corollary, found in Cingolani-Lazzo [[88], Lemma 2.2], plays a sig-

nificant role in relating the topology of some sublevel of a functional to the topology of some subset of the space

ℝℕ.

Corollary 5.4. LetΩ,Ω1 andΩ2 be closed sets withΩ1 ⊂ Ω2, and let 𝛽: Ω→Ω2,𝜓 : Ω1 →Ω be continuous maps

such that 𝛽 ⚬𝜓 is homotopically equivalent to the embedding j: Ω1 →Ω2. Then, there holds catΩ(Ω) ≥ catΩ2
(Ω1 ).

Let 𝛿 > 0 be fixed and u0 be a positive ground state solution of (0), that is, J0(u0) = c0 and J′
0
(u0 ) = 0.

Next, we consider a nondecreasing function 𝜂 ∈ C∞([0,+∞), [0, 1]) satisfying 𝜂 ≡ 1 in [0,
𝛿

2
], 𝜂 ≡ 0 in [𝛿,+∞)

and |𝜂′| ≤ C for some C > 0. For any y ∈ M, we define

𝜉𝜀,y(x) = 𝜂
(|𝜀x − y|)u0(𝜀x − y

𝜀

)
.

Moreover, let t𝜀 be the unique positive number such that t𝜀𝜉𝜀,y ∈ 𝜀. Note that, if |supp(|𝜉𝜀,y)|) ∩ Λ𝜀| > 0, then

t𝜀 satisfies

J𝜀(t𝜀𝜉𝜀,y ) = max
t≥0 J𝜀(t𝜉𝜀,y ).

We define Φ𝜀:M →𝜀 by Φ𝜀(y) = t𝜀𝜉𝜀,y. By the above construction, we see that Φ𝜀 has compact support for
any y ∈ M.

Inspired by Ambrosio-Repovš [[55], Lemma 6.1] and by Thin [[56], Lemma 13], we have the following lemma.

Lemma 5.5. There holds

lim
𝜀→0

J𝜀(Φ𝜀(y)) = c0 uniformly in y ∈ M.
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Proof. Let us assume by contradiction, there exist 𝛿0 > 0, {yn}n∈ℕ ⊂ M and 𝜀n → 0 as n→∞ such that

||| J𝜀n (Φ𝜀n (yn ))− c0
||| ≥ 𝛿0. (5.1)

Invoking Lebesgue’s dominated convergence theorem, we have

‖𝜉𝜀n,yn‖tW1,t

V𝜀n

→ ‖u0‖tW1,t

V0

and ‖𝜉𝜀n,yn‖tt → ‖u0‖tt as n→∞ for t ∈ {p,N}. (5.2)

Setting tn = t𝜀n > 0 and using that ⟨ J′
𝜀n
(tn𝜉𝜀n,yn ), tn𝜉𝜀n,yn⟩ = 0, we obtain by that change of variable z = 𝜀nx−yn

𝜀n

that
t
p
n ‖𝜉𝜀n,yn‖ p

W
1, p

V𝜀n

+ tN
n
‖𝜉𝜀n,yn‖NW1,N

V𝜀n
+1

= ∫
ℝN

(
G′
2
(𝜀nx, tn𝜉𝜀n,yn )−′

1
(tn𝜉𝜀n,yn )+ g(𝜀nx, tn𝜉𝜀n,yn )

)
tn𝜉𝜀n,yn dx

= ∫
ℝN

(
G′
2
(𝜀nz+ yn, tn𝜂(|𝜀nz|)u0(z))−′

1
(tn𝜂(|𝜀nz|)u0(z))

+ g(𝜀nz+ yn, tn𝜂(|𝜀nz|)u0(z)))tn𝜂(|𝜀nz|)u0(z) dz,

(5.3)

where we have used ‖ ⋅ ‖N
W1,N

V𝜀n
+1
= ‖ ⋅ ‖N

W1,N

V𝜀n

+ ‖ ⋅ ‖N
N
. Now, we claim that {tn}n∈ℕ is bounded. Indeed, if not, let

tn →∞ as n→∞. Take z ∈ B 𝛿

𝜀n

, then 𝜀nz+ yn ∈ B𝛿(yn) ⊂ M𝛿 ⊂ Λ. By using G′
2
≡ ′

2
and g ≡ f on Λ together

with (2.5) and ( f 4), we obtain from (5.3) that

1

t
N− p
n

‖𝜉𝜀n,yn‖ p

W
1, p

V𝜀n

+ ‖𝜉𝜀n,yn‖NW1,N

V𝜀n
+1

= log
(
tN
n

)
∫
B 𝛿
𝜀n

|𝜂(|𝜀nz|)u0(z)|N dz+ ∫
B 𝛿
𝜀n

f (tn𝜂(|𝜀nz|)u0(z))𝜂(|𝜀nz|)u0(z)
tN−1
n

dz

+ ∫
B 𝛿
𝜀n

|𝜂(|𝜀nz|)u0(z)|N[log(|𝜂(|𝜀nz|)u0(z)|N)+ 1
]
dz

≥ log
(
tN
n

)
∫
B 𝛿
2𝜀n

|u0(z)|N dz+ 𝛾t𝜇−Nn ∫
B 𝛿
2𝜀n

|u0(z)|𝜇 dz+ Dn,

(5.4)

where

Dn = ∫
B 𝛿
𝜀n

|𝜂(|𝜀nz|)u0(z)|N[log(|𝜂(|𝜀nz|)u0(z)|N)+ 1
]
dz.

Using the fact that u0 ∈ Y is a positive solution of (0), 𝜒B 𝛿
𝜀n

→ 1 and 𝜒B 𝛿
2𝜀n

→ 1 a.e. in ℝN as n→∞, we obtain

by using Lemma 2.9 and Lebesgue’s dominated convergence theorem that

∫
B 𝛿
2𝜀n

|u0(z)|r dz→ ∫
ℝN

|u0(z)|r dz and Dn → ∫
ℝN

|u0(z)|N[log(|u0(z)|N )+ 1
]
dz (< +∞) (5.5)

asn→∞, wherewehaveused r ∈ {𝜇,N} and |s|N [log(|s|N )+ 1] = ′
2
(s)s−′

1
(s)s. In viewof (5.2) and (5.5),we

have a contradiction by letting n→∞ in (5.4). This shows that {tn}n∈ℕ is bounded and thus, up to a subsequence,
we can assume that tn → t0 ≥ 0 as n→∞. Now, we prove that t0 ≠ 0. In fact, if not, suppose t0 = 0, that is, tn → 0
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as n→∞. Since {tn}n∈ℕ is bounded, we can find C > 0 such that |tn| ≤ C. Moreover, by using Corollary 2.12 and

(3.2), one sees that

| f (tn𝜂(|𝜀nz|)u0(z))tn𝜂(|𝜀nz|)u0(z)|
≤ 𝜏tN

n
|𝜂(|𝜀nz|)u0(z)|N + 𝜅𝜏 t𝜗n |𝜂(|𝜀nz|)u0(z)|𝜗Φ(CN′

𝛼|𝜂(|𝜀nz|)u0(z)|N′
).

It follows immediately from the above inequality and (5.4) that

‖𝜉𝜀n,yn‖ p

W
1, p

V𝜀n

+ t
N− p
n ‖𝜉𝜀n,yn‖NW1,N

V𝜀n
+1
≤ t

N− p
n

⎡⎢⎢⎢⎢⎣
(
log

(
tN
n

)
+ 𝜏

)
∫
B 𝛿
𝜀n

|𝜂(|𝜀nz|)u0(z)|N dz+ Dn

⎤⎥⎥⎥⎥⎦
+𝜅𝜏 t

𝜗− p
n ∫

B 𝛿
𝜀n

|𝜂(|𝜀nz|)u0(z)|𝜗Φ(CN′
𝛼|𝜂(|𝜀nz|)u0(z)|N′

) dz.

Again by Lebesgue’s dominated convergence theorem together with Hölder’s inequality, Corollary 2.12 and

Lemma 2.13, we get

∫
B 𝛿
𝜀n

|𝜂(|𝜀nz|)u0(z)|N dz→ ∫
ℝN

|u0(z)|N dz

and

∫
B 𝛿
𝜀n

|𝜂(|𝜀nz|)u0(z)|𝜗Φ(CN′
𝛼|𝜂(|𝜀nz|)u0(z)|N′

) dz→ ∫
ℝN

|u0(z)|𝜗Φ(CN′
𝛼|u0(z)|N′

) dz < +∞

as n→∞. Letting n→∞ in the above inequality and using the above convergences together with (5.2) and (5.5),

we get ‖u0‖ p

W
1, p

V0

= 0, that is, u0 = 0 a.e. in ℝN , which is a contradiction. This shows that t0 ≠ 0. Repeating the

same arguments used in Lemma 4.5(c) with simple modifications and using that {tn}n∈ℕ is bounded, we can

deduce from Lebesgue’s dominated convergence theorem that

∫
B 𝛿
𝜀n

1(tn𝜂(|𝜀nz|)u0(z)) dz→ ∫
ℝN

1(t0u0(z)) dz,

∫
B 𝛿
𝜀n

2(tn𝜂(|𝜀nz|)u0(z)) dz→ ∫
ℝN

2(t0u0(z)) dz,

∫
B 𝛿
𝜀n

F(tn𝜂(|𝜀nz|)u0(z)) dz→ ∫
ℝN

F(t0u0(z)) dz as n→∞.

Similarly, we also have

∫
B 𝛿
𝜀n

′
1
(tn𝜂(|𝜀nz|)u0(z))tn𝜂(|𝜀nz|)u0(z) dz→ ∫

ℝN

′
1
(t0u0(z))t0u0(z) dz,

∫
B 𝛿
𝜀n

′
2
(tn𝜂(|𝜀nz|)u0(z))tn𝜂(|𝜀nz|)u0(z) dz→ ∫

ℝN

′
2
(t0u0(z))t0u0(z) dz,

∫
B 𝛿
𝜀n

f (tn𝜂(|𝜀nz|)u0(z))tn𝜂(|𝜀nz|)u0(z) dz→ ∫
ℝN

f (t0u0(z))t0u0(z) dz as n→∞.
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Combining all the above information and sending n→∞ in (5.3), we get

1

t
N− p

0

‖u0‖ p

W
1, p

V0

+ ‖u0‖NW1,N

V0

+ ‖u0‖NN + ∫
ℝN

′
1
(t0u0 )u0
tN−1
1

dx = ∫
ℝN

′
2
(t0u0 )u0
tN−1
0

dx + ∫
ℝN

f (t0u0 )u0
tN−1
0

dx.

But u0 ∈ 0, therefore we get

‖u0‖ p

W
1, p

V0

+ ‖u0‖NW1,N

V0

+ ‖u0‖NN + ∫
ℝN

′
1
(u0 )u0 dx = ∫

ℝN

′
2
(u0 )u0 dx + ∫

ℝN

f (u0 )u0 dx.

Subtracting these equalities, we have

(
1

t
N− p

0

− 1

)
‖u0‖ p

W
1, p

V0

+ ∫
ℝN

(′
1
(t0u0 )

tN−1
0

−′
1
(u0 )

)
u0 dx

= ∫
ℝN

(′
2
(t0u0 )

tN−1
0

−′
2
(u0 )

)
u0 dx + ∫

ℝN

(
f (t0u0 )

tN−1
0

− f (u0 )

)
u0 dx.

Employing similar arguments as done before in Lemma 4.5(c), from the above equation, we conclude that t0 = 1.

Consequently, we obtain from the above convergences that

lim
n→∞

J𝜀n (Φ𝜀n (yn )) = J0(u0 ) = c0,

which contradicts (5.1). This finishes the proof. □

We define by ̃ 𝜀 a subset of𝜀 given by

̃ 𝜀 = {u ∈ 𝜀: J𝜀(u) ≤ c0 + h(𝜀)},

where h:ℝ+ → ℝ+ is defined by h(𝜀) = supy∈M| J𝜀(u)− c0|. From the above lemma, we have h(𝜀)→ 0 as 𝜀→ 0.

Moreover, we know that Φ𝜀(y) ∈ ̃ 𝜀 for all y ∈ M and 𝜀 > 0. It follows that ̃ 𝜀 ≠ ∅. Let for any 𝛿 > 0 with

𝜌 = 𝜌(𝛿) > 0 be such thatM𝛿 ⊂ B𝜌. Let 𝜒 :ℝN → ℝN be defined by

𝜒 (x) =
⎧⎪⎨⎪⎩

x if |x| < 𝜌,
𝜌x|x| if |x| ≥ 𝜌.

Now, we define the barycenter map 𝛽𝜀:𝜀 → ℝN by

𝛽𝜀(u) =
∫
ℝN

𝜒 (𝜀x)(|u| p + |u|N ) dx
∫
ℝN

(|u| p + |u|N ) dx .

Lemma 5.6. There holds

lim
𝜀→0
𝛽𝜀(Φ𝜀(y)) = y uniformly in y ∈ M.

Proof. Let us assume by contradiction there exist 𝛿0 > 0, {yn}n∈ℕ ⊂ M and 𝜀n → 0 as n→∞ such that

|||𝛽𝜀n (Φ𝜀n (yn ))− yn
||| ≥ 𝛿0. (5.6)
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Note that for z ∈ B 𝛿

𝜀n

, one has 𝜀nz+ yn ∈ B𝛿(yn) ⊂ M𝛿 ⊂ B𝜌. Therefore, from the definitions of Φ𝜀n , 𝛽𝜀n and 𝜂
as well as the change of variable z = 𝜀nx−yn

𝜀n
, we have

𝛽𝜀n (Φ𝜀n (yn )) = yn +
∫
ℝN

𝜀nz
(|𝜂(|𝜀nz|)u0(z)| p + |𝜂(|𝜀nz|)u0(z)|N) dz

∫
ℝN

(|𝜂(|𝜀nz|)u0(z)| p + |𝜂(|𝜀nz|)u0(z)|N) dz .

This together with Lebesgue’s dominated convergence theorem implies that

|||𝛽𝜀n (Φ𝜀n (yn ))− yn
||| = on(1) as n→∞,

which contradicts (5.6). This completes the proof. □

The following compactness principle is crucial in order to find multiplicity of solutions for our problem.

Lemma 5.7. Let 𝜀n → 0 as n→∞ and {un}n∈ℕ ⊂𝜀n
be a sequence such that J𝜀n (un )→ c0 as n→∞ and satisfy-

ing (3.14). Then, there exists a sequence {ỹn}n∈ℕ ⊂ ℝN such that𝑤n(x) = un(x + ỹn ) has a convergent subsequence

in Y. Moreover, there holds yn = 𝜀nỹn → y0 as n→∞ for some y0 ∈ M.

Proof. By applying the same idea as in Alves-da Silva [[58], Lemma 6.5], the lemma can be proved. □

Now, we shall discuss the multiplicity of solutions to (̃𝜀) by using the Lusternik–Schnirelmann category
theory.

Proposition 5.8. Assume that (V1)–(V2) hold and let 𝛿 > 0 be small enough. Then, the problem (̃𝜀) has at least
catM𝛿 (M ) solutions for 𝜀 small enough such that 𝜀 ∈ (0, 𝜀̃1 ) for some 𝜀̃1 > 0.

Proof. Choose 𝜀̃1 > 0 be sufficiently small and fix 𝜀 ∈ (0, 𝜀̃1 ). Let us set  = J𝜀,  = 𝜀, d = c0 + h(𝜀) and d =
Jd
𝜀
= ̃ 𝜀. In view of Proposition 4.4, one sees that J𝜀

||𝜀
satisfies the (PS) condition and thus, by Corollary 5.3,

it implies that J𝜀
||𝜀

has at least cat̃ 𝜀

(̃ 𝜀 ) critical points in ̃ 𝜀. Consequently, by Proposition 4.3, we deduce

that J𝜀 has at least cat̃ 𝜀

(̃ 𝜀 ) critical points. This shows that (̃𝜀) has at least cat̃ 𝜀

(̃ 𝜀 ) critical points. To

complete the proof, we only have to show that cat̃ 𝜀

(̃ 𝜀 ) ≥ catM𝛿 (M ). One can notice thatΦ𝜀(M ) ⊂ ̃ 𝜀 for 𝜀

small enough, thanks to Lemma 5.5. Moreover, the following diagram

M
Φ𝜀
←←←←←←←←←←←←←←←→̃ 𝜀

𝛽𝜀
←←←←←←←←←←←←←→M𝛿

is well-defined for 𝜀 small enough. It follows that the map 𝛽𝜀 ⚬Φ𝜀:M →M𝛿 is well-defined for 𝜀 small enough.

Define the map H: [0, 1] ×M →M𝛿 by H(t, y) = (1− t)y+ t𝛽𝜀(Φ𝜀(y)) for all (t, y) ∈ [0, 1] ×M. This shows that

H(0, y) = y andH(1, y) = 𝛽𝜀(Φ𝜀(y)). Therefore, we infer that themap 𝛽𝜀 ⚬Φ𝜀 is homotopically equivalent to the
embedding j:M →M𝛿 and thus, by Corollary 5.4 implies that cat̃ 𝜀

(̃ 𝜀 ) ≥ catM𝛿 (M ). □

Proposition 5.9. Let V satisfies (V1)–(V2) and let 𝛿 > 0 sufficiently small, then there exists 𝜀̃2 > 0 such that for

𝜀 ∈ (0, 𝜀̃2 ), we have the following assertions:

(a) problem (̃𝜀) has at least catM𝛿 (M )

2
positive solutions, whenever catM𝛿 (M ) is an even number;

(b) problem (̃𝜀) has at least catM𝛿 (M )+1
2

positive solutions, whenever catM𝛿 (M ) is an odd number.

Proof. Let 𝜀̃2 > 0 be small enough and fix 𝜀 ∈ (0, 𝜀̃2 ). Further, assume that 𝑤𝜀 is a critical point of J𝜀 and

J𝜀(𝑤𝜀) ≤ c0 + h(𝜀) holds. Then either 𝑤+
𝜀
= 0 or 𝑤−

𝜀
= 0. Indeed, if not, then repeating a similar procedure as
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in Proposition 4.6, one has𝑤+
𝜀
, 𝑤−

𝜀
∈ 𝜀. Consequently, we deduce that

c0 + h(𝜀) ≥ J𝜀(𝑤𝜀 ) = J𝜀
(
𝑤+
𝜀

)
+ J𝜀

(
𝑤−
𝜀

) ≥ 2c𝜀.

Letting 𝜀→ 0 in the above inequality and using Remark 4.9, we get a contradiction. Once more by similar argu-

ments as in Proposition 4.6, we infer that either 𝑤𝜀 > 0 or 𝑤𝜀 < 0. Denote 𝜚 = catM𝛿 (M ). Let 𝜚 be an even

number and 𝑤1,… ,𝑤𝜚 be the solutions of (̃𝜀) as in Proposition 5.8. If at least
𝜚

2
of the solutions 𝑤1,… ,𝑤𝜚

are positive, then (a) is proved. In fact, if not, suppose that at least
𝜚

2
of the solutions𝑤1,… ,𝑤𝜚 are negative and

denote these negative solutions by 𝑣1,… , 𝑣 𝜚
2
. Observe that G′

2
(x, ⋅)+ g(x, ⋅)−′

1
(⋅) is an odd function, there-

fore−𝑣1,… ,−𝑣 𝜚
2
are positive solutions of (̃𝜀). The assertion in (a) follows. In a similar way, one can prove the

statement (b). □

Now, we shall be able to prove Theorem 1.4.

Proof of Theorem 1.4. Suppose𝑤𝜀 is a critical point of J𝜀 satisfying J𝜀(𝑤𝜀) ≤ c0 + h(𝜀). In order to complete the

proof, it is sufficient to show that there exists 𝜀1 > 0 small enough with 𝜀 ∈ (0, 𝜀1) such that

0 < 𝑤𝜀(x) < t1 for all x ∈ ℝN∖Λ𝜀 (5.7)

holds, where each solution𝑤𝜀 of (̃𝜀) is given in (a) and (b) of Proposition 5.9. Let us assumeby contradiction that
there exists a sequence {𝜀n}n∈ℕ such that 𝜀n → 0 as n→∞, {𝑤n}n∈ℕ = {𝑤𝜀n}n∈ℕ be a sequence of solution for
(̃𝜀n ) and (3.14) holds but (5.7) is not satisfied. It is easy to see that {𝑤n}n∈ℕ satisfies the assumptions of Lemma 5.7
and thus, (4.35) holds. Now, using a similar procedure as in the proof of Theorem 1.3, we get a contradiction. It

follows that (5.7) holds true. Consequently, we deduce that (𝜀) satisfies (a) and (b) of Theorem 1.4. Hence, the

result follows immediately by using a simple change of variable. This completes the proof. □
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