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Abstract
In this paper we study strongly singular problems with Dirichlet boundary condition on
bounded domains given by

− div
(|∇u|p−2∇u + μ(x)|∇u|q−2∇u

) = h(x)
(
u+)r in �,

where 1 < p < N , p < q < p∗ = N p
N−p , 0 ≤ μ(·) ∈ L∞(�), 1 < r and h ∈ L1(�) with

h(x) > 0 for a.a. x ∈ �. Since the exponent r is larger than one, the corresponding energy
functional is not continuous anymore and so the related Nehari manifold

N =
{

u ∈ W 1,H
0 (�) : ‖∇u‖p

p + ‖∇u‖q
q,μ −

∫

�

h(x)
(
u+)1−r

dx = 0

}

is not closed in the Musielak-Orlicz Sobolev space W 1,H
0 (�). Instead we are minimizing the

energy functional over the constraint set

M =
{

u ∈ W 1,H
0 (�) : ‖∇u‖p

p + ‖∇u‖q
q,μ −

∫

�

h(x)
(
u+)1−r

dx ≥ 0

}
,

which turns out to be closed in W 1,H
0 (�) and prove the existence of at least oneweak solution.

Our result is even new in the case when the weight function μ is away from zero.

Keywords Discontinuous energy functional · Double phase operator · Fibering map ·
Strongly singular problem

Mathematics Subject Classification 26B30 · 35B40 · 35J60 · 35J62

B Patrick Winkert
winkert@math.tu-berlin.de

Marcos T. O. Pimenta
marcos.pimenta@unesp.br

1 Departamento de Matemática e Computação, Universidade Estadual Paulista - Unesp, Presidente
Prudente, SP CEP: 19060-900, Brazil

2 Institut für Mathematik, Technische Universität Berlin, Straße des 17. Juni 136, 10623 Berlin, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10231-025-01564-1&domain=pdf
http://orcid.org/0000-0003-0320-7026


M. T. O. Pimenta, P. Winkert

1 Introduction

In 1991, Lazer-McKenna [13] studied the strongly singular problem

�u(x) + p(x)u(x)−γ = 0 in �, u
∣
∣
∂�

= 0, (1.1)

where � is a bounded domain in R
N , N ≥ 1, with a C2+α-boundary for α ∈ (0, 1), the

function p is of class Cα(�) and strictly positive in � and γ > 0. The authors proved that
there exists a H1

0 -solution of (1.1) if and only if γ < 3. In particular, if γ > 1, then there
is no solution belonging to C1(�). Note that in case N = 1, (1.1) occurs in different kind
of problems in fluid mechanics and pseudoplastic flow, see the works of Nachman-Callegari
[17] and Stuart [25]. Crandall-Rabinowitz-Tartar [5] proved that a solution of (1.1) exists if
the domain � is of class C3 and there is no solution in C1(�) if γ > 1, see also the work of
Gatica-Oliker-Waltman [9] in case � is the open unit ball in R

N .
In 2010 Boccardo-Orsina [1] proved existence, regularity and nonexistence results for

problems of type

�u = f (x)

uγ
in �, u

∣
∣
∂�

= 0, (1.2)

where γ > 0 and f is a nonnegative function belonging to certain Lebesgue spaces. The
authors showed several existence results for problem (1.2) even in the cases γ = 1 and
γ > 1. We also refer to the results of Sun-Wu-Long [23] and Yang [27] in the semilinear
case but for γ < 1.

An extension of the classical existence result of Lazer-McKenna [13] has been done by
Sun-Zhang [24] (see also Sun [22]) who considered the problem

−�u = h(x)

u p
in �, u

∣∣
∂�

= 0, (1.3)

where � ⊆ R
N is a bounded regular domain with N ≥ 3, p > 1 and h is a positive L1-

function. It is shown that problem (1.3) admits a unique H1
0 -solution if and only if there

exists u0 ∈ H1
0 (�) such that

∫

�

h(x)|u0|1−p dx < +∞.

A similar treatment for Kirchhoff problems has been used by Li [14].
Motivated by the works in [14] and [24], in this paper we are going to study the following

strongly singular problem

− div
(|∇u|p−2∇u + μ(x)|∇u|q−2∇u

) = h(x)
(
u+)r in �, u = 0 on ∂�, (1.4)

where � ⊆ R
N is a bounded domain with Lipschitz boundary ∂�, u+ = max(u, 0) and

the operator involved is the so-called double phase operator. In addition, we suppose the
following assumptions on the data:

(H1) 1 < p < N , p < q < p∗ = N p
N−p and 0 ≤ μ(·) ∈ L∞(�);

(H2) 1 < r and h ∈ L1(�) with h(x) > 0 for a.a. x ∈ �.

We call a function u ∈ W 1,H
0 (�) a weak solution of problem (1.4) if

∫

�

(|∇u|p−2∇u + μ(x)|∇u|q−2∇u
) · ∇ϕ dx =

∫

�

h(x)u−rϕ dx

123



Strongly singular problems with unbalanced growth

is satisfied for all ϕ ∈ W 1,H
0 (�) provided all the integrals converge.

Our main result is the following one.

Theorem 1.1 Let hypotheses (H1)–(H2) be satisfied and assume that there exists u0 ∈
W 1,H

0 (�) such that
∫

�

h(x)
(
u+
0

)r−1
dx < +∞.

Then, problem (1.4) admits at least one positive solution.

The difficulties in the proof of Theorem 1.1 lie in the fact that the exponent r is larger than
one, so we have a strongly singular problem. To be more precise, due to this fact, the related
energy functional is not continuous anymore since the function

u 
→
∫

�

h(x)
(
u+)1−r

dx

is not continuous on W 1,H
0 (�). This implies, in particular, that the related Nehari manifold

to problem (1.4) given by

N =
{

u ∈ W 1,H
0 (�) : ‖∇u‖p

p + ‖∇u‖q
q,μ −

∫

�

h(x)
(
u+)1−r

dx = 0

}

is not a closed set in the Musielak-Orlicz Sobolev space W 1,H
0 (�) as it is the case when

r ∈ (0, 1). Indeed, if r ∈ (0, 1), a standard proceeding is the splitting of the Nehari manifold
into three disjoint parts and minimizing the energy functional over two of them to get two
positive solutions with different energy sign, see, for example, the papers of Chen-Kuo-
Wu [3] for degenerate Kirchhoff Laplacian problems with sign-changing weight, Fiscella-
Mishra [7] for fractional Kirchhoff problems, Kumar-Rădulescu-Sreenadh [12] for critical
(p, q)-equations, Papageorgiou-Repovš-Vetro [19] for weighted (p, q)-Laplacian, Liu-Dai-
Papageorgiou-Winkert [16] for double phase problems and Tang-Chen [26] for ground state
solutions of Schrödinger type, see also the references therein.

As already mentioned, this treatment is not possible in our case due to the appearance of
the strongly singular term. Instead of this, we consider the constraint set

M =
{

u ∈ W 1,H
0 (�) : ‖∇u‖p

p + ‖∇u‖q
q,μ −

∫

�

h(x)
(
u+)1−r

dx ≥ 0

}
,

which is a closed set in W 1,H
0 (�), see Lemma 3.2. The idea is to minimize the corresponding

energy functional of problem (1.4) over the constraint set M to get a positive solution. This
is done by using Ekeland’s Variational Principle to get a sequence with limit u0 ∈ W 1,H

0 (�)

and this limit turns out to be an element of the Nehari manifold N (see Proposition 3.4)
which contains all nontrivial weak solutions of problem (1.4).

The main arguments we use here are strongly influenced by Sun-Zhang [24], however,
some technical difficulties arrise. For example, since we are dealingwith a non-homogeneous
operator, for each u ∈ W 1,H

0 (�) such that
∫
�

h(x)
(
u+)1−r dx < +∞, we cannot explicitly

express tu > 0 in terms of u, see Lemma 3.1. This complicates the proofs of some estimates
involving this number, especially some crucial estimates in Proposition 3.4.

As far as we know our treatment has not been used before for double phase problems
and also not for (p, q)-problems. In general, there are only few papers for strongly sin-
gular problems in the context of nonlinear operators. In order to mention some of them,
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we refer to the works of Carvalho-Goncalves-Silva-Santos [2] for a type of Brézis-Oswald
problem to �-Laplacian operators with strongly singular terms, Gambera-Guarnotta [8] for
strongly singular convective elliptic equations in R

N driven by a nonhomogeneous opera-
tor, Giachetti-Oliva-Petitta [10] for 1-Laplacian problems with strongly singular right-hand
sides and Papageorgiou-Rădulescu-Zhang [18] for strongly singular (p, q)-problems. The
methods used in these papers are different from our treatment.

This paper is organized as follows. In Sect. 2 we recall the main properties of Musielak-
Orlicz Sobolev spaces and of the double phase operator. The proof of Theorem 1.1 is then
given in Sect. 3 by studying the constraint set M and minimizing the energy functional of
(1.4) over M.

2 Preliminaries

In this section we recall the definition of the Musielak-Orlicz Sobolev spaces and the double
phase operator including their properties. Formore information on these spaces and the opera-
tors we refer to Colasuonno-Squassina [4], Crespo-Blanco-Gasiński-Harjulehto-Winkert [6],
Harjulehto-Hästö [11], Liu-Dai [15], Papageorgiou-Winkert [20] and Perera-Squassina [21].

To this end, we denote by � a bounded domain in R
N with N ≥ 2 and with a Lipschitz

boundary ∂�. For 1 ≤ r ≤ ∞, Lr (�) and Lr (�;RN ) represent the usual Lebesgue spaces
equipped with the norm ‖ · ‖r . Moreover, we denote by W 1,r

0 (�) the corresponding Sobolev
space endowed with the equivalent norm ‖∇ · ‖r for r ∈ (1,∞). Next, we introduce the
nonlinear function H : � × [0,∞) → [0,∞) given by

H(x, t) = t p + μ(x)tq ,

whereby we assume hypothesis (H1). Denoting by M(�) the set of all measurable functions
u : � → R, the Musielak-Orlicz space LH(�) is defined by

LH(�) = {u ∈ M(�) : ρ(u) < +∞}
endowed with the norm

‖u‖H = inf
{
λ > 0 : ρ

(u

λ

)
≤ 1

}
,

whereas ρ stands for the modular function given as

ρ(u) =
∫

�

H(x, |u|) dx =
∫

�

(|u|p + μ(x)|u|q)
dx .

Furthermore, Lq
μ(�) stands for the seminormed space

Lq
μ(�) =

{
u ∈ M(�) :

∫

�

μ(x)|u|q dx < +∞
}

,

equipped with the seminorm

‖u‖q,μ =
(∫

�

μ(x)|u|q dx

) 1
q

.

Similarly, we can define Lq
μ(�;RN ). The related Musielak-Orlicz Sobolev space W 1,H(�)

defined by

W 1,H(�) = {
u ∈ LH(�) : |∇u| ∈ LH(�)

}
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is equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H.

Finally, the completion of C∞
0 (�) in W 1,H(�) is denoted by W 1,H

0 (�). We know that

LH(�), W 1,H(�) and W 1,H
0 (�) are reflexive Banach spaces and we can equip the space

W 1,H
0 (�) with the equivalent norm

‖u‖ = ‖∇u‖H,

see the paper of Crespo-Blanco-Gasiński-Harjulehto-Winkert [6].
The relation between the modular ρ and the norm ‖ · ‖H has been proven in the paper of

Liu-Dai [15].

Proposition 2.1 Let (H1) be satisfied, λ > 0 and y ∈ LH(�). Then the following hold:

(i) If y �= 0, then ‖y‖H = λ if and only if ρ(
y
λ
) = 1;

(ii) ‖y‖H < 1 (resp.> 1, = 1) if and only if ρ(y) < 1 (resp.> 1, = 1);
(iii) If ‖y‖H < 1, then ‖y‖q

H ≤ ρ(y) ≤ ‖y‖p
H;

(iv) If ‖y‖H > 1, then ‖y‖p
H ≤ ρ(y) ≤ ‖y‖q

H;
(v) ‖y‖H → 0 if and only if ρ(y) → 0;

(vi) ‖y‖H → +∞ if and only if ρ(y) → +∞.

Again, from Crespo-Blanco-Gasiński-Harjulehto-Winkert [6, Proposition 2.16] we know
that

W 1,H
0 (�) ↪→ Lr (�)

is continuous for all r ∈ [1, p∗] and compact for all r ∈ [1, p∗).
For s ∈ R, we set s± = max{±s, 0} and for a function u ∈ W 1,H

0 (�) we define u±(·) =
u(·)±. Obviously, |u| = u+ +u− and u = u+ −u−. Further, it is known that u± ∈ W 1,H

0 (�)

whenever u ∈ W 1,H
0 (�). In the following, the Lebesgue measure of a set K ⊆ R

N will be
denoted by |K |N .

Let us now summarize the properties of the our operator. To this end, let A : W 1,H
0 (�) →

W 1,H
0 (�)∗ be defined by

〈A(u), v〉 =
∫

�

(|∇u|p−2∇u + μ(x)|∇u|q−2∇u
) · ∇v dx

for all u, v ∈ W 1,H
0 (�) with the duality pairing 〈 ·, · 〉 of W 1,H

0 (�) and its dual space

W 1,H
0 (�)∗. The following proposition can be found in Crespo-Blanco-Gasiński-Harjulehto-

Winkert [6, Theorem 3.3].

Proposition 2.2 Under hypotheses(H1), the operator A is bounded, continuous, strictly
monotone and satisfies the (S+)-property, i.e., if

un⇀u in W 1,H
0 (�) and lim sup

n→∞
〈Aun, un − u〉 ≤ 0

hold, then we have un → u in W 1,H
0 (�).
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3 Proof of Theorem 1.1

First, we introduce the energy functional I : W 1,H
0 (�) → (−∞,+∞] associated to problem

(1.4) given by

I (u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖q

q,μ − 1

1 − r

∫

�

h(x)
(
u+)1−r

dx .

Next, let us consider the Nehari manifold related to problem (1.4) which is defined by

N =
{

u ∈ W 1,H
0 (�) : ‖∇u‖p

p + ‖∇u‖q
q,μ −

∫

�

h(x)
(
u+)1−r

dx = 0

}

=
{

u ∈ W 1,H
0 (�) : ϕ′

u(1) = 0
}

,

where ϕu : [0,∞) → R defined by

ϕu(t) = I (tu) = t p

p
‖∇u‖p

p + tq

q
‖∇u‖q

q,μ − t1−r

1 − r

∫

�

h(x)
(
u+)1−r

dx

for any u ∈ W 1,H
0 (�) such that

∫
�

h(x)
(
u+)1−r dx < +∞, is the fibering map.

Since 1 < r , the function u 
→ ∫
�

h(x)
(
u+)1−r dx is not continuous on W 1,H

0 (�) and so

is I . Hence, we cannot prove that N is closed in W 1,H
0 (�). This is the reason why we deal

with another constraint to the problem. More specifically, let us define

M =
{

u ∈ W 1,H
0 (�) : ‖∇u‖p

p + ‖∇u‖q
q,μ −

∫

�

h(x)
(
u+)1−r

dx ≥ 0

}

=
{

u ∈ W 1,H
0 (�) : ϕ′

u(1) ≥ 0
}

.

In the next results, we study some general aspects of N and M.

Lemma 3.1 For each u ∈ W 1,H
0 (�), such that

∫
�

h(x)
(
u+)1−r dx < +∞, there exists a

unique tu > 0 such that tuu ∈ N . Moreover,

I (tuu) = min
t>0

I (tu).

ϕu

tu

Proof Note that ϕu is C1((0,+∞)) and, for t > 0,

ϕ′
u(t) = t p−1‖∇u‖p

p + tq−1‖∇u‖q
q,μ − t−r

∫

�

h(x)
(
u+)1−r

dx .
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Obviously, tu ∈ N if and only if ϕ′
u(t) = 0 which is equivalent to

∫

�

h(x)
(
u+)1−r

dx = t p+r−1‖∇u‖p
p + tq+r−1‖∇u‖q

q,μ. (3.1)

If we define

g(t) := t p+r−1‖∇u‖p
p + tq+r−1‖∇u‖q

q,μ,

it is easily seen that g(0) = 0 and limt→+∞ g(t) = +∞. Then, there exists tu > 0 such that
(3.1) holds true, which is equivalent to tuu ∈ N . On the other hand, we have

g′(t) = (p + r − 1)t p+r−2‖∇u‖p
p + (q + r − 1)tq+r−2‖∇u‖q

q,μ > 0

for all t > 0. Hence, g is strictly increasing and so tu > 0 is unique. ��

Next, we show that M is closed in W 1,H
0 (�).

Lemma 3.2 M is closed in W 1,H
0 (�).

Proof Let {un}n∈N ⊆ M be such that un → u in W 1,H
0 (�). Then, Fatou’s Lemma implies

that, up to a subsequence,

‖∇u‖p
p + ‖∇u‖q

q,μ −
∫

�

h(x)(u+)
1−r

dx

≥ ‖∇un‖p
p + ‖∇un‖q

q,μ −
∫

�

h(x)
(
u+

n

)1−r
dx + on(1)

≥ 0 + on(1).

Passing to the limit in both sides, we have that u ∈ M. ��

Now we prove that the set M is bounded away from the origin.

Lemma 3.3 There exists δ > 0 such that ‖u‖ ≥ δ for all u ∈ M.

Proof We assume by contradiction that there exists a sequence {un}n∈N ⊆ M such that

un → 0 in W 1,H
0 (�) as n → +∞.

Then, by the reverse Hölder inequality, it follows

(∫

�

h(x)
1
r dx

)r

.

(∫

�

u+
n dx

)1−r

≤
∫

�

h(x)
(
u+

n

)1−r
dx

≤ ‖∇un‖p
p + ‖∇un‖q

q,μ

= on(1).

This, in turn, implies that

1

‖u+
n ‖r−1

1

= on(1).

Therefore, ‖u+
n ‖1 → +∞ as n → ∞ and so we get a contradiction. ��
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Note that, if u ∈ M, then

I (u) ≥ 1

q

(‖∇u‖p
p + ‖∇u‖q

q,μ

) − 1

1 − r

∫

�

h(x)u+1−r
dx

≥
(
1

q
− 1

1 − r

) ∫

�

h(x)
(
u+)1−r

dx .

Hence, I is bounded from below on M. Moreover, from Lemma 3.2 we know that M is
closed and so it is a complete metric space. On the other hand, I is a proper (since by
assumption,

∫
�

h(x)(u+
0 )q−1 dx < +∞) and a lower semicontinuous functional over M.

Thereby, Ekeland’s Variational Principle implies that there exists a sequence {un}n∈N ⊆ M
such that

lim
n→+∞ I (un) = inf

M
I

and

I (un) − I (v) ≤ 1

n
‖un − v‖ for all v ∈ M. (3.2)

Since I (u) = I (|u|), we can assume, without any loss of generality, that un ≥ 0 a.e. in �

and for all n ∈ N. Moreover, since r > 1, we have
∫

�

h(x)u1−r
n dx ≤ ‖∇un‖p

p + ‖∇un‖q
q,μ < +∞,

which implies that un > 0 a.e. in �.
Furthermore, by Proposition 2.1 (iii) and (iv), it holds

1

q
min{‖∇un‖p

H, ‖∇un‖q
H} ≤ 1

q
ρ(∇u) = 1

q

(‖∇un‖p
p + ‖∇un‖q

q,μ

)

≤ I (un) = inf
M

I + on(1).

Hence, the sequence {un}n∈N is bounded inW 1,H
0 (�). So,we can assume, up to a subsequence

if necessary, that there exists u0 ∈ W 1,H
0 (�) such that

un⇀u0 in W 1,H
0 (�),

un → u0 in Ls(�) for 1 ≤ s < p∗

un → u0 a.e. in �.

Note that, even though we are minimizing the functional I on M, we want to show that
the minimizer actually belongs to N , since all the nontrivial solutions of (1.4) belong to N .
In the next result, we prove this crucial fact.

Proposition 3.4 It holds that u0 ∈ N . Moreover, we have
∫

�

(|∇u0|p−2∇u0 + μ(x)|∇u0|q−2∇u0
) · ∇ϕ dx ≥

∫

�

h(x)u−r
0 ϕ dx

for all ϕ ∈ W 1,H
0 (�) with ϕ ≥ 0.

Proof Wewill split the proof into two cases. In the first onewe assume that {un}n∈N ⊆ M\N .
Let us fix ϕ ∈ W 1,H

0 (�) with ϕ ≥ 0 and n ∈ N.
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Since un /∈ N , we have for t > 0 that

∫

�

h(x)(un + tϕ)1−r dx ≤
∫

�

h(x)u1−r
n dx < ‖∇un‖p

p + ‖∇un‖q
q,μ.

Choosing t > 0 sufficiently small, it follows that

∫

�

h(x)(un + tϕ)1−r dx < ‖∇(un + tϕ)‖p
p + ‖∇(un + tϕ)‖q

q,μ,

which implies that un + tϕ ∈ M. Hence, from (3.2), we obtain

t

n
‖ϕ‖ ≥ I (un) − I (un + tϕ)

= 1

p

(‖∇un‖p
p − ‖∇(un + tϕ)‖p

p
) + 1

q

(‖∇un‖q
q,μ − ‖∇(un + tϕ)‖q

q,μ

)

− 1

1 − r

∫

�

(
h(x)u1−r

n − h(x)(un + tϕ)1−r ) dx .

Dividing the last inequality by t > 0 and calculating the lim inf as t → 0+, we have

‖ϕ‖
n

+
∫

�

|∇un |p−2∇un · ∇ϕ dx +
∫

�

μ(x)|∇un |q−2∇un · ∇ϕ dx

≥ lim inf
t→0+

1

r − 1

∫

�

(
h(x)u1−r

n − h(x)(un + tϕ)1−r
)

t
dx

≥
∫

�

h(x)u−r
n ϕ dx .

(3.3)

Recall that un⇀u0 in W 1,H
0 (�). Then the weak lower semicontinuity of the norm ‖∇ · ‖p

p

and the seminorm ‖∇ · ‖q
q,μ along with Fatou’s Lemma imply that

inf
M

I = lim
n→+∞ I (un)

≥ lim inf
n→+∞

(
1

p
‖∇un‖p

p + 1

q
‖∇un‖q

q,μ

)
− 1

1 − r
lim inf
n→+∞

∫

�

h(x)u1−r
n dx

≥ 1

p
‖∇u0‖p

p + 1

q
‖∇u0‖q

q,μ − 1

1 − r

∫

�

h(x)u1−r
0 dx .

This, in turn, implies that
∫
�

h(x)u1−r
0 dx < +∞. Hence, byLemma3.1, there exists tu0 > 0,

such that tu0u0 ∈ N . Hence,

inf
M

I ≥ I (u0) ≥ I (tu0u0) ≥ inf
N

I ≥ inf
M

I . (3.4)

Hence, all the inequalities in (3.4) turn into equalities. This implies that ρ(un) → ρ(u), for
a subsequence if necessary, and so, since the modular function ρ is uniformly convex, we
get from Proposition 2.1 (v) that un → u0 in W 1,H

0 (�). Moreover, tu0 = 1 and u0 ∈ N .
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Now, letting n → +∞ in (3.3) and using again Fatou’s Lemma, we obtain
∫

�

|∇u0|p−2∇u0 · ∇ϕ dx +
∫

�

μ(x)|∇u0|q−2∇u0 · ∇ϕ dx ≥
∫

�

h(x)u−r
0 ϕ dx (3.5)

for all ϕ ∈ W 1,H
0 (�) with ϕ ≥ 0. In particular, (3.5) implies that u0 ∈ M.

Now we consider the case in which, up to a subsequence, {un}n∈N ⊆ N . Again, let us fix
ϕ ∈ W 1,H

0 (�) with ϕ ≥ 0 and n ∈ N. For all t ≥ 0, we have
∫

�

h(x)(un + tϕ)1−r dx ≤
∫

�

h(x)u1−r
n dx < +∞. (3.6)

Then, by Lemma 3.1, there exists a unique fn,ϕ(t) > 0 such that fn,ϕ(t)(un + tϕ) ∈ N , that
is,

fn,ϕ(t)p‖∇(un + tϕ)‖p
p + fn,ϕ(t)q‖∇(un + tϕ)‖q

q,μ

= fn,ϕ(t)1−r
∫

�

h(x)(un + tϕ)1−r dx .

Hence,

fn,ϕ(t)p−1+r ‖∇(un + tϕ)‖p
p + fn,ϕ(t)q−1+r‖∇(un + tϕ)‖q

q,μ

=
∫

�

h(x)(un + tϕ)1−r dx .
(3.7)

Now, let us consider a sequence tk → 0+ such that there exists the limit

lim
k→+∞

fn,ϕ(tk) − 1

tk
=: f ′

n,ϕ(0) ∈ [−∞,+∞]. (3.8)

Note that, up to a subsequence, the sequence { fn,ϕ(tk)}k∈N is bounded inR. Indeed, otherwise,
fn,ϕ(tk) → +∞ as k → +∞. Then, by (3.7) andLebesgue’sConvergenceTheorem, itwould
follow that

∫

�

h(x)u1−r
n dx = +∞,

which is a contradiction to (3.6). Hence there exists a nonnegative L ∈ R such that, up to a
subsequence,

fn,ϕ(tk) → L as k → +∞.

Then, passing to the limit in (3.7) as tk → 0+ and using Lebesgue’s Convergence Theorem,
we have that

∫

�

h(x)u1−r
n dx = L p−1+r‖∇un‖p

p + Lq−1+r‖∇un‖q
q,μ. (3.9)

But since un ∈ N ,
∫

�

h(x)u1−r
n dx = ‖∇un‖p

p + ‖∇un‖q
q,μ. (3.10)

Thus, from (3.9) and (3.10), it follows that L = 1. Hence, from now on, the sequence {tk}k∈N
is going to be considered such that (3.8) and also

lim
k→+∞ fn,ϕ(tk) = 1.
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hold. Moreover, we assume, without any loss of generality, that either fn,ϕ(tk) > 1 for all
k ∈ N or fn,ϕ(tk) < 1 for all k ∈ N. This implies

lim
k→+∞ sgn( fn,ϕ(tk) − 1) = ±1. (3.11)

Moreover, due to un ∈ N , it follows that fn,ϕ(0) = 1.
Let us now assume that there exists C > 0 such that

− C ≤ f ′
n,ϕ(0) ≤ C for all n ∈ N. (3.12)

From now on, for the sake of simplicity, we substitute tk for t and by t → 0+, we mean
tk → 0+. Then, from (3.2) and the fact that fn,ϕ(t)(un + tϕ) ∈ M, we have

I (un) − I ( fn,ϕ(t)(un + tϕ)) ≤ 1

n
‖ fn,ϕ(t)(un + tϕ) − un‖

≤ 1

n

(
t fn,ϕ(t)‖ϕ‖ + ‖un‖ · | fn,ϕ(t) − 1|) .

Dividing the last inequality by t > 0 and passing to the limit, we get

lim inf
t→0+

1

t

(
I (un) − I ( fn,ϕ(t)(un + tϕ))

) ≤ 1

n

(‖ϕ‖ + ‖un‖ · | f ′
n,ϕ(0)|) . (3.13)

On the other hand, it holds

I (un) − I ( fn,ϕ(t)(un + tϕ))

= 1

p

(‖∇un‖p
p − fn,ϕ(t)p‖∇(un + tϕ)‖p

p
)

+ 1

q

(‖∇un‖q
q,μ − fn,ϕ(t)q‖∇(un + tϕ)‖q

q,μ

)

− 1

1 − r

∫

�

(
h(x)u1−r

n − h(x) fn,ϕ(t)1−r (un + tϕ)1−r ) dx

= 1

p

(‖∇un‖p
p − ‖∇(un + tϕ)‖p

p
) − (

fn,ϕ(t)p − 1
) 1

p
‖∇(un + tϕ)‖p

p

+ 1

q

(‖∇un‖q
q,μ − ‖∇(un + tϕ)‖q

q,μ

) − (
fn,ϕ(t)q − 1

) 1

q
‖∇(un + tϕ)‖q

q,μ

− 1

1 − r

∫

�

(
h(x)u1−r

n − h(x)(un + tϕ)1−r ) dx

− 1

1 − r

(
1 − fn,ϕ(t)1−r )

∫

�

h(x)(un + tϕ)1−r dx .

Dividing by t > 0 and passing to the limit as t → 0+, from Fatou’s Lemma and the fact that
un ∈ N , we get
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lim inf
t→0+

1

t

(
I (un) − I ( fn,ϕ(t)(un + tϕ))

)

≥ −
∫

�

(|∇un |p−2∇un + μ(x)|∇un |q−2∇un
) · ∇ϕ dx

− f ′
n,ϕ(0)‖∇un‖p

p − f ′
n,ϕ(0)‖∇un‖q

q,μ +
∫

�

h(x)u−r
n ϕ dx

+ f ′
n,ϕ(0)

∫

�

h(x)u1−r
n dx

= −
∫

�

(|∇un |p−2∇un + μ(x)|∇un |q−2∇un
) · ∇ϕ dx

+
∫

�

h(x)u−r
n ϕ dx .

(3.14)

From (3.13) and (3.14), it follows that

1

n

(‖ϕ‖ + ‖un‖ · | f ′
n,ϕ(0)|)

≥ −
∫

�

(|∇un |p−2∇un + μ(x)|∇un |q−2∇un
) · ∇ϕ dx

+
∫

�

h(x)u−r
n ϕ dx .

(3.15)

Since {un}n∈N is bounded in W 1,H
0 (�) and from (3.12), calculating the lim inf as n → +∞

in (3.15), we have from Fatou’s Lemma that (3.5) holds true. In particular, u0 ∈ M and we
can proceed as in (3.4) and show that, also in this case, tu0 = 1 and u0 ∈ N .

Now, it remains to prove that (3.12) holds. Since un, fn,ϕ(t)(un + tϕ) ∈ N , we have that

‖∇un‖p
p + ‖∇un‖q

q,μ =
∫

�

h(x)u1−r
n dx (3.16)

and

fn,ϕ(t)p‖∇(un + tϕ)‖p
p + fn,ϕ(t)q‖∇(un + tϕ)‖q

q,μ

= fn,ϕ(t)1−r
∫

�

h(x)(un + tϕ)1−r dx .
(3.17)

Subtracting (3.16) from (3.17), we get

0 = (
fn,ϕ(t)p − 1

) ‖∇(un + tϕ)‖p
p + (‖∇(un + tϕ)‖p

p − ‖∇un‖p
p
)

+ (
fn,ϕ(t)q − 1

) ‖∇(un + tϕ)‖q
q,μ + (‖∇(un + tϕ)‖q

q,μ − ‖∇un‖q
q,μ

)

− (
fn,ϕ(t)1−r − 1

) ∫

�

h(x)(un + tϕ)1−r dx

−
∫

�

(
h(x)(un + tϕ)1−r − h(x)u1−r

n

)
dx

≥ (
fn,ϕ(t)p − 1

) ‖∇(un + tϕ)‖p
p + (‖∇(un + tϕ)‖p

p − ‖∇un‖p
p
)

+ (
fn,ϕ(t)q − 1

) ‖∇(un + tϕ)‖q
q,μ + (‖∇(un + tϕ)‖q

q,μ − ‖∇un‖q
q,μ

)

− (
fn,ϕ(t)1−r − 1

) ∫

�

h(x)(un + tϕ)1−r dx .

(3.18)
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Then, we divide (3.18) by t > 0 and let t → 0+. This gives, by taking (3.16) into account,
that

0 ≥ p f ′
n,ϕ(0)‖∇un‖p

p +
∫

�

|∇un |p−2∇un · ∇ϕ dx

+ q f ′
n,ϕ(0)‖∇un‖q

q,μ +
∫

�

μ(x)|∇un |q−2∇un · ∇ϕ dx

− (1 − r) f ′
n,ϕ(0)

∫

�

h(x)u1−r
n dx

= f ′
n,ϕ(0)

(
p‖∇un‖p

p + q‖∇un‖q
q,μ − (1 − r)

∫

�

h(x)u1−r
n dx

)

+
∫

�

|∇un |p−2∇un · ∇ϕ dx +
∫

�

μ(x)|∇un |q−2∇un · ∇ϕ dx

= f ′
n,ϕ(0)

(
p‖∇un‖p

p − (1 − r)‖∇un‖p
p
) +

∫

�

|∇un |p−2∇un · ∇ϕ dx

+ f ′
n,ϕ(0)

(
q‖∇un‖q

q,μ − (1 − r)‖∇un‖q
q,μ

)

+
∫

�

μ(x)|∇un |q−2∇un · ∇ϕ dx

≥ (p + r − 1)‖∇un‖p
p f ′

n,ϕ(0) +
∫

�

|∇un |p−2∇un · ∇ϕ dx

+ (p + r − 1)‖∇un‖q
q,μ f ′

n,ϕ(0) +
∫

�

μ(x)|∇un |q−2∇un · ∇ϕ dx .

(3.19)

Then, fromLemma3.3, Proposition 2.1 (iii) and (iv), (3.19) andHölder’s inequality, it follows
that

f ′
n,ϕ(0) ≤ − ∫

�
|∇un |p−2∇un · ∇ϕ dx − ∫

�
μ(x)|∇un |q−2∇un · ∇ϕ dx

(p + r − 1)(‖∇un‖p
p + ‖∇un‖q

q,μ)

≤ ‖∇un‖p−1
p ‖∇ϕ‖p + ‖∇un‖q−1

q,μ ‖∇ϕ‖q,μ

(p + r − 1)min{δ p, δq}
≤ C for all n ∈ N,

where we have used that {un}n∈N ⊆ W 1,H
0 (�) is bounded.

Now, let us start proving that there exists C > 0 such that

−C ≤ f ′
n,ϕ(0) for all n ∈ N.

From (3.2) we know that

I (un) − I ( fn,ϕ(t)(un + tϕ)) ≤ 1

n
‖ fn,ϕ(t)(un + tϕ) − un‖

≤ 1

n

(
t | fn,ϕ(t)|‖ϕ‖ + ‖un‖| fn,ϕ(t) − 1|) .

(3.20)
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Moreover, since un, fn,ϕ(t)(un + tϕ) ∈ N , it follow that

I (un) − I ( fn,ϕ(t)(un + tϕ))

=
(
1

p
− 1

1 − r

)
(‖∇un‖p

p − ‖∇(un + tϕ)‖p
p
)

+
(
1

q
− 1

1 − r

)
(‖∇un‖q

q,μ − ‖∇(un + tϕ)‖q
q,μ

)

−
(
1

p
− 1

1 − r

)
(

fn,ϕ(t)p − 1
) ‖∇(un + tϕ)‖p

p

−
(
1

q
− 1

1 − r

)
(

fn,ϕ(t)q − 1
) ‖∇(un + tϕ)‖q

q,μ.

(3.21)

Hence, from (3.20) and (3.21), we have that

t

n
‖ϕ‖| fn,ϕ(t)| +

(
1

p
− 1

1 − r

)
(‖∇(un + tϕ)‖p

p − ‖∇un‖p
p
)

+
(
1

q
− 1

1 − r

)
(‖∇(un + tϕ)‖q

q,μ − ‖∇un‖q
q,μ

)

≥ −1

n
| fn,ϕ(t) − 1|‖un‖

−
(
1

p
− 1

1 − r

) (
fn,ϕ(t)p − 1

) ‖∇(un + tϕ)‖p
p

−
(
1

q
− 1

1 − r

) (
fn,ϕ(t)q − 1

) ‖∇(un + tϕ)‖q
q,μ

≥ ( fn,ϕ(t) − 1)

[
−‖un‖

n
sgn( fn,ϕ(t) − 1)

−
(
1

p
− 1

1 − r

)
fn,ϕ(t)p − 1

fn,ϕ(t) − 1
‖∇(un + tϕ)‖p

p

−
(
1

p
− 1

1 − r

)
fn,ϕ(t)q − 1

fn,ϕ(t) − 1
‖∇(un + tϕ)‖q

q,μ

]
.

(3.22)

Note that

fn,ϕ(t)p − 1

fn,ϕ(t) − 1
= fn,ϕ(t)p−1 + fn,ϕ(t)p−2 + ... + 1 (3.23)

and analogously for q . Then, dividing (3.22) by t > 0, taking the limit as t → 0+ and taking
(3.11), (3.23) and Lemma 3.3 as well as Proposition 2.1 (iii), (iv) into account, we have that

((
1

p
− 1

1 − r

)
q min{δ p, δq} ± ‖un‖

n

)
f ′
n,ϕ(0) ≥ C .

Hence, we see that for n ∈ N large enough,

f ′
n,ϕ(0) ≥ C

and so we are done. ��

Before we can state the proof of Theorem 1.1 we need another auxiliary result.
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Lemma 3.5 If w ∈ N is such that
∫

�

|∇w|p−2∇w · ∇ϕ dx +
∫

�

μ(x)|∇w|q−2∇w · ∇ϕ dx

−
∫

�

h(x)(w+)−rϕ dx ≥ 0
(3.24)

for all ϕ ∈ W 1,H
0 (�) with ϕ ≥ 0, then

∫

�

|∇w|p−2∇w · ∇ϕ dx +
∫

�

μ(x)|∇w|q−2∇w · ∇ϕ dx −
∫

�

h(x)(w+)−rϕ dx = 0

for all ϕ ∈ W 1,H
0 (�).

Proof Let us fix ψ ∈ W 1,H
0 (�). For ε > 0, let us consider ϕ = (w + εψ)+ ∈ W 1,H

0 (�).
Then, since w ∈ N satisfying (3.24), we have

0 ≤
∫

�

(|∇w|p−2∇w + μ(x)|∇w|q−2∇w
) · ∇ϕ dx −

∫

�

h(x)(w+)−rϕ dx

=
∫

{w+εψ≥0}
(|∇w|p−2∇w + μ(x)|∇w|q−2∇w

) · ∇(w + εψ) dx

−
∫

{w+εψ≥0}
h(x)(w+)−r (w + εψ) dx

=
∫

�

(|∇w|p−2∇w + μ(x)|∇w|q−2∇w
) · ∇(w + εψ) dx

−
∫

{w+εψ<0}
(|∇w|p−2∇w + μ(x)|∇w|q−2∇w

) · ∇(w + εψ) dx

−
∫

�

h(x)(w+)−r (w + εψ) dx +
∫

{w+εψ<0}
h(x)(w+)−r (w + εψ) dx

= ‖∇w‖p
p + ‖∇w‖q

q,μ −
∫

�

h(x)w1−r dx

+ ε

∫

�

(|∇w|p−2∇w + μ(x)|∇w|q−2∇w
) · ∇ψ dx − ε

∫

�

h(x)(w+)−rψ dx

−
∫

{w+εψ<0}
(|∇w|p−2∇w + μ(x)|∇w|q−2∇w

) · ∇(w + εψ) dx

+
∫

{w+εψ<0}
h(x)(w+)−r (w + εψ) dx

= ε

∫

�

(|∇w|p−2∇w + μ(x)|∇w|q−2∇w
) · ∇ψ dx − ε

∫

�

h(x)(w+)−rψ dx

−
∫

{w+εψ<0}
(|∇w|p−2∇w + μ(x)|∇w|q−2∇w

) · ∇(w + εψ) dx

+
∫

{w+εψ<0}
h(x)(w+)−r (w + εψ) dx

≤ ε

∫

�

(|∇w|p−2∇w + μ(x)|∇w|q−2∇w
) · ∇ψ dx − ε

∫

�

h(x)(w+)−rψ dx

− ε

∫

{w+εψ<0}
(|∇w|p−2∇w + μ(x)|∇w|q−2∇w

) · ∇ψ dx .
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Dividing the last inequality by ε > 0, letting ε → 0+ and using the fact that |{w + εψ <

0}|N → 0 as ε → 0+, we see that
∫

�

|∇w|p−2∇w · ∇ψ dx +
∫

�

μ(x)|∇w|q−2∇w · ∇ψ dx −
∫

�

h(x)(w+)−rψ ≥ 0

(3.25)

for all ψ ∈ W 1,H
0 (�). Substituting ψ by −ψ in (3.25), the result follows. ��

Finally, we are able to present a complete proof of Theorem 1.1. Indeed, by Proposition
3.4, u0 ∈ N and

∫

�

|∇u0|p−2∇u0 · ∇ϕ dx +
∫

�

|∇u0|q−2∇u0 · ∇ϕ dx ≥
∫

�

h(x)u−r
0 ϕ dx

for all ϕ ∈ W 1,H
0 (�) with ϕ ≥ 0. Hence, by Lemma 3.5, u0 is such that

∫

�

|∇u0|p−2∇u0 · ∇ϕ dx +
∫

�

μ(x)|∇u0|q−2∇u0 · ∇ϕ dx −
∫

�

h(x)u−r
0 ϕ dx = 0

for all ϕ ∈ W 1,H
0 (�). Therefore, u0 is a positive solution to problem (1.4).
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