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Abstract
This article concerns the existence and multiplicity of multi-bump type nodal solu-
tions for a class of fractional p-Laplacian Schrödinger equations involving loga-
rithmic nonlinearity and deepening potential well. We apply suitable variational 
arguments to show that the equation has at least 2k − 1 multi-bump type nodal 
solutions as the parameter becomes large enough.

Keywords  Deepening potential well · Fractional operators · Logarithmic 
nonlinearity · Multi-bump solutions · Variational methods

Mathematics Subject Classification  35A15 · 35R11 · 35J60

1  Introduction

This paper is devoted to the existence of multi-bump type nodal solutions for frac-
tional p-Laplacian logarithmic Schrödinger equations of the form
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{
(−∆)s

p u + λV (x)|u|p−2u = |u|p−2u log |u|p in RN ,

u ∈ W s,p(RN ), � (1.1)

where s ∈ (0, 1), p ∈ [2, ∞), N > sp and V : RN → R is a continuous potential 
satisfying the following conditions: 
(V1)	 V ∈ C

(
RN ,R

)
 and V (x) ≥ 0 for all x ∈ RN ;

(V2)	 Ω := int V −1(0) is a non-empty bounded open subset with smooth bound-
ary and Ω = V −1(0), where int V −1(0) denotes the set of the interior points 
of V −1(0);

(V3)	 Ω consists of k components 

	 Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk

 and Ωi ∩ Ωj = ∅ for all i ̸= j.
 Here, (−∆)s

p is the fractional p-Laplacian operator which is defined for any 
u : RN → R belonging to the Schwartz class by

	
(−∆)s

pu(x) = 2 lim
δ→0

ˆ

RN \Bδ(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+sp

dy (x ∈ RN ),

for any u ∈ C∞
0 (RN ), where Bδ(x) denotes the ball in RN  centered at x with radius 

δ.When the logarithmic nonlinearity is replaced by a power-type nonlinearity, prob-
lem (1.1) is of particular interest in fractional quantum mechanics for the study 
of particles on stochastic fields modeled by Lévy processes, see, for example, Di 
Nezza-Palatucci-Valdinoci [14] for a physical background. We also recall that the 
analysis of fractional and nonlocal operators is strongly motivated by the fact that 
these operators play a fundamental role in describing various physical phenomena 
such as, among others, phase transitions, crystal dislocations, anomalous diffusions, 
conservation laws, flame propagation and chemical reactions of liquids. For more 
details and applications, we refer the interested reader to the works by Applebaum 
[11], Bahrouni-Rădulescu-Winkert [12], Di Nezza-Palatucci-Valdinoci [14], Molica 
Bisci-Rădulescu-Servadei [18], see also the references therein.

In these last years, many intriguing existence and multiplicity results have been 
established for fractional p-Laplacian Schrödinger equations given by

	 (−∆)s
p u + V (x)|u|p−2u = f(u) in RN ,

see for instance Alves-Miyagaki [3], Ambrosio [7, 8], Ji [15], Qu-He [21] for the 
case p = 2 and Alves-Ambrosio [1], Ambrosio-Figueiredo-Isernia [9], Ambrosio-
Isernia [10], Pucci-Xiang-Zhang [19, 20] whenever p ∈ (1, ∞). In particular, Alves-
Ambrosio [1] obtained an existence and concentration result when f is a logarithmic 
nonlinearity and V verifies the following local conditions: 
(V′

1)	 V (x) ∈ C(RN ,R) and infx∈RN V (x) = V0 > −1;
(V′

2)	 There exists a bounded open set Ω ⊂ RN  such that 

1 3

   60   Page 2 of 40



Applied Mathematics & Optimization           (2025) 92:60 

	
−1 < V0 = inf

x∈Ω
V (x) < min

∂Ω
V and M = {x ∈ Ω : V (x) = V0} ̸= ∅.

 They employed the penalization method to demonstrate the existence of positive solu-
tions, as well as the concentration behavior under conditions (V′

1) and (V′
2).Recently, 

the following time-dependent logarithmic Schrödinger equation given by

	
iε

∂Φ
∂t

= −ε2∆Φ + W (x)Φ − Φ log |Φ|2, N ≥ 3� (1.2)

where Φ : [0, +∞) × RN → C, has also obtained special attention due to its physi-
cal influence, such as quantum mechanics, quantum optics, nuclear physics, effective 
quantum and Bose-Einstein condensation. Standing wave solutions for (1.2) have 
the form Φ(t, x) = u(x)e−iωt/ε, where ω ∈ R, which leads to a system of the shape

	 −ε2∆u + V (x)u = u log u2 in RN ,� (1.3)

where V (x) = W (x) − ω. From the mathematical point of view, (1.3) is very inter-
esting because many difficulties arise when using variational methods to find solu-
tions. Alves-de Morais Filho [2] considered semiclassical state solutions for the 
logarithmic elliptic equation (1.3) when V satisfies the following global condition 
(Vglobal)	 V ∈ C(RN ,R) and 

V∞ = lim|x|→∞ V (x) > V∗ = infx∈RN V (x) > −1.
 They obtained the existence of solutions of (1.3) as well as the concentration behav-
ior of solutions as ε → 0. Alves-Ji [4] continued to study (1.3) where V satisfies 
the local conditions (V′

1) and (V′
2). Moreover, Alves-Ji [5] studied the existence of 

multi-bump positive solutions for the following Schrödinger equation with logarith-
mic nonlinearity and deepening potential well

	

{
−∆u + λV (x)u = u log u2 in RN ,
u ∈ H1(RN ). � (1.4)

Then, Ji [16] was concerned with the existence and multiplicity of multi-bump type 
nodal solutions for problem (1.4). We also refer to the works by Alves-Ambrosio [1], 
Alves-Ji [6], d’Avenia-Montefusco-Squassina [13], Ji-Szulkin [17], Tanaka-Zhang 
[24] and the references therein.Motivated by the above papers, in this work we obtain 
the existence of multi-bump type nodal solutions for problem (1.1). More precisely, 
our main results are as follows.

Theorem 1.1  Suppose that V satisfies (V1 )–(V3 ). Then, for any non-empty subset Γ  
of {1 , 2 , . . . , k}, there exists λ∗ > 0  such that for all λ ≥ λ∗, problem (1.1) has a 
nodal solution uλ. Moreover, the family {uλ}λ≥λ∗  has the following properties: for 
any sequence λn → ∞, we can extract a subsequence λni  such that uλni

 converges 
strongly in W s,p(RN ) to a function u which satisfies u(x) = 0  for x /∈ ΩΓ  and the 
restriction u

∣∣
Ωj

 is a nodal solution with least energy of
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{
(−∆)s

p u = |u|p−2u log |u|p inΩΓ,
u = 0 on∂ΩΓ,

where ΩΓ =
∪

j∈Γ Ωj .

From this result, we obtain the following direct consequence.

Corollary 1.2  Under the assumptions of Theorem 1.1, there exists λ∗ > 0  such that 
for all λ ≥ λ∗, the problem (1.1) has at least 2 k − 1  nodal solutions.

Corollary 1.2 can be directly obtained from Theorem 1.1. Our approach is mainly 
based on variational methods. First note that the associated energy functional of 
problem (1.1) may take the value +∞, since there is a function u ∈ W s,p(RN ) such 
that 
´
RN |u|p log |u|p dx = −∞. Thus, the energy functional is not well defined on 

W s,p(RN ) and the classical variational methods cannot be applied here. To find 
solutions of equation (1.1), we will perform a technical decomposition to obtain a 
functional which is a sum of a lower semicontinuous convex functional and a C1-func-
tional. Here, we have made great use of the fact that the energy functional is of class 
C1 in W s,p(D), when D ⊂ RN  is a bounded domain. Based on this observation, for 
each R > 0 and λ > 0 large enough, we find a nodal solution uλ,R ∈ W s,p

0 (BR(0)) 
by penalization arguments, and after taking the limit of R → +∞, we get a nodal 
solution for the original problem.

In fact, by the method presented in this paper, we can also demonstrate the exis-
tence of multi-bump solutions that join positive, negative, and nodal least energy 
solutions. For this purpose, we need to make some modifications. For example, if we 
want to get a positive solution ω1 on Ω1 and a negative solution ω2 on Ω2, we need 
to change ω±

1  and ω±
2  by ω1 and ω2, respectively. We also need to make some modi-

fications for the definition of bλ,R,Γ and the set Aλ
µ,R, which are defined in Sect. 4 

and 5. In addition, we need to replace d1 and d2 with mountain pass levels c1 and c2 
associated with the energy functionals I1 and I2, respectively. From this, we have 
the following theorem.

Theorem 1.3  Suppose that V satisfies (V1 )–(V3 ). Then, for any non-empty subset 
Γ1 , Γ2  and Γ3  of {1 , 2 , . . . , k} with Γi ∩ Γj = ∅, for i ̸= j , there is λ∗ > 0  such 
that, for all λ ≥ λ∗, problem (1.1) has a nontrivial solution uλ. Moreover, the family 
{uλ}λ≥λ∗  has the following properties: for any sequence λn → ∞, we can extract 
a subsequence λni  such that uλni

 converges strongly in W s,p (
RN )

 to a function u 
which satisfies u(x) = 0  for x /∈ ΩΓ(= ∪j∈ΓΩj) where Γ = Γ1 ∪ Γ2 ∪ Γ3 , and the 
restriction u|Ωj

 is a positive solution if j ∈ Γ1 , a negative solution if j ∈ Γ2  and a 
nodal solution with least energy of

	

{
(−∆)s

p u = |u|p−2u log |u|p inΩj ,
u = 0 on∂Ωj ,

where j ∈ Γ3 .
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The paper is organized as follows. In Sect. 2, we recall some lemmas which we 
will use in the paper. In Sect. 3–5, we establish an auxiliary problem and prove the 
existence of multi-bump nodal solutions for the auxiliary problem in the ball BR(0) 
for R > 0. In Sect. 6, we provide the proof of Theorem 1.1.

2  Preliminaries

In this section, we present the main tools and notions that will occur in Sects. 3–6. If 
A ⊂ RN , we denote by |u|Lq(A) the Lq(A)-norm of a function u : RN → R, and by 
|u|q its Lq(RN )-norm. With Br(x0) we indicate the ball in RN  centered at x0 ∈ RN  
with radius r > 0. When x0 = 0, we simply write Br instead of Br(0).

Let s ∈ (0, 1), p ∈ (1, ∞) and N > sp. We define Ds,p(RN ) as the completion of 
C∞

c (RN ) with respect to

	
[u]ps,p =

¨

R2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy,

or equivalently

	
Ds,p(RN ) =

{
u ∈ Lp∗

s (RN ) : [u]s,p < ∞
}

,

where p∗
s = Np

N−sp  is the fractional critical Sobolev exponent. The fractional Sobolev 
space Ws,p(RN ) is given by

	 W s,p(RN ) =
{

u ∈ Lp(RN ) : [u]s,p < ∞
}

,

endowed with the norm

	 ∥u∥p
W s,p(RN ) = [u]ps,p + |u|pp.

We know that there exists a constant S∗ = S(N, s, p) > 0 such that 
S∗∥u∥p

Lp∗
s (RN )

≤ [u]ps,p for all u ∈ Ds,p(RN ). Now, we recall the following main 

embeddings for fractional Sobolev spaces, see Di Nezza-Palatucci-Valdinoci [14].

Lemma 2.1  Let s ∈ (0 , 1 ), p ∈ (1 , ∞) and N > sp. Then W s,p(RN ) is continu-
ously embedded in Lq(RN ) for all q ∈ [p, p∗

s ) and compactly in Lq
loc(RN ) for all 

q ∈ [1 , p∗
s ), and C ∞

c (RN ) is dense in W s,p(RN ).

We also recall the following vanishing Lions-type result for W s,p(RN ), see 
Ambrosio-Isernia [10].

Lemma 2.2  If {un}n∈N is a bounded sequence in W s,p(RN ) and if
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lim

n→∞
sup

y∈RN

ˆ

BR(y)
|un|p dx = 0,

where R > 0 , then un → 0  in Lq(RN ) for all q ∈ (p, p∗
s ).

From now on, we suppose p ∈ [2, ∞) and we shall work on the following function 
space

	
Eλ :=

{
u ∈ W s,p(RN ) :

ˆ

RN

V (x)|u|p dx < ∞
}

endowed with the norm

	
∥u∥p

λ := [u]ps,p +
ˆ

RN

(λV (x) + 1) |u|p dx.

Obviously, Eλ is a uniformly convex Banach space, the duality pairing associated 
with the norm is given by 

	

(u, v)λ =
¨

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp

dx dy

+
ˆ

RN

(λV (x) + 1) |u|p−2uv dx.

Since V (x) ≥ 0 for all x ∈ RN , the embedding Eλ ↪→ W s,p(RN ) is continuous, and 
so the embedding Eλ ↪→ Lq(R3) is also continuous for all q ∈ [p, p∗

s].
For each R > 0, we define a norm ∥ · ∥λ,R on W s,p(BR(0)) by

	
∥u∥p

λ,R :=
ˆ

BR(0)

ˆ

BR(0)

|u(x) − u(y)|p

|x − y|N+sp
dx dy +

ˆ

BR(0)
(λV (x) + 1) |u|p dx,

which is equivalent to the usual norm in that space for all λ, R > 0. In what follows, 
we will denote by Eλ,R the space Eλ endowed with the norm ∥ · ∥λ,R.

Note that a weak solution of (1.1) in W s,p(RN ) is a critical point of the associated 
energy functional

	
Iλ(u) := 1

p
∥u∥p

λ − 1
p

ˆ

RN

|u|p log |u|p dx.� (2.1)

Definition 2.3  A solution of problem (1.1) is a function u ∈ W s,p(RN ) such that 
|u|p log |u|p ∈ L1(RN ) and
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¨

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+sp

dx dy +
ˆ

RN

λV (x)|u|p−2uv dx

=
ˆ

RN

|u|p−2uv log |u|p dx

for all v ∈ C∞
c (RN ).

Due to the lack of smoothness of Iλ, we shall use the approach explored by Ji-Szulkin 
[17] and Squassina-Szulkin [22, 23]. For this purpose, we decompose Iλ into a sum 
of a C1 functional plus a convex lower semicontinuous functional, respectively. For 
δ > 0, we define the functions

	

F1(ς) =





0, if ς = 0,

−1
p

|ς|p log |ς|p, if 0 < |ς| < δ,

−1
p

|ς|p
(

log δp + p + 1
p − 1

)
+ 2

p − 1
δp−1|ς| − 1

p
δp, if |ς| ≥ δ,

and

	
F2(ς) =




0, if |ς| < δ,
1
p

|ς|p log
(

|ς|p

δp

)
+ 2

p − 1
δp−1|ς| − p + 1

p(p − 1)
|ς|p − 1

p
δp, if |ς| ≥ δ.

Then,

	
F2(ς) − F1(ς) = 1

p
|ς|p log |ς|p for all ς ∈ R,

and the functional Iλ : Eλ → (−∞, +∞] may be rewritten as

	 Iλ(u) = Φλ(u) + Ψ(u), u ∈ Eλ,

where

	
Φλ(u) = 1

p
∥u∥p

λ −
ˆ

RN

F2(u) dx,

and

	
Ψ(u) =

ˆ

RN

F1(u) dx.

As proven in Ji-Szulkin [17] and Squassina-Szulkin [22, 23], F1, F2 ∈ C1(R,R). If 
δ > 0 is small enough, F1 is convex, even,

1 3
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F1(ς) ≥ 0 and 0 ≤ 1

p
F ′

1(ς)ς ≤ F1(ς) ≤ F ′
1(ς)ς for all ς ∈ R.� (2.2)

For each fixed q ∈ (p, p∗
s), there exists C > 0 such that

	 |F ′
2(ς)| ≤ C|ς|q−1 for all ς ∈ R.� (2.3)

Note that Φλ ∈ C1 (
W s,p(RN ),R

)
, Ψ is convex and lower semicontinuous in 

W s,p(RN ), but Ψ is not a C1-functional due to the unboundedness of RN .

3  The Auxiliary Problem

For each j ∈ {1, . . . , k}, we fix a bounded open subset Ω′
j  with smooth boundary 

such that

	 Ωj ⊂ Ω′
j ,

and

	 Ω′
j ∩ Ω′

l = ∅ for all j ̸= l.

From now on, we fix a non-empty subset Γ ⊂ {1, . . . , k} and R > 0 such that 
Ω′

Γ ⊂ BR(0) and

	
ΩΓ =

∪
j∈Γ

Ωj , Ω′
Γ =

∪
j∈Γ

Ω′
j .

To prove our main theorem, we modify problem (1.1) and then consider the existence 
of solutions to the auxiliary problem.

By a simple observation, it is easy to verify that F ′
2(ς)

ςp−1  is nondecreasing for ς > 0 

and F ′
2(ς)

ςp−1  is strictly increasing for ς > δ,

	
lim

ς→+∞

F ′
2(ς)

ςp−1 = +∞

and

	 F ′
2(ς) ≥ 0 for ς > 0 and F ′

2(ς) > 0 for ς > δ.

Moreover, F
′
2(ς)

ςp−1  is nonincreasing for ς < 0 and F
′
2(ς)

ςp−1  is strictly decreasing for ς < −δ,
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lim

ς→−∞

F ′
2(ς)

ςp−1 = +∞,

and

	 F ′
2(ς) ≤ 0 for ς < 0 and F ′

2(ς) < 0 for ς < −δ.

Let ℓ > 0 be small and a0 > 0 such that

	
max

{
F ′

2(a0)
ap−1

0
,

F ′
2(−a0)

(−a0)p−1

}
= ℓ.

It is clear that a0 > δ. We define

	

F̃ ′
2(ς) =




F ′
2(−a0)

(−a0)p−1 ςp−1 if ς < −a0,

F ′
2(ς) if |ς| ≤ a0,

F ′
2(a0)
ap−1

0
ςp−1 if ς > a0,

F̃ ′
2(ς) ≤ F ′

2(ς) for ς ≥ 0, F̃ ′
2(ς) ≥ F ′

2(ς) for ς ≤ 0

and

	 G′
2(x, u) = χΓ(x)F ′

2(u) + (1 − χΓ(x)) F̃ ′
2(u),

where

	
χΓ(x) :=

{
1, x ∈ Ω′

Γ,
0, x ∈ BR(0) \ Ω′

Γ.

Then, we define the auxiliary problem given by

	

{
(−∆)s

p u + (λV (x) + 1) |u|p−2u = G′
2 (x, u) − F ′

1(u), in BR(0),
u = 0 on ∂BR(0). � (3.1)

Remark 3.1  Note that, if uλ,R is a nodal solution of (3.1) satisfying |uλ,R| ≤ a0 for 
each x ∈ BR(0)\Ω′

Γ, then G′
2(x, uλ,R) = F ′

2(uλ,R) and consequently, uλ,R is also 
a nodal solution of

	

{
(−∆)s

p u + λV (x)|u|p−2u = |u|p−2u log |u|p in BR(0),
u = 0 on ∂BR(0). � (3.2)
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It is clear that weak solutions of (3.1) are nontrivial critical points of the following 
energy functional

	
Iλ,R(u) := 1

p
∥u∥p

λ,R +
ˆ

BR(0)
F1(u) dx −

ˆ

BR(0)
G2 (x, u) dx,

in the sub-differential sense, and G2(x, t) =
´ t

0 G′
2 (x, ζ) dζ for all 

(x, t) ∈ BR(0) × R. It is standard to verify that Iλ,R ∈ C1(Eλ,R,R).

The next lemma implies that Iλ,R possesses the Mountain Pass geometry.

Lemma 3.2  For all λ > 0 , the functional Iλ,R satisfies the following conditions: 

(i)	 There exist α, ρ > 0 such that Iλ,R(u) ≥ ρ with ∥u∥λ,R = α;
(ii)	 There exists e ∈ Eλ,R such that ∥u∥λ,R > α and Iλ,R(e) < 0.

Proof  First, note that

	
Iλ,R(u) ≥ 1

p
∥u∥p

λ,R −
ˆ

BR(0)
F2 (u) dx,

which follows from (2.3) for q ∈ (2, 2∗
s) such that

	
Iλ,R(u) ≥ 1

p
∥u∥p

λ,R − C1∥u∥q
λ,R.

The claim follows if we choose ρ and ∥u∥λ,R = α small enough.
On the other hand, fixing φ ∈ C∞

0 (ΩΓ)\{0}, by (2.2), we have

	

Iλ,R(τφ) = τp

p
∥φ∥p

λ,R − 1
p

ˆ

BR(0)
τpφp log(|τφ|p) dx

≤ τp

(
Iλ,R(φ) − log(τ)

ˆ

Ω′
Γ

φp dx

)
.

As τ → +∞, then

	 Iλ,R(τφ) → −∞,

and the proof of the lemma is complete. � □
By Lemma 3.2 and Willem [25], there exists a (PS)-sequence {un}n∈N ⊂ Eλ,R of 

Iλ,R at the level cλ,R > 0, where

	
cλ,R = inf

γ∈Γλ,R

max
t∈[0,1]

Iλ,R(γ(t)),

1 3
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and Γλ,R :=
{

γ ∈ C1([0, 1], Eλ,R) : γ(0) = 0, Iλ,R(γ(1)) < 0
}

. Moreover, by 
Lemma 3.2, we have

	 cλ,R ≥ α > 0 for all λ > 0 and R > 0 large enough.

Now, we will prove some results that will be useful in the proof of Theorem 1.1.

Lemma 3.3  For any λ > 0 , all (PS)-sequences of Iλ,R are bounded in Eλ,R.

Proof  Since {un}n∈N ⊂ Eλ,R is a (PS)cλ,R
-sequence, one gets

	 pIλ,R(un) − I ′
λ,R(un)un = pcλ,R + 1 + on(1) ∥un∥λ,R ,� (3.3)

for n large enough. Note that,

	

ˆ

BR(0)
[(pF1(un) − F ′

1(un)un) + (F ′
2(un)un − pF2(un))] dx =

ˆ

BR(0)
|un|p dx.

From this, one has

	

pIλ,R(un) − I ′
λ,R(un)un

=
ˆ

BR(0)
[(pF1(un) − F ′

1(un)un) + (G′
2(x, un)un − pG2(x, un))] dx

=
ˆ

BR(0)
|un|p dx +

ˆ

BR(0)
(pF2(un) − F ′

2(un)un) dx

+
ˆ

BR(0)
(G′

2(x, un)un − pG2(x, un)) dx

=
ˆ

Ω′
Γ

|un|p dx +
ˆ

BR(0)\Ω′
Γ∩[|un|>a0]

(|un|p + pF2(un) − F ′
2(un)un) dx

+
ˆ

BR(0)\Ω′
Γ∩[|un|>a0]

(G′
2(x, un)un − pG2(x, un)) dx.

Using the fact

	 |t|p + [pF2(t) − F ′
2(t)t + G′

2(x, t)t − pG2(x, t)] ≥ 0, t ∈ C, x ∈ RN ,

one gets

	
pIλ,R(un) − I ′

λ,R(un)un ≥
ˆ

Ω′
Γ

|un|p dx.

So (3.3) implies that
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pcλ,R + 1 + on(1) ∥un∥λ,R ≥

ˆ

Ω′
Γ

|un|p dx.� (3.4)

Let us employ the following logarithmic Sobolev inequality found in Alves-Ambro-
sio [1],

	

ˆ

Λ

|u|p

∥u∥p

Lp(Ω′
Γ)

log


 |u|p

∥u∥p

Lp(Ω′
Γ)


 dx ≤ K log




∥u∥p

Lp∗
s (Ω′

Γ)
∥u∥p

Lp(Ω′
Γ)


 ,

for all u ∈ Lp(Ω′
Γ) ∩ Lp∗

s (Ω′
Γ). Now, using ∥un∥Lp∗

s (Ω′
Γ) ≤

(
S−1

∗
) 1

p ∥un∥λ,R, we 
find

	

ˆ

Ω′
Γ

(un)p log(un)p dx ≤
(

∥un∥p
Lp(Ω′

Γ) − K ∥un∥p

Lp(Ω′
Γ)

)
log

(
∥un∥p

Lp(Ω′
Γ)

)

+ K ∥un∥p

Lp(Ω′
Γ) log

(
∥un∥p

L
pp(Ω′

Γ)

)

≤ C ∥un∥p

Lp(Ω′
Γ)

∣∣∣∣log
(

∥un∥p

Lp(Ω′
Γ)

)∣∣∣∣
+ C ∥un∥λ,R

∣∣∣log
(

C ∥un∥λ,R

)∣∣∣ + C + ∥un∥λ,R ,

for all n ∈ N and for some C > 0. Observe that, for all r ∈ (0, 1), there exists A > 0 
such that

	 |t log t| ≤ A(1 + t)r+1 for all t ≥ 0.� (3.5)

Then, employing (3.5)

	

∥un∥p

Lp(Ω′
Γ)

∣∣∣∣log
(

∥un∥p

Lp(Ω′
Γ)

)∣∣∣∣ =
∣∣∣∣∥un∥p

Lp(Ω′
Γ) log

(
∥un∥p

Lp(Ω′
Γ)

)∣∣∣∣

≤ A

p

(
1 + ∥un∥p

Lp(Ω′
Γ)

)r+1

for all n ∈ N,

which combined with (3.4) leads to

	
∥un∥p

Lp(Ω′
Γ)

∣∣∣∣log
(

∥un∥p

Lp(Ω′
Γ)

)∣∣∣∣ ≤ C
(

1 + ∥un∥λ,R

)r+1
for all n ∈ N.

A similar argument shows that

	
∥un∥p

Lp(Ω′
Γ)

∣∣∣∣log
(

∥un∥p

Lp(Ω′
Γ)

)∣∣∣∣ ≤ C
(

1 + ∥un∥λ,R

)r+1
for all n ∈ N,
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and

	
∥un∥λ,R

∣∣∣log
(

C ∥un∥λ,R

)∣∣∣ ≤ C
(

1 + ∥un∥λ,R

)r+1
for all n ∈ N,

for some generic constant C > 0. The above analysis ensures that

	

ˆ

Ω′
Γ

(un)p log (un)p dx ≤ C
(

1 + ∥un∥λ,R

)r+1
for all n ∈ N.� (3.6)

On the other hand,

	

cλ,R + on(1) = Iλ,R (un) ≥ 1
p

∥un∥p
λ,R − 1

p

ˆ

Ω′
Γ

(un)p log (un)p dx

−
ˆ

BR(0)\Ω′
Γ

G2 (x, un) dx,

and recalling that

	
G2(x, t) ≤ ℓ

p
tp for all (x, t) ∈ BR(0) \ Ω′

Γ × R,

we deduce that

	
cλ,R + on(1) = Iλ,R (un) ≥ C ∥un∥p

λ,R − 1
p

ˆ

Ω′
Γ

(un)p log (un)p dx.

This fact together with (3.6) yields

	

∥un∥p
λ,R ≤ 1

p

ˆ

Ω′
Γ

(un)p log (un)p dx + cλ,R + on(1)

≤ C
(

1 + ∥un∥λ,R

)r+1
+ C + C ∥un∥λ,R + on(1),

showing the boundedness of {un}n∈N in Eλ,R. � □
Our next lemma shows that Iλ,R verifies the (PS) condition.

Lemma 3.4  The functional Iλ,R verifies the (PS) condition on Eλ,R at any level 
cλ,R ∈ R.

Proof  Let {un}n∈N be a (PS)-sequence for Iλ,R at the level cλ,R, i.e.,

	 Iλ,R(un) → cλ,R and I ′
λ,R(un) → 0.
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Since {un}n∈N is bounded in Eλ,R, see Lemma 3.3, up to a subsequence, we may 
assume that

	

{
un ⇀ u in Eλ,R,
un → u in Lr(BR(0)), for all r ∈ [1, p∗

s)
un(x) → u(x) a.e. in BR(0).

For all τ ∈ R and fixed q ∈ (p, p∗
s), there exists C > 0 such that

	 |G′
2(x, τ)| ≤ θ|τ | + C|τ |q−1,

and

	 |F ′
1(τ)| ≤ C(1 + |τ |q).

Hence, by the Sobolev embeddings, one has

	

ˆ

BR(0)
G′

2(x, un)un dx →
ˆ

BR(0)
G′

2(x, u)u dx,

ˆ

BR(0)
F ′

1(x, un)un dx →
ˆ

BR(0)
F ′

1(x, u)u dx,

ˆ

BR(0)
G′

2(x, un)ω dx →
ˆ

BR(0)
G′

2(x, u)ω dx,

ˆ

BR(0)
F ′

1(x, un)ω dx →
ˆ

BR(0)
F ′

1(x, u)ω dx,

for all ω ∈ Eλ,R.
Since I ′

λ,R(un)un = I ′
λ,R(un)u = on(1), we get

	

∥un − u∥p
λ,R =

ˆ

BR(0)
(G′

2(x, un) − G′
2(x, u)) (un − u) dx

−
ˆ

BR(0)
(F ′

1(x, un) − F ′
1(x, u)) (un − u) dx + on(1) = on(1),

which shows the desired result. � □

3.1  The (PS)∞,R Condition

In the sequel, for each R > 0, we study the behavior of a (PS)∞,R-sequence for 
Iλ,R, i.e., a sequence {un}n∈N ⊂ W s,p

0 (BR(0)) satisfying

	

un ∈ Eλn,R and λn → ∞,

Iλn,R (un) → c,
∥∥I ′

λn,R (un)
∥∥ → 0.
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Lemma 3.5  Let {un}n∈N ⊂ W s,p
0 (BR(0 )) be a (PS)∞,R sequence. Then, for some 

subsequence, still denoted by {un}n∈N, there exists u ∈ W s,p
0 (BR(0 )) such that

	 un ⇀ u inW s,p
0 (BR(0)) .

Moreover, the following hold: 
(i)	 un converges to u in the strong sense, i.e., 

	 ∥un − u∥λn,R → 0.

	  Hence, 

	 un → u in W s,p
0 (BR(0)) .

(ii)	 u ≡ 0 in BR(0) \ ΩΓ and u is a solution of 

	

{
(−∆)s

p u = |u|p−2u log |u|p in ΩΓ,
u = 0 on ∂ΩΓ.

� (3.7)

(iii)	un also satisfies 

	

λn

ˆ

BR(0)
V (x) |un|p dx → 0,

∥un∥p
λn,BR(0)\ΩΓ

→ 0,

∥un∥p
λn,Ω′

j
→
ˆ

Ωj

ˆ

Ωj

|u(x) − u(y)|p

|x − y|N+sp
dx dy +

ˆ

Ωj

|u|p dx for all j ∈ Γ.

Proof  By using Lemma 3.3, there exists K > 0 such that

	 ∥un∥p
λn,R ≤ K for all n ∈ N.

Thus {un}n∈N is bounded in W s,p
0 (BR(0)) and we can assume that for some 

u ∈ W s,p
0 (BR(0)),

	

un ⇀ u weakly in W s,p
0 (BR(0)) ,

un(x) → u(x) a.e. in BR(0).

Fixing Cm =
{

x ∈ BR(0) : V (x) ≥ 1
m

}
, one has

	

ˆ

Cm

|un|p dx ≤ m

λn

ˆ

BR(0)
λnV (x) |un|p dx,

that is,
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ˆ

Cm

|un|p dx ≤ m

λn
∥un∥p

λn,R ,

which yields from Fatou’s lemma that

	

ˆ

Cm

|u|p dx = 0 for all m ∈ N.

Then u(x) = 0 on 
∪+∞

m=1 Cm = BR(0)\Ω, and so, u
∣∣
Ωj

∈ W s,p
0 (Ωj) for 

j ∈ {1, . . . , k}. From this, we will prove (i)–(iii).
(i) Since u = 0 in BR(0) \ Ω and I ′

λn,R (un) un = I ′
λn,R (un) u = on(1), similar 

to the proof of Lemma 3.4, it holds

	 ∥un − u∥λn,R → 0,

which implies that un → u in W s,p
0 (BR(0)).

(ii) Since u ∈ W s,p
0 (BR(0)) and u = 0 in BR(0) \ Ω, we deduce u ∈ W s,p

0 (Ω), or 
equivalently u

∣∣
Ωj

∈ W s,p
0 (Ωj) for j = 1, . . . , k. Moreover, un → u in W s,p

0 (BR(0)) 
combined with I ′

λn,R (un) φ → 0 as n → +∞ for each φ ∈ C∞
0 (ΩΓ) implies that

	

ˆ

ΩΓ

ˆ

ΩΓ

|u(x) − u(y)|p−2(u(x) − u(y))(φ(x) − φ(y))
|x − y|N+sp

dx dy

+
ˆ

ΩΓ

|u|p−2uφ dx +
ˆ

ΩΓ

F ′
1(u)φ dx −

ˆ

ΩΓ

F ′
2 (u) φ dx = 0,

from which it follows that u
∣∣
ΩΓ

 is a solution for (3.7). On the other hand, for each 

j ∈ {1, 2, . . . , k}\Γ, we have that

	

ˆ

Ωj

ˆ

Ωj

|u(x) − u(y)|p

|x − y|N+sp
dx dy +

ˆ

Ωj

|u|p dx +
ˆ

Ωj

F ′
1(u)u dx −

ˆ

Ωj

F̃ ′
2 (u) u dx = 0.

By the fact that F ′
1(ς)ς ≥ 0 and F̃ ′

2(ς)ς ≤ ℓ|ς|p for all ς ∈ R, we derive that

	

ˆ

Ωj

ˆ

Ωj

|u(x) − u(y)|p

|x − y|N+sp
dx dy +

ˆ

Ωj

|u|p dx ≤
ˆ

Ωj

F̃ ′
2 (u) u dx ≤ θ

ˆ

Ωj

|u|p dx.

Since ℓ < 1, u = 0 in Ωj  for j ∈ {1, 2, . . . , k}\Γ, which shows (ii).
(iii) Note that, from (i),

	

ˆ

BR(0)
λnV (x) |un|p dx =

ˆ

BR(0)
λnV (x) |un − u|p dx ≤ C ∥un − u∥p

λn,R ,

which shows that
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ˆ

BR(0)
λnV (x) |un|p dx → 0 as n → +∞.

Moreover, from (i) and (ii), it is easy to check that

	 ∥un∥p
λn,BR(0)\ΩΓ

→ 0,

and

	
∥un∥p

λn,Ω′
j

→
ˆ

Ωj

ˆ

Ωj

|u(x) − u(y)|p

|x − y|N+sp
dx dy +

ˆ

Ωj

|u|p dx for all j ∈ Γ.

This completes the proof. � □
With a few modifications to the arguments in the proof of Lemma 3.5 and using 
Lemma 3.3, we also have the following result.

Lemma 3.6  Let {un}n∈N ⊂ Eλn ,Rn  be a (PS)∞,Rn  sequence with Rn → +∞, i.e.,

	 un ∈ Eλn,Rn
andλn → ∞, Iλn,Rn

(un) → c,
∥∥I ′

λn,Rn
(un)

∥∥ → 0.

Then, for some subsequence, still denoted by {un}n∈N, there exists u ∈ W s,p(RN ) 
such that

	 un ⇀ u inW s,p(RN ).

Moreover, the following hold: 
(i)	 ∥un − u∥λn,Rn

→ 0, and so, 

	 un → u in W s,p(RN ).

(ii)	 u ≡ 0 in RN \ ΩΓ and u is a solution of 

	

{
(−∆)s

p u = |u|p−2u log |u|p in ΩΓ,
u = 0 on ∂ΩΓ.

(iii)	un also satisfies 

	

λn

ˆ

BRn (0)
V (x) |un|p dx → 0,

∥un∥p
λn,BRn (0)\ΩΓ

→ 0,

∥un∥p
λn,Ω′

j
→
ˆ

Ωj

ˆ

Ωj

|u(x) − u(y)|p

|x − y|N+sp
dx dy +

ˆ

Ωj

|u|p dx for all j ∈ Γ.

Proof  First of all, the boundedness of {Iλn,Rn
(un)}n∈N shows that there exists 

K > 0 such that
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	 ∥un∥p
λn,Rn

≤ K for all n ∈ N.

Thus, {un}n∈N is bounded in W s,p(RN ) and we can assume that for some 
u ∈ W s,p(RN ),

	

un ⇀ u in W s,p(RN ),
un(x) → u(x) a.e. in RN ,

and u(x) = 0 on RN \ Ω.
(i) For any ζ > 0, there exists R = R(ζ) > 0 such that

	
lim sup

n→∞

ˆ

RN \BR

(ˆ

RN

|un(x) − un(y)|p

|x − y|N+sp
dy + (λnV (x) + 1) |un|p

)
dx < ζ.

Let 0 < R < Rn and ψ = ψR ∈ C∞
0 (RN ) be a cut-off function such that ψ ≡ 0 if 

x ∈ B R
2

(0), ψ ≡ 1 if x /∈ BR(0) with 0 ≤ ψ(x) ≤ 1, and ∥∇ψ(x)∥L∞(RN ) ≤ C
R , 

where C is a constant independent of R. Since {un}n∈N is bounded, the sequence 
{ψun}n∈N is also bounded. This shows that I ′

λn,Rn
(un)(ψun) = on(1), namely,

	

¨

R2N

|un(x) − un(y)|p

|x − y|N+sp
ψ(x) dx dy +

ˆ

RN

(λnV (x) + 1) |un|pψ(x) dx

=
ˆ

Ω′
Γ

F ′
2(un)unψ(x) dx +

ˆ

R3\Ω′
Γ

F̃ ′
2(un)unψ(x) dx −

ˆ

R3
F ′

1(un)unψ(x) dx

−
¨

R2N

|un(x) − un(y)|p−2 (un(x) − un(y)) (ψ(x) − ψ(y))
|x − y|N+sp

un(y) dx dy + on(1).

Take R > 0 such that Ω′
Γ ⊂ B R

2
(0). Then, by (2.2) and the definitions of F̃ ′

2, we 
obtain

	

¨

R2N

|un(x) − un(y)|p

|x − y|N+sp
ψ(x) dx dy +

ˆ

RN

(λnV (x) + 1) |un|pψ(x) dx

≤ ℓ

ˆ

RN

|un|pψ(x) dx

−
¨

R2N

|un(x) − un(y)|p−2 (un(x) − un(y)) (ψ(x) − ψ(y))
|x − y|N+sp

un(y) dx dy

+ on(1).

By Hölder’s inequality and the boundedness of {un}n∈N, we arrive at
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∣∣∣∣
¨

R2N

|un(x) − un(y)|p−2 (un(x) − un(y)) (ψ(x) − ψ(y))
|x − y|N+sp

un(y) dx dy

∣∣∣∣

≤
(¨

R2N

|un(x) − un(y)|p

|x − y|N+sp
dx dy

) p−1
p

(¨

R2N

|ψ(x) − ψ(y)|p

|x − y|N+sp
|un(y)|p dx dy

) 1
p

≤ C

(¨

R2N

|ψ(x) − ψ(y)|p

|x − y|N+sp
|un(y)|p dx dy

) 1
p

≤ C

Rs
,

where we have used that

	

¨

R2N

|ψ(x) − ψ(y)|p

|x − y|N+sp
|un(y)|p dx dy

=
ˆ

RN

|un(y)|p
(ˆ

|x−y|>R

|ψ(x) − ψ(y)|p

|x − y|N+sp
dx +

ˆ

|x−y|≤R

|ψ(x) − ψ(y)|p

|x − y|N+sp
dx

)
dy

≤ C

ˆ

RN

|un(y)|p dy

(ˆ ∞

R

1
rsp+1 dr + R−p

ˆ R

0

1
rsp−p+1 dr

)

≤ C

Rsp
.

Now, fixing ζ > 0 and passing to the limit in the last inequality, it follows that

	
lim sup

n→∞

ˆ

RN \BR

(ˆ

RN

|un(x) − un(y)|p

|x − y|N+sp
dy + (λnV (x) + 1) |un|p

)
dx ≤ C

Rs
< ζ,� (3.8)

whenever R > 0 is sufficiently large.
Since G′

2 has a subcritical growth, the above estimate (3.8) ensures that

	

ˆ

RN

G′
2 (x, un) w dx →

ˆ

RN

G′
2 (x, u) w dx for all w ∈ C∞

0 (RN ),
ˆ

RN

G′
2 (x, un) un dx →

ˆ

RN

G′
2 (x, u) u dx,

ˆ

RN

G2 (x, un) dx →
ˆ

RN

G2 (x, u) dx.

Now, recalling that limn→∞ I ′
λn,Rn

(un)w = 0 for all w ∈ C∞
0

(
RN

)
 and 

∥un∥p
λn,Rn

≤ K for all n ∈ N, we deduce that

	

¨

R2N

|u(x) − u(y)|p−2(u(x) − u(y))(w(x) − w(y))
|x − y|N+sp

dx dy +
ˆ

RN

|u|p−2uw dx

+
ˆ

RN

F ′
1(u)w dx −

ˆ

RN

G′
2(x, u)w dx = 0,

and so,
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¨

R2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy +

ˆ

RN

|u|p dx +
ˆ

RN

F ′
1(u)u dx −

ˆ

RN

G′
2(x, u)u dx = 0.

This together with the equality limn→∞ I ′
λn,Rn

(un)un = 0, i.e.,

	

¨

R2N

|un(x) − un(y)|p

|x − y|N+sp
dx dy +

ˆ

RN

(λnV (x) + 1) |un|p dx +
ˆ

RN

F ′
1(un)un dx

=
ˆ

RN

G′
2(x, un)un dx + on(1),

leads to

	

lim
n→+∞

(¨

R2N

|un(x) − un(y)|p

|x − y|N+sp
dx dy +

ˆ

RN

(λnV (x) + 1) |un|p dx

+
ˆ

RN

F ′
1(un)un dx

)

=
¨

R2N

|u(x) − u(y)|p

|x − y|N+sp
dx dy +

ˆ

RN

|u|p dx +
ˆ

RN

F ′
1(u)u dx,

from which it follows that for some subsequence,

	
un → u in W s,p(RN ), λn

ˆ

RN

V (x) |un|p dx → 0,

and

	 F ′
1(un)un → F ′

1(u)u in L1(RN ).

Since F1 is convex, even and F (0) = 0, we know that F ′
1(τ)τ ≥ F1(τ) ≥ 0 for all 

τ ∈ R. Thus, the last limit together with Lebesgue’s dominated convergence theorem 
yields

	 F1(un) → F1(u) in L1(RN ).

Since

	

∥un − u∥p
λn,Rn

=
¨

R2N

|(un(x) − u(x)) − (un(y) − u(y))|p

|x − y|N+sp
dx dy

+
ˆ

RN

(λnV (x) + 1) |un − u|p dx,

it follows that

	 ∥un − u∥p
λn,Rn

→ 0,
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which implies (i). The proofs of (ii) and (iii) are similar to that of Lemma 3.5 and so 
we omit it. � □

3.2  The L∞-Boundedness of Solutions to (3.1)

Next, we investigate the boundedness outside Ω′
Γ for the solutions of (3.1). The fol-

lowing lemma is crucial to show that the solutions of the auxiliary problem (3.1) are 
the solutions of the original problem (1.1). Furthermore, we define

	
|u|q,R =

(ˆ

BR(0)
uq dx

) 1
q

.

Lemma 3.7  Let {uλ,R} be a family of nodal solutions of (3.1) such that {Iλ,R(uλ,R)} 
is bounded in R for any λ > 0  and R > 0  large enough. Then, there exists K > 0  
that does not depend on λ > 0  and R∗ > 0  such that

	 |uλ,R|∞,R ≤ K forallλ > 0andR ≥ R∗.

Proof  For each L > 0, let u+
L := min{u+

λ,R, L} and define the function

	 E(uλ,R) := EL,σ(uλ,R) = uλ,R(u+
L)p(σ−1),

with σ > 1 to be determined later. Note that E  is increasing, thus we have

	 (a − b)(E(a) − E(b)) ≥ 0 for any a, b ∈ R.

Consider the functions

	
Q(t) := |t|p

p
and L(t) :=

ˆ t

0
(E ′(τ))

1
p dτ,

and note that

	
L(uλ,R) ≥ C

σ
uλ,R(u+

L)σ−1.

Hence, from Lemma 2.1, we obtain

	
[L(uλ,R)]p ≥ S∗ |L(uλ,R)|pp∗

s ,R ≥ S∗
1

σp
|uλ,R(u+

L)σ−1|pp∗
s ,R.� (3.9)

In addition, for any a, b ∈ R, it holds

1 3

Page 21 of 40     60 



Applied Mathematics & Optimization           (2025) 92:60 

	 Q′(a − b)(E(a) − E(b)) ≥ |L(a) − L(b)|p.

In fact, suppose that a > b, it follows from Jensen’s inequality that

	

Q′(a − b)(E(a) − E(b)) = (a − b)(E(a) − E(b)) = (a − b)
ˆ a

b

E ′(τ) dτ

= (a − b)
ˆ a

b

(L′(τ))p dτ ≥
(ˆ a

b

L′(τ) dτ

)p

= (L(a) − L(b))p.

A similar argument holds if a ≤ b. Thus, we infer that

	

|L(uλ,R)(x) − L(uλ,R)(y)|p

≤ |uλ,R(x) − uλ,R(y)|p−2 (uλ,R(x) − uλ,R(y))(
uλ,R(x)(u+

L)p(σ−1)(x) − uλ,R(y)(u+
L)p(σ−1)(y)

)
.

Using E(uλ,R) as test function in (3.1), in view of the above inequality, we get that

	

[L(uλ,R)]p +
ˆ

BR(0)
(λV (x) + 1) up

λ,R(u+
L)p(σ−1) dx

+
ˆ

BR(0)
F ′

1(uλ,R)uλ,R(u+
L)p(σ−1) dx

≤
¨

BR(0)×BR(0)

|uλ,R(x) − uλ,R(y)|p−2 (uλ,R(x) − uλ,R(y))
|x − y|N+sp

×
(

uλ,R(x)(u+
L)p(σ−1)(x) − uλ,R(y)(u+

L)p(σ−1)(y)
)

dx dy

+
ˆ

BR(0)
(λV (x) + 1) up

λ,R(u+
L)p(σ−1) dx +

ˆ

BR(0)
F ′

1(uλ,R)uλ,R(u+
L)p(σ−1) dx

≤
ˆ

BR(0)
G′

2(x, u)uλ,R(u+
L)p(σ−1) dx.

By the definition of G′
2, for fixed q ∈ (p, p∗

s), there exists C > 0 such that

	 0 ≤ G′
2(x, τ) ≤ θτ + Cτ q−1 for (x, τ) ∈ BR(0) × [0, ∞).

The above estimates and (3.9) provide

	
|u+

λ,R(u+
L)σ−1|pp∗

s ,R ≤ σpS−1
∗

[
L(u+

λ,R)
]p

≤ Cσp

ˆ

BR(0)
(u+

λ,R)q(u+
L)p(σ−1) dx.�(3.10)

Since

	 (u+
λ,R)q(u+

L)p(σ−1) = (u+
λ,R)q−p(u+

λ,R(u+
L)σ−1)p,
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we can use (3.10) and Hölder’s inequality to deduce that

	 |u+
λ,R(u+

L)σ−1|pp∗
s ,R ≤ Cσp|u+

λ,R|q−p
p∗

s ,R|u+
λ,R(u+

L)σ−1|pα∗
s ,R,

where

	
α∗

s = pp∗
s

p∗
s − (q − p)

∈ (p, p∗
s).

Since {uλ,R} is bounded, we conclude that

	 |u+
λ,R(u+

L)σ−1|pp∗
s ,R ≤ Cσp|u+

λ,R(u+
L)σ−1|pα∗

s ,R.

Note that, if uλ,R ∈ Lσα∗
s (BR(0)), using the fact that u+

L ≤ u+
λ,R, then

	 |u+
λ,R(u+

L)σ−1|pp∗
s ,R ≤ Cσp|u+

λ,R|pσ
σα∗

s ,R < ∞,

which together with Faton’s lemma implies

	 |u+
λ,R|pσ

σp∗
s ,R ≤ Cσp|u+

λ,R|pσ
σα∗

s ,R,

as L → ∞. Now, taking σ = p∗
s/α∗

s > 0, we have

	 |u+
λ,R|pσ

σp∗
s ,R ≤ Cσp|u+

λ,R|pσ
p∗

s ,R,

and replacing σ by σj , j ∈ N, in the above inequality, we obtain that

	 |u+
λ,R|pσj

σjp∗
s ,R ≤ C(σj)p|u+

λ,R|pσj

p∗
s ,R.

Then, by an argument of induction, we may verify that

	 |u+
λ,R|p∗

sσj ,R ≤ σ
1
σ + 2

σ2 +···+ j

σj (pC)
1
p ( 1

σ + 1
σp +···+ 1

σj )|u+
λ,R|p∗

s ,R,� (3.11)

for every j ∈ N. Note that

	

∞∑
j=1

1
σj

= 1
σ − 1

and
∞∑

j=1

i

σj
= σ

(σ − 1)2 .

Since σ > 1, passing to the limit as j → ∞ in (3.11), we may infer that u ∈ L∞(BR(0)) 
and

	 |u+
λ,R|∞,R ≤ σ

σ
(σ−1)2 (pC)

1
σ−1 |u+

λ,R|p∗
s ,R.
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Using |u+
λ,R|p∗

s ,R ≤ M , fixing any sequences λn → +∞ and Rn → +∞, it is easy 
to see there exists a constant K1 > 0 such that

	 |u+
λn,Rn

|∞ ≤ K1 for all n ∈ N.

A similar argument can be used to prove that

	 |u−
λn,Rn

|∞ ≤ K2 for all n ∈ N

for a suitable constant K2. The proof is complete. � □

Lemma 3.8  Let {uλ,R} be a family of nodal solutions of (3.1) such that {Iλ,R(uλ,R)} 
is bounded in R for any λ > 0  and R > 0  large enough. Then, there exist λ′ > 0  
and R′ > 0  such that

	 |uλ,R|∞,BR(0)\Ω′
Γ

≤ a0 forallλ ≥ λ′andR ≥ R′.

In particular, uλ,R solves the original problem (3.2) for λ ≥ λ′ and R ≥ R′.

Proof  Choose R0 > 0 large such that Ω′
Γ ⊂ BR0(0). Since ∂Ω′

Γ is a compact set, we 
fix a neighborhood of B of ∂Ω′

Γ such that

	 B ⊂ BR0(0) \ ΩΓ.

The Moser iteration technique implies that there exists C > 0, which is independent 
of λ, such that

	

∣∣∣u+
λ,R

∣∣∣
L∞(∂Ω′

Γ)
≤ C

∣∣∣u+
λ,R

∣∣∣
Lp∗

s (B)
for all R ≥ R0.

Fixing two sequences λn → +∞ and Rn → +∞, by Lemma 3.6 we have that 
for some subsequence uλn,Rn → 0 in W s,p (BRn

(0) \ ΩΓ), then uλn,Rn → 0 in 
W s,p (BR0(0)\ΩΓ), and so,

	

∣∣∣u+
λn,Rn

∣∣∣
Lp∗

s (B)
→ 0 as n → ∞.

Hence, there is n0 ∈ N such that

	

∣∣∣u+
λn,Rn

∣∣∣
L∞(∂Ω′

Γ)
≤ a0 for all n ≥ n0.

Now, for n ≥ n0, we set ũ+
λn,Rn

: BRn
(0)\Ω′

Γ → R given by

	
ũ+

λn,Rn
(x) =

(
u+

λn,Rn
− a0

)+
(x) .
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Then, ũ+
λn,Rn

∈ W s,p
0 (BRn

(0)\Ω′
Γ). Our goal is to show that ũ+

λn,Rn
(x) = 0 in 

BRn(0)\Ω′
Γ, because this will ensure that

	

∣∣∣u+
λn,Rn

∣∣∣
∞,BRn (0)\Ω′

Γ

≤ a0.

Indeed, extending ũ+
λn,Rn

(x) = 0 in Ω′
Γ and taking ũ+

λ,R as a test function, we have

	

ˆ

BRn (0)\Ω′
Γ

|uλn,Rn
(x) − uλn,Rn

(y)|p−1(uλn,Rn
(x) − uλn,Rn

(y))(ũ+
λn,Rn

(x) − ũ+
λn,Rn

(y))
|x − y|N+sp

dx dy

+
ˆ

BRn (0)\Ω′
Γ

(λnV (x) + 1) |uλn,Rn
|p−2uλn,Rn

ũ+
λn,Rn

dx

≤
ˆ

BRn (0)\Ω′
Γ

F̃ ′
2(uλn,Rn

)ũ+
λn,Rn

dx.

Since

	

ˆ

BRn (0)\Ω′
Γ

|uλn,Rn
(x) − uλn,Rn

(y)|p−1(uλn,Rn
(x) − uλn,Rn

(y))(ũ+
λn,Rn

(x) − ũ+
λn,Rn

(y))
|x − y|N+sp

dx dy

=
ˆ

BRn (0)\Ω′
Γ

|ũ+
λn,Rn

(x) − ũ+
λn,Rn

(y)|p

|x − y|N+sp
dx dy,

we have

	

ˆ

BRn (0)\Ω′
Γ

(λnV (x) + 1) |uλn,Rn
|p−2uλn,Rn

ũ+
λn,Rn

dx

=
ˆ

(BRn (0)\Ω′
Γ)+

(λnV (x) + 1) |ũ+
λn,Rn

+ a0|p−2
(

ũ+
λn,Rn

+ a0

)
ũ+

λn,Rn
dx,

and

	

ˆ

BRn (0)\Ω′
Γ

F̃ ′
2 (uλn,Rn

) ũ+
λn,Rn

dx

=
ˆ

(BRn (0)\Ω′
Γ)+

F̃ ′
2 (uλn,Rn

)
|uλn,Rn |p−2uλn,Rn

|ũ+
λn,Rn

+ a0|p−2
(

ũ+
λn,Rn

+ a0

)
ũ+

λn,Rn
dx,

where

	 (BRn(0) \ Ω′
Γ)+ = {x ∈ BRn(0) \ Ω′

Γ : uλn,Rn(x) > a0} .

From the above equalities, we have
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ˆ

BRn (0)\Ω′
Γ

|ũ+
λn,Rn

(x) − ũ+
λn,Rn

(y)|p

|x − y|N+sp
dx dy

+
ˆ

(BRn (0)\Ω′
Γ)+

(
(λnV (x) + 1) − F̃ ′

2 (uλn,Rn)
|uλn,Rn

|p−2uλn,Rn

)

×
(

|ũ+
λn,Rn

+ a0|p−2
(

ũ+
λn,Rn

+ a0

))
ũ+

λn,Rn
dx = 0.

By the definition of F̃ ′
2, we obtain

	
(λnV (x) + 1) − F̃ ′

2 (uλn,Rn
)

|uλn,Rn |p−2uλn,Rn

≥ 1 − ℓ > 0 in (BRn(0) \ Ω′
Γ)+ .

Thus, ũ+
λn,Rn

= 0 in (BRn(0)\Ω′
Γ)+ and ũ+

λn,Rn
= 0 in BRn(0)\Ω′

Γ. From the 
above argument we conclude that there are λ′ > 0 and R′ > 0 such that

	

∣∣∣u+
λ,R

∣∣∣
∞,BR(0)\Ω′

Γ

≤ a0 for all λ ≥ λ′ and R ≥ R′.

A similar argument can be used to prove that

	

∣∣∣u−
λ,R

∣∣∣
∞,BR(0)\Ω′

Γ

≤ a0 for all λ ≥ λ′ and R ≥ R′,

if necessary, λ′ and R′ can be increased. Thus,

	 |uλ,R|∞,BR(0)\Ω′
Γ

≤ a0 for all λ ≥ λ′ and R ≥ R′.

This finished the proof. � □

4  A Special Minimax Level

In the section, for any λ > 0 and j ∈ Γ, let us denote by Ij : W s,p
0 (Ωj) → R and 

Iλ,j : W s,p(Ω′
j) → R the functionals given by

	

Ij(u) = 1
p

[u]pΩj
+
ˆ

Ωj

|u|p dx − 1
p

ˆ

Ωj

|u|p log |u|p dx,

Iλ,j = 1
p

[u]pΩ′
j

+
ˆ

Ω′
j

(λV (x) + 1) |u|p dx − 1
p

ˆ

Ω′
j

|u|p log |u|p dx,

where
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[u]pY =

¨

Y ×Y

|u(x) − u(y)|p

|x − y|N+sp
dx dy,

which are the energy functionals associated with the following logarithmic systems:

	

{
(−∆)s

p u = |u|p−2u log |u|p in Ωj ,
u = 0 on ∂Ωj ,

� (4.1)

and

	

{ (−∆)s
p u + λV (x)|u|p−2u = |u|p−2u log |u|p in Ω′

j ,
∂u
∂η = 0 on ∂Ω′

j ,
� (4.2)

respectively. It is obvious that Ij  and Iλ,j  satisfy the Mountain Pass geometry, since 
Ωj  and Ω′

j  are bounded, and Ij  and Iλ,j  satisfy the (PS) condition. Using the same 
arguments as in Sect.  3, there exist two nontrivial functions ωj ∈ W s,p(Ωj) and 
ωλ,j ∈ W s,p(Ω′

j) satisfying

	 Ij(ωj) = cj , Iλ,j(ωλ,j) = cλ,j and I ′
j(ωj) = I ′

λ,j(ωλ,j) = 0,

where

	
cj = min

u∈Nj

Ij(u), cλ,j = min
u∈Nλ,j

Iλ,j(u),

and

	

Nj =
{

u ∈ W s,p
0 (Ωj) : u± ̸= 0 and I ′

j(u±)u± = 0
}

,

Nλ,j =
{

u ∈ W s,p(Ω′
j) : u± ̸= 0 and I ′

λ,j(u±)u± = 0
}

.

In what follows, without loss of any generality, we consider Γ = {1, 2, . . . , l} with 
l ≤ k, cΓ =

∑l
j=1 cj  and T > 0 is a constant large enough, which does not depend 

on R > 0 large enough, such that

	
0 < Ij

(
1
T

ω±
j

)
, Ij

(
Tω±

j

)
<

Ij

(
ω±

j

)

2
for all j ∈ Γ.� (4.3)

We define

	
γ0 (ς1, . . . , ςl, τ1, . . . , τl) (x) =

l∑
j=1

ςjTω+
j (x) +

l∑
j=1

τjTω−
j (x)

for all (ς1, . . . , ςl, τ1, . . . , τl) ∈
[
1/T 2, 1

]2 l,
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Γλ,R =

{
γ ∈ C

([
1/T 2, 1

]2l
, Eλ,R

)
: γ±∣∣

Ω′
j

̸= 0 for all j ∈ Γ, γ = γ0 on ∂
([

1/T 2, 1
]2l

)}
,

and

	
bλ,R,Γ = inf

γ∈Γλ,R

max
(ς⃗,τ⃗)∈[1/T 2,1]2l

Iλ,R(γ(ς⃗ , τ⃗)),

where (ς⃗ , τ⃗) = (ς1, . . . , ςl, τ1, . . . , τl). Note that γ0 ∈ Γλ,R, so Γλ,R ̸= ∅ and bλ,R,Γ 
is well defined.

Lemma 4.1  For each γ ∈ Γλ,R, there exists (ς̃∗, τ̃∗) ∈
[
1/T2 , 1

]2 l  such that

	 I ′
λ,j

(
γ± (ς⃗∗, τ⃗∗)

) (
γ± (ς⃗∗, τ⃗∗)

)
= 0 forallj ∈ {1, . . . , l}.

Proof  Given γ ∈ Γλ,R, we consider the map H̃ :
[
1/T 2, 1

]2 l → R2 l defined as

	̃H(ς⃗ , τ⃗) =
(
I ′

λ,1
(
γ+)

·
(
γ+)

, . . . , I ′
λ,l

(
γ+)

·
(
γ+)

, I ′
λ,1

(
γ−)

·
(
γ−)

, . . . , I ′
λ,l

(
γ−)

·
(
γ−))

,

where

	 I ′
λ,j

(
γ±)

·
(
γ±)

= I ′
λ,j

(
γ±(ς⃗ , τ⃗)

)
·
(
γ±(ς⃗ , τ⃗)

)
for all j ∈ Γ.

For (ς⃗ , τ⃗) ∈ ∂
([

1/T 2, 1
]2 l

)
, since

	 H̃(ς⃗ , τ⃗) = H0(ς⃗ , τ⃗),

where

	H0(ς⃗ , τ⃗) =
(
I ′

λ,1
(
γ+

0
)

·
(
γ+

0
)

, . . . , I ′
λ,l

(
γ+

0
)

·
(
γ+

0
)

, I ′
λ,1

(
γ−

0
)

·
(
γ−

0
)

, . . . , I ′
λ,l

(
γ−

n

)
·
(
γ−

n

))

and by the properties of F ′
2, deg

(
H0,

(
1/T 2, 1

)2 l
, 0

)
= 1. Therefore, using topo-

logical degree properties, we derive that deg
(

H̃,
(
1/T 2, 1

)2 l
, 0

)
= 1. This shows 

that there is (ς⃗∗, τ⃗∗) ∈
[
1/T 2, 1

]2 l such that H̃ ((ς⃗∗, τ⃗∗)) = (0, . . . , 0), which proves 
the lemma. � □

Lemma 4.2  The following assertions hold: 

(a)	 For any λ > 0 and R > 0 large enough, 
∑l

j=1 cλ,j ≤ bλ,R,Γ ≤ cΓ;
(b)	 bλ,R,Γ → cΓ, when λ → +∞ uniformly for R > 0 large.

Proof  (a) Since γ0 ∈ Γλ,R, we have
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bλ,R,Γ ≤ max
(ς⃗,τ⃗)∈[1/T 2,1]2l

Iλ,R (γ0(ς⃗ , τ⃗))

= max
(ς1,...,ςl)∈[ 1

T 2 ,1]l

l∑
j=1

Ij

(
ςjTw+

j

)
+ max

(τ1,...,τl)∈[ 1
T 2 ,1]l

l∑
j=1

Ij

(
τjTw−

j

)
.

From the definition of wj , we have

	
max

ς∈[ 1
R2 ,1]

Ij

(
ςjRw±

j

)
= Ij

(
w±

j

)
for all j ∈ Γ,� (4.4)

and thus

	
bλ,R,Γ ≤

l∑
j=1

cj = cΓ.

Taking (ς⃗∗, τ⃗∗) ∈
[
1/T 2, 1

]2 l as given in Lemma 4.1, this shows that

	 Iλ,j (γ (ς⃗∗, τ⃗∗)) ≥ cλ,j for all j ∈ Γ.

On the other hand, it is easy to verify that Iλ,BR(0)\Ω′
Γ
(u) ≥ 0 for all 

u ∈ W s,p (BR(0)\Ω′
Γ). Thus, we obtain that

	
Iλ,R (γ (ς⃗∗, τ⃗∗)) ≥

l∑
j=1

Iλ,j (γ (ς⃗∗, τ⃗∗)) .

Then

	
max

(ς⃗,τ⃗)∈[1/T 2,1]2l
Iλ,R(γ(ς⃗ , τ⃗)) ≥ Iλ,R (γ (ς⃗∗, τ⃗∗)) ≥

l∑
j=1

cλ,j .

From the definition of bλ,R,Γ, we can obtain

	
bλ,R,Γ ≥

l∑
j=1

cλ,j ,

which completes the proof of (a).
(b) Let λn be an arbitrary sequence with λn → +∞ and assume ωλn,j ∈ W s,p

(
Ω′

j

)
 

to be least energy nodal solutions of problem (4.2), with λ = λn, that is

	 Iλn,j (ωλn,j) = cλn,j and I ′
λn,j (ωλn,j) = 0 for all j ∈ Γ.
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Using the same arguments as in the proof of Lemma 3.5, for each j ∈ Γ and for a 
subsequence {ωλnk

,j}, there exists ω0,j  such that

	 ωλnk
,j → ω0,j in W s,p

(
Ω′

j

)
as nk → ∞.

Moreover, ω0,j ∈ W s,p
0 (Ωj) is a nodal solution of problem (4.1). Thus,

	
lim

k→∞
Iλnk

,j

(
ωλnk

,j

)
= Ij (ω0,j) ≥ cj .

Since cλ,j ≤ cj ,we conclude that cλ,j → cj  as λ → ∞, from where it follows that

	

l∑
j=1

cλ,j → cΓ as λ → ∞.

The last limit together with (a) implies that (b) holds. � □

5  Uniform Estimates

In the following, let us denote

	
Fλ(Ω′

Γ) :=

{
u ∈ W s,p(Ω′

Γ) :
ˆ

Ω′
Γ

V (x)|u|p dx < ∞

}
,

endowed with the norm

	
∥u∥p

λ,Ω′
Γ

:=
ˆ

Ω′
Γ

ˆ

Ω′
Γ

|u(x) − u(y)|p

|x − y|N+sp
dx dy +

ˆ

Ω′
Γ

(λV (x) + 1) |u|p dx.

Moreover, F +
λ,j  and F −

λ,j  denote the cone of nonnegative and nonpositive functions 
belonging to Fλ(Ω′

j), respectively, that is

	

F +
λ =

{
u ∈ Fλ(Ω′

Γ) : u(x) ≥ 0 a.e. in Ω′
j

}
,

F −
λ =

{
u ∈ Fλ(Ω′

Γ) : u(x) ≤ 0 a.e. in Ω′
j

}
.

From the definition of γ0, there are positive constants ν and λ∗ > 0 such that

	
distλ,j

(
γ0(ς⃗ , τ⃗), F ±

λ,j

)
> ν, for all (ς⃗ , τ⃗) ∈

[
1/T 2, 1

]2l
, j ∈ Γ and λ ≥ λ∗,

where distλ,j(K, F ) denotes the distance between sets of Fλ

(
Ω′

j

)
. Taking the num-

ber ν obtained in the last inequality, we define
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Υ =

{
u ∈ Eλ,R : distλ,j

(
u|Ω′

j
, F ±

λ,j

)
≥ ν for all j ∈ Γ

}
.

Moreover, for any constants d, µ > 0 and 0 < κ < ν/2, we consider the sets

	

IcΓ
λ,R = {u ∈ Eλ,R : Iλ,R(u) ≤ cΓ} ,

Aλ
µ,R =

{
u ∈ Υ2κ : Iλ,BR(0)\Ω′

Γ
(u) ≥ 0, ∥u∥p

λ,BR(0)\ΩΓ
≤ µ, |Iλ,j(u) − bλ,R,Γ| ≤ µ for all j ∈ Γ

}
,

where Υr for r > 0 denotes the set

	 Υr = {u ∈ Eλ,R : dist(u, Υ) ≤ r} .

Notice that for each µ > 0, there exists Λ∗ = Λ∗(µ) > 0 such that 
w =

∑l
j=1 wj ∈ Aλ

µ,R for all λ ≥ Λ∗. Because ω ∈ Υ, Iλ,R(ω) = cΓ and 

bλ,R,Γ → cΓ, when λ → +∞ uniformly for R large. Thus, Aλ
µ,R ̸= ∅ for λ suffi-

ciently large.

In what follows, for M > 0, let us consider

	 BM+1 = {u ∈ Eλ,R : ∥u∥λ,R ≤ M + 1} ,

where M is a constant large enough independent of λ and R satisfying

	
∥γ(ς⃗ , τ⃗)∥λ,R ≤ M

2
for all (ς⃗ , τ⃗) ∈

[
1/T 2, 1

]2l
,

and

	

∥∥∥∥∥∥
k∑

j=1
wj

∥∥∥∥∥∥
λ,R

≤ M

2
.

Now let us set µ∗ as

	
µ∗ = min

{
Ij(ω±) + M + κ

4
, j ∈ Γ

}
.� (5.1)

Next, we will establish uniform estimates of ∥I ′
λ,R(u)∥ in the set (

Aλ
2µ,R\Aλ

µ,R

)
∩ BM+1 ∩ IcΓ

λ,R.

Lemma 5.1  For each µ ∈ (0 , µ∗), there are λ∗ > 0 , R∗ > 0  large enough and 
σ0 > 0  independent of λ and R > 0  large enough such that
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∥∥I ′

λ,R(u)
∥∥ ≥ σ0 forλ ≥ λ∗, R ≥ R∗andu ∈

(
Aλ

2µ,R \ Aλ
µ,R

)
∩ BM+1 ∩ IcΓ

λ,R.

Proof  Arguing by contradiction, assume that there are λn, Rn → ∞ and 
un ∈

(
Aλn

2µ,Rn
\Aλn

µ,Rn

)
∩ BM+1 ∩ IcΓ

λn,Rn
 such that

	
∥∥I ′

λn,Rn
(un)

∥∥ → 0.

Since un ∈ Aλn

2µ,Rn
, we have that 

{
∥un∥λn,Rn

}
n∈N

 and {Iλn,Rn
(un)}n∈N are both 

bounded. Then, up to a subsequence if necessary, assume that {Iλn,Rn
(un)}n∈N is 

a convergent sequence. Hence, by Lemma 3.6, there exists u ∈ W s,p(ΩΓ) such that 
u is a solution for (4.1) and

	un → u in W s,p(RN ), ∥un∥p
λn,BRn (0)\ΩΓ

→ 0 and Iλn,Rn (un) → IΓ(u) ∈ (−∞, cΓ] .

Note that {un}n∈N ⊂ Υ2κ, we derive that ∥u±
n ∥λn,Ω′

j
↛ 0 for all j ∈ Γ, from where 

it follows that ∥u±∥Ωj
̸= 0 for all j ∈ Γ. Thus u is a nodal solution of (4.1) for all 

j ∈ Γ and

	

l∑
j=1

cj ≤
l∑

j=1
Ij(u|Ωj

) ≤ cΓ,

which shows that Ij(u|Ωj
) = cj  for all j ∈ Γ. Hence Iλn,Rn

(un) → IΓ(u) as 

n → +∞. On the other hand, since bλ,R,Γ → cΓ, when λ → +∞ uniformly for R 
large, we derive that Aλn

µ,Rn
∩ IcΓ

λn,Rn
 for large n, which is a contradiction. � □

Lemma 5.2  Assume µ ∈ (0 , µ∗), λ∗ > 0  and R∗ > 0  sufficiently large as given 
in Lemma 5.1. Then, the functional Iλ,R has a critical point uλ,R satisfying 
uλ ∈ Aλ

µ,R ∩ IcΓ
λ,R ∩ BM+1  for each λ ≥ λ∗ and R ≥ R∗.

Proof  Assume by contradiction that there are µ ∈ (0, µ∗) and a sequence λn → ∞ 
such that the functional Iλn,Rn

(u) has no critical points in Aλn

µ,Rn
∩ IcΓ

λn,Rn
∩ BM+1. 

Since Iλn,Rn  satisfies the (PS) condition, there exists a constant dλn,Rn
> 0 such 

that

	
∥∥I ′

λn,Rn
(u)

∥∥ ≥ dλn,Rn for all u ∈ Aλn

µ,Rn
∩ IcΓ

λn,Rn
∩ BM+1.

By Lemma 5.1, we have that

	
∥∥I ′

λn,Rn
(u)

∥∥ ≥ σ0 for all u ∈
(

Aλn

2µ,Rn
\ Aλn

µ,Rn

)
∩ IcΓ

λn,Rn
∩ BM+1,
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where σ0 > 0 is independent of λn and Rn for n large enough. Now, we define a 
continuous functional Φn : Eλn,Rn

→ R such that

	




Φn(u) = 1 for u ∈ Aλn

3µ/2,Rn
∩ Υκ ∩ BM ,

Φn(u) = 0 for u /∈ Aλn

2µ,Rn
∩ Υ2κ ∩ BM+1,

0 ≤ Φn(u) ≤ 1, for u ∈ Eλn,Rn
,

and Hn : IcΓ
λn,Rn

→ Eλn
(BRn

(0)) is a function given by

	
Hn(u) :=

{
−Φn(u) Yn(u)

∥Yn(u)∥ , u ∈ Aλn

2µ,Rn
∩ BM+1,

0, u /∈ Aλn

2µ,Rn
∩ BM+1,

where Yn is a pseudo-gradient vector field for Iλn,Rn  on 
Kλn

=
{

u ∈ Eλn,Rn
: I ′

λn,Rn
(u) ̸= 0

}
. It is obvious that Hn is well defined, since 

I ′
λn,Rn

(u) ̸= 0 for u ∈ Aλn

2µ,Rn
∩ IcΓ

λn,Rn
. Hereafter, we denote by mn

0  the real num-
ber given by

	
mn

0 =
{

Iλn,Rn
(u) : u ∈ γ0

(
[1/T 2, 1]2l \ Aλn

µ,Rn
∩ BM

)}

which verifies lim supn→∞ mn
0 < cΓ. Moreover, let us define Kn > 0 satisfying

	 |Iλn,j(u) − Iλn,j(v) ≤ ∥u − v∥λn,Ω′
j

for all u, v ∈ BM+1 and j ∈ Γ.

Note that

	 ∥Hn(u)∥ ≤ 1 for all n ∈ N and u ∈ IcΓ
λn,Rn

,

so

	

d
dτ

Iλn,Rn
(ηn(τ, u)) ≤ −Φn(ηn(τ, u))

∥∥I ′
λn,Rn

(ηn(τ, u))
∥∥ ≤ 0,

∥∥∥∥
dηn

dτ

∥∥∥∥
λ

= ∥Hn(ηn)∥λ ≤ 1,

and

	 ηn(τ, u) = u for all τ ≥ 0 and u /∈ Aλn

2µ,Rn
∩ BM+1,

where the deformation flow ηn : [0, ∞) × IcΓ
λn,Rn

→ IcΓ
λn,Rn

 is defined by

	
dηn

dτ
= Hn(ηn) and ηn(0, u) = u ∈ IcΓ

λn,Rn
.

Claim:   There exists Tn = T (λn, Rn) > 0  and ε∗ > 0  independent of n such that
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lim sup

n→∞

[
max

(ς⃗,τ⃗)∈[1/T 2,1]2l
Iλn,Rn (ηn (Tn, γ0(ς⃗ , τ⃗)))

]
< cΓ − ε∗.� (5.2)

Indeed, assume u = γ0 (ς̃ , τ̃), d̃λn ,Rn = min {dλn ,Rn , σ0 }, Tn = σ0 µ/2 d̃λn ,Rn  and 
η̃n(τ) = ηn(τ, u). If u /∈ Aλn

µ,Rn
∩ BM ∩ Υκ, by the definition of mn

0 , we have

	 Iλn,Rn
(ηn(τ, u)) ≤ Iλn,Rn

(u) ≤ mn
0 forallτ ≥ 0.

On the other hand, if u ∈ Aλn
µ,Rn

∩ BM ∩ Υκ, we need to consider two cases:
Case 1: η̃n(τ) ∈ Aλn

3µ/2,Rn
∩ BM ∩ Υκ for all τ ∈ [0, Tn].

This case shows that there is ε∗ > 0 independent of n such that

	 Iλn,Rn
(η̃n (Tn)) ≤ cΓ − ε∗.

Case 2: η̃n (τ0) /∈ Aλn

3µ/2,Rn
∩ BM ∩ Υκ for some τ0 ∈ [0, Tn].

Related to this case, we have the following situations: 

(i)	 There exists τ2 ∈ [0, Tn] such that η̃n (τ2) /∈ Υκ, and thus for τ1 = 0, it holds 

	 ∥η̃n (τ2) − η̃n (τ1)∥λn,Rn
≥ δ > µ,

	  since η̃n (τ1) = u ∈ Υ.
(ii)	 There exists τ2 ∈ [0, Tn] such that η̃n (τ2) /∈ BM , so that for τ1 = 0, we have 

	
∥η̃n (τ2) − η̃n (τ1)∥λn,Rn

≥ M

2
> µ,

	  since η̃n (τ1) = u ∈ BM/2.
(iii)	̃ηn(τ) /∈ Υκ ∩ BM , and there exist 0 ≤ τ1 < τ2 ≤ Tn such that 

η̃n(τ) ∈ Aλn

3µ/2,Rn
\Aλn

µ,Rn
 for all τ ∈ [τ1, τ2] with 

	
|Iλn,Rn

(η̃n (τ1)) − bλ,R,Γ| = µ and |Iλn,Rn
(η̃n (τ2)) − bλ,R,Γ| = 3µ

2
.

According to the definition of Kn, we have

	

∥η̃n (τ2) − η̃n(τ1)∥λ,R ≥ 1
Kn

|Iλn,Rn
(η̃n (τ2)) − Iλn,Rn

(η̃n (τ1))|

≥ 1
Kn

(|Iλn,Rn
(η̃n (τ2)) − bλ,R,Γ| − |Iλn,Rn

(η̃n (τ1)) − bλ,R,Γ|)

≥ 1
2Kn

µ.

The estimates in (i)–(iii) show that τ2 − τ1 ≥ 1
2Kn

µ. From the mean value theorem, 
it follows that
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Iλn,Rn (η̃n (Tn)) = Iλn,Rn(u) +
ˆ Tn

0

d
dζ

Iλn,Rn(η̃n(ζ)) dζ

≤ Iλn,Rn
(u) −

ˆ Tn

0
Φ(η̃n(ζ))

∥∥I ′
λn,Rn

(η̃n(ζ))
∥∥ dζ

≤ cΓ −
ˆ τ2

τ1

σ0 dζ

= cΓ − σ0 (τ2 − τ1)

≤ cΓ − σ0µ

2Kn
,

which proves (5.2) and shows the Claim.
Now, we prove that (ς⃗ , τ⃗) → µn(Tn, γ0(ς⃗ , τ⃗)) belongs to Γλn,Rn  for n large. First, 

it is easy to prove that ηn (γ0(ς⃗ , τ⃗)) is a continuous function in 
[
1/T 2, 1

]2l. Hence, 
we have to show that

	
ηn (Tn, γ0(ς⃗ , τ⃗)) = γ0(ς⃗ , τ⃗) for all (ς⃗ , τ⃗) ∈ ∂

([
1/T 2, 1

]2l
)

,

and

	 (ηn (Tn, γ0(ς⃗ , τ⃗)))± ∈ W s,p
(
Ω′

j

)
\ {0},

for all j ∈ Γ and for all (ς⃗ , τ⃗) ∈
[
1/T 2, 1

]2 l.

From µ ∈ (0, µ∗), (4.3), (4.4) and (5.1) we obtain

	
|Iλn,Rn

(γ0(ς⃗ , τ⃗)) − cΓ| ≥ 2µ∗ for all (ς⃗ , τ⃗) ∈ ∂
([

1/T 2, 1
]2l

)
and n ∈ N.

Hence, using again the fact that bλ,R,Γ → cΓ, when λ → +∞ uniformly for R large, 
there is n0 > 0 such that

	|Iλn,Rn
(γ0(ς⃗ , τ⃗)) − sλn,Rn,Γ| > 2µ for all (ς⃗ , τ⃗) ∈ ∂

([
1/T 2, 1

]2l
)

and n ≥ n0,

which shows that γ0(ς⃗ , τ⃗) /∈ Aλn

2µ,Rn
 for all (ς⃗ , τ⃗) ∈ ∂

([
1/T 2, 1

]2 l
)

 and n ≥ n0. 
From this,

	
ηn (Tn, γ0(ς⃗ , τ⃗)) = γ0(ς⃗ , τ⃗) for all (ς⃗ , τ⃗) ∈ ∂

([
1/T 2, 1

]2l
)

and n ≥ n0.

On the other hand, since ηn (Tn, γ0(ς⃗ , τ⃗)) ∈ Υ2κ for all n, we have

	
distλn,j

(
ηn (Tn, γ0(ς⃗ , τ⃗)) , F ±

λn,j

)
≥ ν − 2κ > 0.
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Then, (ηn (Tn, γ0(ς⃗ , τ⃗)))±
∣∣∣
Ωj

̸= 0 for all j ∈ Γ, and we can get 

ηn (Tn, γ0(ς⃗ , τ⃗)) ∈ Γλn,Rn  for n large enough. Combining the definition of bλ,R,Γ 
with the Claim and the fact that ηn (Tn, γ0(ς⃗ , τ⃗)) ∈ Γλn,Rn  for n large enough, we 
have the following inequality

	
lim sup

n→∞
bλn,Rn,Γ < cΓ − ε∗,

which is a contradiction. Thus, the lemma holds. � □
From the last lemma, we have the following corollary.

Corollary 5.3  For each µ ∈ (0 , µ∗), there exist λ∗ > 0  and R∗ > 0  large enough as 
given in the previous lemma. Then, problem (3.2) has a nodal solution uλ,R ∈ Aλ

µ,R 
for all λ ≥ λ∗ and R ≥ R∗.

Proof  From Lemma 5.2, there exists a nodal solution uλ,R ∈ Aλ
µ,R ∩ IcΓ

λ,R ∩ BM+1 
to problem (3.1). Then, by Remark 3.1 and Lemma 3.8, the solution uλ,R is also a 
nodal solution of problem (3.2). � □

6  The Proof of Theorem 1.1

By Corollary 5.3, for any µ ∈ (0, µ∗), there exist λ∗ > 0 and R∗ > 0, such that 
we can find a nodal solution uλ,R ∈ Aλ

µ,R ∩ IcΓ
λ,R ∩ BM+1 of problem (3.2) for all 

λ ≥ λ∗ and R ≥ R∗.

Fixing λ ≥ λ∗ and taking a sequence Rn → +∞, there exists a solution 
uλ,n = uλ,Rn  for the problem (3.2) with

	 uλ,n ∈ Aλ
µ,Rn

∩ IcΓ
λ,Rn

∩ BM+1 for all n ∈ N.

Since {uλ,n} is bounded in W s,p(RN ), we can assume that for some uλ ∈ W s,p(RN ),

	




Iλ,Rn (uλ,n) → c ≤ cΓ,
uλ,n → uλ in W s,p(RN ),
uλ,n → uλ in Lq

loc(RN ) for any q ∈ [1, p∗
s) ,

uλ,n(x) → uλ(x) a.e. x ∈ RN .

Recalling Lemma 3.8, we obtain

	 |uλ,n(x)| ≤ a0 for all x ∈ RN \ ΩΓ,

then,
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	 |uλ(x)| ≤ a0 for all x ∈ RN \ ΩΓ.

The next two lemmas play a fundamental role in the proof of Theorem 1.1. Their 
proofs follow from similar arguments as in the proof of Lemma 3.6, so we omit them.

Lemma 6.1  For any fixed ζ > 0 , there is an R > 0  satisfying

	
lim sup

n→∞

ˆ

RN \BR(0)

(ˆ

RN

|uλ,n(x) − uλ,n(y)|p

|x − y|N+sp
dy + (λV (x) + 1) |uλ,n|p

)
dx < ζ.

Lemma 6.2  uλ,n → uλ in W s,p(RN ). In addition,

	 F1(uλ,n) → F1(uλ) and F ′
1(uλ,n)uλ,n → F ′

1(uλ)uλ inL1(RN ).

As a consequence, we consider the energy functional Iλ, which is defined in (2.1). 
It is easy to see that uλ is a critical point of Iλ satisfying

	uλ ∈ Aλ
µ =

{
u ∈ (Υ∞)2κ : Iλ,RN \Ω′

Γ
(u) ≥ 0, ∥u∥p

RN \ΩΓ
≤ µ, |Iλ,R(u) − bλ,R,Γ| ≤ µ, for all j ∈ Γ

}
,

where

	

Υ∞ =
{

u ∈ Eλ : distλ,j

(
u, F ±

λ,j

)
≥ ν, ∀j ∈ Γ

}
,

(Υ∞)r =
{

u ∈ Eλ : inf
v∈Υ∞

∥u − v∥λ,Ω′
j

≤ r, ∀j ∈ Γ
}

.

Here, by a critical point we understand that uλ satisfies the inequality

	

¨

R2N

|uλ(x) − uλ(y)|p−2(uλ(x) − uλ(y))((v(x) − uλ(x)) − (v(y) − uλ(y)))
|x − y|N+sp

dx dy

+
ˆ

RN

(λV (x) + 1)|uλ|p−2uλ(v − uλ) dx +
ˆ

RN

F1(v) dx −
ˆ

RN

F1(uλ) dx

≥
ˆ

RN

F ′
2(uλ)(v − uλ) dx

for all v ∈ Eλ. Hence, uλ satisfies the equality

	

¨

R2N

|uλ(x) − uλ(y)|p−2(uλ(x) − uλ(y))(v(x) − v(y))
|x − y|N+sp

dx dy +
ˆ

RN

λV (x)|uλ|p−2uλv dx

=
ˆ

RN

|uλ|p−2uλv log |uλ|p dx,

for all v ∈ C∞
0 (RN )

Now, we are ready to conclude the proof of Theorem 1.1.
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Proof of Theorem 1.1  Letting λn → +∞ and µn ∈ (0, µ∗) with µn → 0, we can find 
a solution un ∈ Aλn

µn
 of problem (1.1) with λ = λn. Hence, {un}n∈N is bounded in 

W s,p(RN ) such that 
(a)	

∥∥I ′
λn

(uλn
)
∥∥ = 0 for all n ∈ N;

(b)	 ∥uλn
∥λn,RN \ΩΓ

→ 0;

(c)	 Iλn
(un) → c ≤ cΓ,

where

	 ∥I ′
λ(u)∥ = sup

{
⟨I ′

λ(u), z⟩ : z ∈ W s,p
c (RN ) and ∥z∥λ ≤ 1

}
.

Arguing as in Lemma 3.6, there is a u ∈ W s,p(RN ) satisfying uλn
→ u in W s,p(RN ), 

and u ≡ 0 in RN \ΩΓ and u is a nontrivial solution of

	

{
(−∆)s

p u = |u|p−2u log |u|p in ΩΓ,
u = 0 on ∂ΩΓ,

� (6.1)

and so,

	 IΓ(u) ≥ cΓ.

Moreover, since {uλn
} verifies

	
dist λ,j

(
uλn

, F ±
λ,j

)
≥ ν − 2κ > 0 for all j ∈ Γ,

we derive that 
∥∥u±

λn

∥∥
λn,Ω′

j

→ 0 for all j ∈ Γ. Hence, from the definition of G′
2, it 

follows that there exists ν∗ > 0 such that

	

ˆ

Ω′
j

∣∣u±
λn

∣∣q+1 dx ≥ ν∗ for all n ∈ N and for all j ∈ Γ.

Therefore

	

ˆ

Ω′
j

∣∣u±∣∣q+1 dx ≥ ν∗ for all j ∈ Γ.

Thus, u changes its sign on Ωj  for all j ∈ Γ, and

	 Ij(u) ≥ cj for all j ∈ Γ.

Note that

	 Iλn
(uλn

) → IΓ(u),
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which shows that

	 IΓ(u) = c and c ≥ cΓ.

Due to c ≤ cΓ, it follows that IΓ(u) = cΓ, which implies that u|Ωj
 is a least energy 

nodal solution of problem (6.1). This concludes the proof of the theorem. � □
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