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Abstract

This article concerns the existence and multiplicity of multi-bump type nodal solu-
tions for a class of fractional p-Laplacian Schrédinger equations involving loga-
rithmic nonlinearity and deepening potential well. We apply suitable variational
arguments to show that the equation has at least 2 — 1 multi-bump type nodal
solutions as the parameter becomes large enough.
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1 Introduction

This paper is devoted to the existence of multi-bump type nodal solutions for frac-
tional p-Laplacian logarithmic Schrédinger equations of the form
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(=A)) u+ AV (x)[ulP~?u = [u[P~ulog[ul’  in RY,
= Ws’p(RN), (11)

where s € (0,1), p € [2,00), N > sp and V : RN — R is a continuous potential
satisfying the following conditions:
(Vi) V eC(RY,R)andV(z)>0forallz € RY;

(V2)  Q:=int V~1(0) is a non-empty bounded open subset with smooth bound-
ary and Q = V~1(0), where int V~1(0) denotes the set of the interior points
of V=1(0);

(V3) £ consists of k£ components

Q= UQU. .- UQy

and Q; N =0 forall i # j.
Here, ( —A); is the fractional p-Laplacian operator which is defined for any
u : RNV — R belonging to the Schwartz class by

a2t u(e) ~wl)P 2 l) ~ul)
(B =2pim [ —E dy (zeRY),

for any u € C5°(RY), where B;(x) denotes the ball in RY centered at x with radius
6.When the logarithmic nonlinearity is replaced by a power-type nonlinearity, prob-
lem (1.1) is of particular interest in fractional quantum mechanics for the study
of particles on stochastic fields modeled by Lévy processes, see, for example, Di
Nezza-Palatucci-Valdinoci [14] for a physical background. We also recall that the
analysis of fractional and nonlocal operators is strongly motivated by the fact that
these operators play a fundamental role in describing various physical phenomena
such as, among others, phase transitions, crystal dislocations, anomalous diffusions,
conservation laws, flame propagation and chemical reactions of liquids. For more
details and applications, we refer the interested reader to the works by Applebaum
[11], Bahrouni-Radulescu-Winkert [12], Di Nezza-Palatucci-Valdinoci [14], Molica
Bisci-Radulescu-Servadei [18], see also the references therein.

In these last years, many intriguing existence and multiplicity results have been
established for fractional p-Laplacian Schrédinger equations given by

(—A), u+ V()|ulP2u= f(u) in RY,

see for instance Alves-Miyagaki [3], Ambrosio [7, 8], Ji [15], Qu-He [21] for the
case p = 2 and Alves-Ambrosio [1], Ambrosio-Figueiredo-Isernia [9], Ambrosio-
Isernia [10], Pucci-Xiang-Zhang [19, 20] whenever p € (1, 00). In particular, Alves-
Ambrosio [1] obtained an existence and concentration result when f'is a logarithmic
nonlinearity and V verifies the following local conditions:

(V) V(z) € C(RY,R) and inf,cpn V(z) = Vo > —1;

(V%) There exists a bounded open set  C RY such that
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-1<V= ingV(m) <rg}2nV and M={zeQ:V(z)=V}#0.
EAS

They employed the penalization method to demonstrate the existence of positive solu-
tions, as well as the concentration behavior under conditions (V/) and (V}).Recently,
the following time-dependent logarithmic Schrédinger equation given by

ig%f = —2AD + W(2)® — Plog B[, N >3 (12)

where @ : [0, +00) x RN — C, has also obtained special attention due to its physi-
cal influence, such as quantum mechanics, quantum optics, nuclear physics, effective
quantum and Bose-Einstein condensation. Standing wave solutions for (1.2) have
the form ® (¢, z) = u(x)e !/, where w € R, which leads to a system of the shape

—&2Au+V(z)u = ulogu® in RV, (1.3)

where V() = W(z) — w. From the mathematical point of view, (1.3) is very inter-
esting because many difficulties arise when using variational methods to find solu-
tions. Alves-de Morais Filho [2] considered semiclassical state solutions for the
logarithmic elliptic equation (1.3) when V satisfies the following global condition
(Vglobal) Ve C(RN, R) and
Voo = hm‘w‘%oo V(J’) >V, =inf cpn V($) > —1.

They obtained the existence of solutions of (1.3) as well as the concentration behav-
ior of solutions as € — 0. Alves-Ji [4] continued to study (1.3) where V satisfies
the local conditions (V}) and (V5). Moreover, Alves-Ji [5] studied the existence of
multi-bump positive solutions for the following Schrodinger equation with logarith-
mic nonlinearity and deepening potential well

—Au+ AV (z)u = ulogu? in RV, 1.4

ue H' (RV). (1.4)

Then, Ji [16] was concerned with the existence and multiplicity of multi-bump type
nodal solutions for problem (1.4). We also refer to the works by Alves-Ambrosio [1],
Alves-Ji [6], d’Avenia-Montefusco-Squassina [13], Ji-Szulkin [17], Tanaka-Zhang
[24] and the references therein.Motivated by the above papers, in this work we obtain
the existence of multi-bump type nodal solutions for problem (1.1). More precisely,
our main results are as follows.

Theorem 1.1 Suppose that V satisfies (V 1)—(V 3). Then, for any non-empty subset I’
of {1,2,...,k}, there exists \* > 0 such that for all X\ > \*, problem (1.1) has a
nodal solution uy. Moreover, the family {uy} A>a+ has the following properties: for

any sequence A\, — 00, we can extract a subsequence A\, such that uy, converges
strongly in W*P(R™) to a function u which satisfies u(z) = 0 for x ¢ Qr and the
restriction u‘ 0. is a nodal solution with least energy of

]
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(=A), u = [ufP"?ulog [ulP  inQr,
u=0 ondr,

where 2r = U;cr £

From this result, we obtain the following direct consequence.

Corollary 1.2 Under the assumptions of Theorem 1.1, there exists A, > 0 such that
for all X > \,, the problem (1.1) has at least 2% — 1 nodal solutions.

Corollary 1.2 can be directly obtained from Theorem 1.1. Our approach is mainly
based on variational methods. First note that the associated energy functional of
problem (1.1) may take the value +oo, since there is a function u € W*P(RY) such
that [ [u|?log |u[? dz = —oco. Thus, the energy functional is not well defined on
W#P(RN) and the classical variational methods cannot be applied here. To find
solutions of equation (1.1), we will perform a technical decomposition to obtain a
functional which is a sum of a lower semicontinuous convex functional and a C'*-func-
tional. Here, we have made great use of the fact that the energy functional is of class
C' in W*P(D), when D C R" is a bounded domain. Based on this observation, for
each R > 0 and A > 0 large enough, we find a nodal solution uy r € W;'*(Br(0))
by penalization arguments, and after taking the limit of R — 400, we get a nodal
solution for the original problem.

In fact, by the method presented in this paper, we can also demonstrate the exis-
tence of multi-bump solutions that join positive, negative, and nodal least energy
solutions. For this purpose, we need to make some modifications. For example, if we
want to get a positive solution wy on €23 and a negative solution ws on {22, we need
to change wli and wzi by w1 and wo, respectively. We also need to make some modi-
fications for the definition of by g r and the set .Af;, r» Which are defined in Sect. 4

and 5. In addition, we need to replace d; and ds with mountain pass levels ¢; and ¢
associated with the energy functionals Z; and Z,, respectively. From this, we have
the following theorem.

Theorem 1.3 Suppose that V satisfies (V1)—(V3). Then, for any non-empty subset
I'y, I's and I's of {1, 2,...,k} with I'; N I; =0, for i # j, there is \* > 0 such
that, for all X\ > \*, problem (1.1) has a nontrivial solution uy. Moreover, the family
{ur} s~ has the following properties: for any sequence \,, — 0o, we can extract

a subsequence \p, such that uy, converges strongly in W*? (RN ) to a function u
which satisfies u(z) = 0 for © ¢ 2p(= Ujer{2;) where I' = I'; U T's U I's, and the
restriction u|Qj is a positive solution if j € I'y, a negative solution if j € I's and a

nodal solution with least energy of

(—A)) u = [ufP~ulogful?  inQ;,
u=0 ondfl;,

where j € I's.

@ Springer



Applied Mathematics & Optimization (2025) 92:60 Page 50f 40 60

The paper is organized as follows. In Sect. 2, we recall some lemmas which we
will use in the paper. In Sect. 3—5, we establish an auxiliary problem and prove the
existence of multi-bump nodal solutions for the auxiliary problem in the ball Bg(0)
for R > 0. In Sect. 6, we provide the proof of Theorem 1.1.

2 Preliminaries

In this section, we present the main tools and notions that will occur in Sects. 3-6. If
A C RY, we denote by |u|1q(4) the LI(A)-norm of a function u : RY — R, and by
lu|, its L9(RN)-norm. With B,.(zo) we indicate the ball in R centered at zo € RY
with radius » > 0. When z¢ = 0, we simply write B, instead of B,.(0).

Lets € (0,1),p € (1,00) and N > sp. We define D*?(R™) as the completion of
C>°(RY) with respect to

// )|p dz dy
717 R2N |{E— ‘N+sp ’

or equivalently

DSP(RN) = {u e P (RY) : [u]sp < oo} :

where p} = is the fractional critical Sobolev exponent. The fractional Sobolev

Np
N—sp
space W ,(R™) is given by

WePRN) = {u e LP(RV) : [ul,, < oo},

endowed with the norm
||UH€V5,17(]RN) = [u]ls),p + |u|g

We know that there exists a constant S, = S(N,s,p) >0 such that

S Hu||sz &) < [u]2, for all u € D*P(R™). Now, we recall the following main

embeddings for fractional Sobolev spaces, see Di Nezza-Palatucci-Valdinoci [14].

Lemma 2.1 Let s € (0,1), p € (1,00) and N > sp. Then W*P(R¥) is continu-
ously embedded in LY(RYN) for all q € [p, p*) and compactly in L (RY) for all
q € [1,p}), and C>=(RYN) is dense in WP (RY).

loc

We also recall the following vanishing Lions-type result for W*P?(RN), see
Ambrosio-Isernia [10].

Lemma 2.2 If {uy}, oy is a bounded sequence in W*(RYN) and if
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n—oo yERN

lim sup / |un|” dz = 0,
Br(y)

where R > 0, then u,, — 0 in LY(RN) for all q € (p, p}).

From now on, we suppose p € [2, 00) and we shall work on the following function
space
B = {u e WP(RN) : / V(z)ulP dz < oo}
RN
endowed with the norm

Jull = wlg, + | (Vi) + 1) fup da.

Obviously, Fy is a uniformly convex Banach space, the duality pairing associated
with the norm is given by

u(y)[P 2 (u(z) — u(y))(v(z) = v(y))
(u,v)) = //]R2N dx dy

|z —y|NHep

+ / AV (z) + 1) |ulP?uv dz.
RN

Since V(x) > 0 forall z € RY, the embedding Ey < W*P(R") is continuous, and
so the embedding E, — L9(R3) is also continuous for all ¢ € [p, p].
For each R > 0, we define a norm || - ||x,g on WP (Bg(0)) by

|u(z) —uly)?
I _/ / dxdy—i—/ OV (@) + 1) [ul? da,
5or Br(0) J Br(0) |x—y|N+S” Br(0)

which is equivalent to the usual norm in that space for all A\, R > 0. In what follows,
we will denote by E g the space E\ endowed with the norm || - |5 g.

Note that a weak solution of (1.1) in WP (R") is a critical point of the associated
energy functional

1 1
Th(u) := ;Hu”’; — E/RN |u|P log |u|P dz. 2.1

Definition 2.3 A solution of problem (1.1) is a function v € W*P(R") such that
|ulPlog [uP € L' (RY) and
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] )= o) o) =) gy [ s

v —y|NEop

7/ |u|P~%uvlog |ulP da
RN

forall v € C°(RY).

Due to the lack of smoothness of 7, we shall use the approach explored by Ji-Szulkin
[17] and Squassina-Szulkin [22, 23]. For this purpose, we decompose Z into a sum
of a C'* functional plus a convex lower semicontinuous functional, respectively. For
6 > 0, we define the functions

0, if ¢ =0,
1
_7§p10g§p7 1f0<§<(5,
ri={ Ty o 1 g
—let (1ot + 20 ) 4 gt - 2o, it 2
p 1 p—1 p
and
0, if |g] < 4,
F)=¢ 1, <§p> 2 p+1 .
—g|Plog [ — | + ——=P " ¢| — — p—fép if |¢] > 6.
pH 5 o1 N P ﬂl N
Then,

1
Fy(s) — Fi(s) = ];|§|plog ls|P for all ¢ € R,

and the functional Z : F\ — (—00, +00] may be rewritten as

IA(U):(I))\(U)+\IJ(U), u € Fy,

where

1
B = Sl = [ FPalw)ds

and

U(u) = - Fy(u)dz.

As proven in Ji-Szulkin [17] and Squassina-Szulkin [22, 23], F, F» € C1(R,R). If
& > 0 is small enough, F} is convex, even,
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1
Fi(s)>0 and 0< EF{(g)g < Fi(s) < F{(s)s forall s € R. (2.2)

For each fixed g € (p, p%), there exists C' > 0 such that
|F5(s)| < Cls|?™! for all ¢ € R. (2.3)

Note that @) € C* (W*?(RY),R), ¥ is convex and lower semicontinuous in

W#P(RN), but ¥ is not a C'*-functional due to the unboundedness of R .

3 The Auxiliary Problem

For each j € {1,...,k}, we fix a bounded open subset 2; with smooth boundary
such that

Q; cQ,
and
@ﬂ@z@ for all j # 1.
From now on, we fix a non-empty subset I' C {1,...,k} and R > 0 such that

Q- C Bg(0) and

or=J, o=

Jjer Jer

To prove our main theorem, we modify problem (1.1) and then consider the existence
of solutions to the auxiliary problem.

F3(s)
S

By a simple observation, it is easy to verify that is nondecreasing for ¢ > 0

and fﬁ@ is strictly increasing for ¢ > 4,
F/
lim 2(5) =400

¢—+oo gp_l

and
Fi(¢) >0 for¢>0 and Fj(s)>0 forc>d.
Fi(s) - . . Fi(s) - . .

Moreover, 2= is nonincreasing for¢ < Oand =7 is strictly decreasing for¢ < —4,
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F/
lim 2(5) = +o0,
G——00 gp_l
and
Fi(6) <0 for¢<0 and Fj(s) <0 for¢ < —4.
Let £ > 0 be small and ag > 0 such that
F/
max Q(ilg), 2(-a )1 =/.
ab™t " (—ao)?
It is clear that ag > §. We define
Fi(=ao) ,
- (—ag)P—t F if ¢ < —ao,
Fy(<) = { E3(9) if || < ao,
F.
21,(?(1)><”‘1 if ¢ > ao,
)
Fy() < F(s) for¢ >0, FEj(s)> Fy(s) forg<0
and
Gy(@,u) = xr(z)F(u) + (1 — xr(2)) F5(u),
where
() = 1, zeQr,
AT "=90, x € Br(0)\ Q%
Then, we define the auxiliary problem given by
{ fA);u + AV (2) + 1) |ulP~2u = G% (x,u) — F{(u), in Br(0), G.1)

u=20 on 0Bg(0).

Remark 3.1 Note that, if uy g is a nodal solution of (3.1) satisfying |ux g| < ao for
each € Br(0)\Qf, then G5(z, un, r) = F5(ux r) and consequently, uy g is also

a nodal solution of

(— A) u 4+ AV () uP~2u = |u|P~2ulog [ulP  in Bgr(0),
U= () on OBR(0).

(3.2)
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It is clear that weak solutions of (3.1) are nontrivial critical points of the following
energy functional

1
Ir(u) == —lul]§ 5 +/ Fi(u)dx —/ Go (z,u) dx,
p Br(0) Br(0)

in the sub-differential sense, and Gs(z,t) = fot Gl (z,¢) d¢  for all
(z,t) € Br(0) x R. Itis standard to verify that Z, p € C'(E) g, R).

The next lemma implies that Z) r possesses the Mountain Pass geometry.
Lemma3.2 Forall A > 0, the functional T g satisfies the following conditions:

(i) There exist o, p > 0 such that Iy r(u) > p with ||u|x.r = o
(i) There exists e € Ex g such that ||ul|x r > « and Iy g(e) < 0.

Proof First, note that

1
Tont) = Sl g~ [ P do

Br(0)

which follows from (2.3) for ¢ € (2, 2%) such that

1
Ihr(u) 2 ~lu
() = Zlul

I))\,R _C1||UHK,R'

The claim follows if we choose p and ||u||x, g = « small enough.
On the other hand, fixing ¢ € C§°(Q2r)\{0}, by (2.2), we have

TP 1
Ton(ro) = el e = [ relogrep) ds
p P JBr(0)

<7P <I>\,R(cp) —log(7) /Q/ P dx) )

As T — 400, then

I\ r(Tp) = —00,

and the proof of the lemma is complete. O
By Lemma 3.2 and Willem [25], there exists a (PS)-sequence {uy, }neny C Ex g of
7y g at the level ¢y g > 0, where

cyxr= inf max T t)),
A= dnf max Ar(Y(1))
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and Ty pg:={y€CY[0,1],E\r):7(0) =0,Z) r(y(1)) < 0}. Moreover, by
Lemma 3.2, we have

cexr>a>0 forall A>0and R >0 large enough.

Now, we will prove some results that will be useful in the proof of Theorem 1.1.
Lemma3.3 Forany A > 0, all (PS)-sequences of Iy r are bounded in E) g.

Proof Since {un}nen C Ex g isa (PS), _-sequence, one gets

Cx,
PIA,R(Un) - I;\R(un)un = PCX\,R + 1 + On(]-) ||un||)\7R i (33)

for n large enough. Note that,

/ ((0F s (ttn) = F (tn)tin) + (F(tin) i, — pFa(un))] dz = / fun ? d.
BRr(0) Br(0)

From this, one has
pI)\,R(un) - Iﬁ\,R(un)un

- /B o [PL() = Fi () + (Ghto ) =Gt )]
r(0
— / |un|? dz —|—/ (pFa(upn) — F(up)uy,) dz
BRr(0) Br(0)
+ / (Gl tun Y — pGal,up)) d
Br(0)

),

+/ (G/Q(xvun)un — pGa(r,uy,)) du.
Br(0\QpN[|lun|>ao]

P d + / (tnl? + pFa(ttn) — Fl(tn)un) da
Br(0)\QpN[lun|>a0]

/
T

Using the fact
[t|P + [pFa(t) — Fy(t)t + Gh(x, t)t — pGa(x,t)] >0, teC, z € RY,

one gets

Ly r(un) —I;\’R(un)un > / [un|? dz.

Qr

So (3.3) implies that
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pexr + 14 0n(1) unlly 5 > / |tn|” dz. (3.4)
Q

r

Let us employ the following logarithmic Sobolev inequality found in Alves-Ambro-
sio [1],

p
||U’HLP§ (Q%)

P P
/ |;L| log |;L| dr < Klog | ———" |,
A HU”LP(Q/F) ||UHL,,(Q/F) ”uHLp(Q/F)
* S
for all w € LP(Qp) N LPs(Qf). Now, using ”“"”Lf’:(n’r) < (817 llunlly g we

find

J

’
r

p p
6 unll gy 108 (10170 ,))

08 (10,1 )|
+C lunlly i o8 (Cllunlly )|+ C + lunly e

< Cllua|

P
Lr (o)

for all n € N and for some C' > 0. Observe that, for all » € (0, 1), there exists A > 0
such that

[tlogt| < A(1+1t)" for all t > 0. (3.5

Then, employing (3.5)

p — p p
08 (1m0 )| = Vs 105 (il )|

A r+1
<=1 nll? for all n € N,
S ( + [|u |LP(Q,F>) or all n

g

which combined with (3.4) leads to

r+1
ol ) [0 (0l g )| £ € (14 Bitnlh )™ foratmen

A similar argument shows that

r+1
ol ) [0 (ol g )| £ € (14 Butnll )™ foratme
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and
r+1
lunlly 108 (C lunlln )| < € (14 lunlly ) forallnen,

for some generic constant C' > 0. The above analysis ensures that

J

On the other hand,

r+1
(un)? log (u,)? dz < C (1 + ||’U/n||)\R) for all n € N. (3.6)

/
r

1 1
exr Fon(l) =Iap (un) = 2 [unllXr = ];/ (un)” log (un)” da
Q/

r
—/ Gs (z,uy) dz,
Br(0)\Qr

and recalling that

Go(z,t) < gt” for all (z,t) € Br(0) \ O x R,
P

we deduce that

1
exr+0n(1) =TIy g (uy) > C ||un||§’R — ];/ (un)? log (u,)? dz.
Q/

T

This fact together with (3.6) yields

1
lunll? 5 < E/Q (1) 10 (1n)? A+ ex.1t + 0m(1)

T

r+1
<C (1 n ||un|\/\)R) +C+Cunlly g +0a(1),

showing the boundedness of {u, }, y in Ex r. a
Our next lemma shows that 7y g verifies the (PS) condition.

Lemma 3.4 The functional 1 g verifies the (PS) condition on Ex r at any level
C\,R € R.

Proof Let {u,} be a (PS)-sequence for 7 g at the level cy g, i.c.,

neN

Iy r(un) = car and Ty g(up) = 0.
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Since {un}neN is bounded in F) r, see Lemma 3.3, up to a subsequence, we may
assume that

Up — U in E>\7R,
Up —> U in L"(Bg(0)), for all r € [1,p?)
un(x) = u(z) a.e. in Br(0).

For all 7 € R and fixed g € (p, p%), there exists C' > 0 such that
|Gy, 7)| < O7| +Clr|7 Y,
and
[F{(T)| < C(L+ |7]%).

Hence, by the Sobolev embeddings, one has

/ Go(x, up )y de — GY(z,u)udz,
Br(0) Br(0)

/ F(x,up)u, do — F{(x,u)udz,
Br(0) Br(0)

/ Gy (x, up)wdz — Gy (z,u)wdz,
Br(0) Br(0)

/ Fi(z, up)wdz — Fi(z,u)wdz,
Br(0) Br(0)

forallw € F g.
Since If\’R(u")un = Iﬁ\’R(un)u = 0,(1), we get

Jun =~ ulf = [ (Ghlavun) = Ghlauw) (un ) da
Br(0)

- / (Fl (2 n) — FL (2, 0)) (1 — ) dz + 0, (1) = 00 (1),
Br(0)

which shows the desired result. O
3.1 The (PS)oo,r Condition

In the sequel, for each R > 0, we study the behavior of a (PS)., r-sequence for
Ty R, i.e., a sequence {uy, tnen C WP (Br(0)) satisfying

Up € E/\n,R and A\, — o,
IX,L,R (un) — G,

Iy, g (un)]| = 0.
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Lemma3.5 Let {un}, oy C WP (Br(0)) be a (PS)s,r sequence. Then, for some
subsequence, still denoted by {uy},, v, there exists w € WP (Bgr(0)) such that
up, = u Wi (Br(0)).

Moreover, the following hold.:
(i) wy converges to u in the strong sense, i.e.,

lun —ull\, r =0
Hence,
u, = u in WP (Bg(0)).
(ii) u = 0in Br(0) \ Qr and u is a solution of

AV u = |ulP2 P
{iA)pu |ulP~*ulog |ulP in Qr, 3.7)

=0 on Jr.

(i) uy, also satisfies

)\n/ V(x) |u,|” de — 0,
Br(0)

lunllX, . Bronar = 0

HunH)\ Ke) —>/Q/ |x— |N+Sp| dz dy+/ |ulP dx  for all j € T.

Q;

Proof By using Lemma 3.3, there exists K > 0 such that

[unll, g < K forallneN.

Thus {un},cy is bounded in W3 (Br(0)) and we can assume that for some
u € W5 (Br(0)),

un, — u  weakly in Wy (Bg(0)),
un(x) = u(z) ae. in Br(0).

Fixing Cy, = {z € Bg(0) : V(z) > L}, one has
/ P da < AV (@) funl? da,
Crm An J Br(0)

that is,
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[l e < 5

m

AnsR

which yields from Fatou’s lemma that
/ [uPdz =0 for all m e N.
Cm
Then u(z)=0 on ' C, = Br(0)\Q, and so, ul, € WP (€) for
J

J €{1,...,k}. From this, we will prove (i)—(iii).
(i) Since u = 0in Br(0) \ Qand Z} g (un) un = I g (un)u = on(1), similar
to the proof of Lemma 3.4, it holds

un —ully, r—0,

which implies that u, — u in W;"* (Bg(0)). B
(i) Since u € W* (Br(0)) andu = 01in Bg(0) \ ©, we deduce u € W*(2), or
equivalently u|, € W3 (€;)forj = 1,..., k.Moreover, u, — uinW5" (Bg(0))

combined with 7}, p (u,) ¢ — 0asn — +oo for each ¢ € C§° (Q2r) implies that

/ / IP?(u(@) — uy))(p(@) = ¢y)) dy

|z —y|Nrep

—|—/ |u\p_2ug0dx—|—/ Fl’(u)god:r—/ F}(u) pdz =0,
Qr Qr Qp

from which it follows that u|QF is a solution for (3.7). On the other hand, for each

j€{1,2,...,k}\I, we have that

|u x)_u(y ‘p / / / / =
dzdy + ul? dx + Fi(vw)udx — F,(u)udz =0.
/ / |.T_ |N+SP Y Qj| | o 1( ) . 2( )

J J

By the fact that F/(¢)s > 0 and F}(<)s < £|¢|? for all ¢ € R, we derive that

)P .
/ / N Ju(z) = uly)|” dz dy +/ |ul? dz < / Fy(u)udr < 9/ |ul? dz.
Q; Ja; |$ - \ +Sp Q; Q; Q;

Since £ < 1,u =0inQ; for j € {1,2,...,k}\I', which shows (ii).
(iii) Note that, from (i),

/ MV (@) fun]? da = / V(@) [t — uf” dz < C lun — ulfs. g
Br(0) Br(0) ’

which shows that
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/ AV () |up|P do — 0 as n — +oo.
Br(0)

Moreover, from (i) and (ii), it is easy to check that

lunllX,. 5r@nar = 0
and
lu(z) = uly)” .
lunllf, o —>/ / dxdy + |ulPdx for all j €T
Antl Q; Ja, |5U - \Nﬂp Q;
This completes the proof. O

With a few modifications to the arguments in the proof of Lemma 3.5 and using
Lemma 3.3, we also have the following result.

Lemma3.6 Let {u,}nen C En, R, be a (PS)eo,r, sequence with R, — +o0, i.e.,
up € Ex, r,and\, = 0o, In g, (un) = ¢, ||T}, g, (un)| = 0.

ny

Then, for some subsequence, still denoted by {uy}, o\, there exists u € W*P(RN)
such that

Up —u  inWSP(RY).

Moreover, the following hold:
(1) Hun - /U/HAnan — O, andSO,

U, —u in WOP(RY).

(i) u = 0in RN \ Qr and u is a solution of

(fA);u = |u[P~2ulog|ulP in Qr,
u=20 on OQr.

(iii) uy, also satisfies

)\n/ V(x) |u,|” de — 0,
BRn(O)

|u(@) = uy)|? / .
. / dxd Pdz for all r.
||Uz||>\ o —>/ / |x—y|N+5P y+ o |u|Pdz  for all j €

J

Proof First of all, the boundedness of {Zy, r, (un)},cy Shows that there exists
K > 0 such that
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lunll, g, <K forallneN.

Thus, {un}, .y is bounded in W*P(R") and we can assume that for some
u € WoP(RY),
U, —u in WSP(RY),

up(z) = u(z) a.e. in RY,

and u(r) = 0on RV \ Q.
(i) For any ¢ > 0, there exists R = R({) > 0 such that

li7rln_>sol<1]p /]RN\BR </RN Wd + A\ V(z)+1) un|p> dz < (.

Let 0 < R < R, and ¥ = g € C5°(RY) be a cut-off function such that 1) = 0 if
z € By (0), ¥ =1 if ¢ Br(0) with 0 < ¢(z) < 1, and [[Ve(2)]| L @) < G,
where C is a constant independent of R. Since {uy, }nen is bounded, the sequence
{¥un fnen is also bounded. This shows that 7} 5 (u,)(Yu,) = 0n(1), namely,

[un(2) = un (9)]? .
//RZN |I_ |N+5p w(x)dxdy+/ AV (2) + 1) JupPy(z) d

RN

:/ Fiy(un)untp(x )dx—l—/' Fy(up)unh(x) de — F{(un)und)(a})dm
R3\Q, RS
// | (%) — un ()P (un (@) — un(y)) (V(z) — P (y))
R2N

|z — y|N+ep

un(y) do dy + o, (1).

Take R > 0 such that O C Bz (0). Then, by (2.2) and the definitions of F3, we
obtain

|un(2) — un(y)[” ()
//Rzz\r |z — y[Ntsp ¢($)dxdy+/RN AV () + 1) Jun [PY(z) d

< 6/ |un|p¢($) dz

//RZ)N |[un(z) — un(y )|p_2 (un () — un(y)) (P(x) — dj(y))un(y) dzdy

|z —y| NP

+on(1

By Holder’s inequality and the boundedness of {u,, } we arrive at

neN?
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’// [t () — un )P~ (un (@) — un () (Y (@) — P(y))
2N

Ir*le“p

<//R2N ‘ur\bﬂf— |N“p)‘p dxdy) (//Rzzv z—y |N+3Jp Jun ()" dxdy>;

<C// @) =", )P dedy)” < S
o |:r—y|N+sp )l dedy )< 25

where we have used that

[Y(@) — @) P
I S o deay
_ P [Y(@) —vWI” V(@) —vWI”
_/R un (y)] </Ir—y|>R |z — y[Nter d +/|z—y|<R [z — y|N+ep d > dy

N
» | L (1
<C o |un (y)|” dy = dr+ R ; mdr
C

< .
= Rep

wn(y) d dy\

Now, fixing ¢ > 0 and passing to the limit in the last inequality, it follows that

. |un(7) — un (@) c
lim sup /]RN\BR </]RN deﬁ-(z\ nV(z)+1) ‘Mn\i’) dx < e <¢, (3.3)

n—oo

whenever R > 0 is sufficiently large.
Since G has a subcritical growth, the above estimate (3.8) ensures that

. Gy (z,up) wdr — . G (z,u)wdz  for all w € C°(RY),

G (x,up) up dz — GY (z,u) udz,
RN RN

G (z,uy,) do — Go (z,u) dz.
RN RN

Now, recalling that lim, . I/’\mRn (up)w =0 for all weCy (RN) and
unll3, g, < K foralln € N, we deduce that

u(y) P2 (u(z) — u(y)) (w(z) — w(y)) / 9
dedy + ulP"*uw dz
[ o~y o
+ Fl(w)wdz — Go(z,uw)wdz = 0,
RN RN
and so,
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lu(z) — u(y)[”
//R2N 7 = [N dzdy + o |ul? dz + RNF{(u)ud:):— Gy (z,w)udzr = 0.

RN

This together with the equality lim,, Iﬁ\mRn (up)u, =0, ie.,

o) a0 1, | |
//Rmf |z — y|N+5p y+ - ( () + 1) un |’ dz + - 1 (tn)uy dz

= Go(z,un)up dz + 0,(1),
RN

leads to

. |Un — un(y)P / P
nhrfoo (//Rzzv |x | —y[Nte drdy + RN AnV(@) + 1) fun | de
+/ FY (up)up d$>
// D ariomeas uly)” dz dy +/ lul” dz —|—/ F(u)udz,
R2N |33 - y\ tep RN RN

from which it follows that for some subsequence,

Up —u  in WHP(RY), )\n/ V(x) |u,|” de — 0,
RN

and
F(up)un — F(u)u in L*(RY).

Since F} is convex, even and F'(0) = 0, we know that F(7)7 > Fy(7) > 0 for all
7 € R. Thus, the last limit together with Lebesgue’s dominated convergence theorem
yields

Fi(up) — Fi(u) in LY(RY).

Since
] |(un(x) — u(x)) - (un(y) - u(y))|p
||u7l_u‘!))\",Rn ://]RQN ‘x_y|N+sp dxdy
+/ AV (2) + 1) Juy, — ulf dz,
RN
it follows that
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which implies (i). The proofs of (ii) and (iii) are similar to that of Lemma 3.5 and so
we omit it. O

3.2 The L°°-Boundedness of Solutions to (3.1)
Next, we investigate the boundedness outside €2 for the solutions of (3.1). The fol-

lowing lemma is crucial to show that the solutions of the auxiliary problem (3.1) are
the solutions of the original problem (1.1). Furthermore, we define

1
oR = / ulde | .
Br(0)

Lemma3.7 Let {uy r} be afamily of nodal solutions of (3.1) such that {Z r(ux r)}
is bounded in R for any X > 0 and R > 0 large enough. Then, there exists K > 0
that does not depend on A > 0 and R* > 0 such that

|u

lux.rloo.r < K  forall\ > 0andR > R*.
Proof Foreach L > 0, letu} := min{u; > L} and define the function
S(UA,R) = SL,O’(U)\7R) = uA7R(uz‘)P(U—1)7

with ¢ > 1 to be determined later. Note that £ is increasing, thus we have

(a—0)(E(a) —&(b)) >0 for any a,b € R.

Consider the functions

and note that
C
L(ux,r) > ;uA,R(Uf)‘T

Hence, from Lemma 2.1, we obtain

1
[L(unr))” = Se | L(ur Rl g = Se—Slurr(ug) ™™

bR P 3.9)

pi.R

In addition, for any a,b € R, it holds
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Q'(a—b)(E(a) = £(b)) = [L(a) — L(D)[".
In fact, suppose that a > b, it follows from Jensen’s inequality that
Q'(a—1b)(E(a) = £(b)) = (a —b)(E(a) — £(b)) = (a — D) /ba &' (r)dr
= (a— b)/b (L' (1))Pdr > (/b L'(1) dT) = (L(a) — L(b))P.

A similar argument holds if @ < b. Thus, we infer that

|L(ux,r)(x) — L(ux,r)(Y)]”
< luxr(@) — uar ()" (ur.r(z) — ur r(Y))
(s @)@ (@) = ur m () W)V () )

Using £(uy, g) as test function in (3.1), in view of the above inequality, we get that

[ﬁ(u)\,R)]p +/ AV (z)+1) uf\ R(UZ)p(ofl) dz
Br(0) ’
+/ Fl(ux g)ux.z(uf)PY dz
Br(0)
= // fu.ne) = uA’R(y”piQ (ux,r(z) —uxr(Y))
; Br(0)xBRr(0) |{E — y|N+sp

x (un @) (@)D (@) = un r(m) (@) (y)) dedy

+/ AV (z) + 1) u}_ 5 (up )PV da + / Fi(ux g)ux r(uf)PO=D dz
Br(0) ' Br(0)

< / Gy (z, u)uA,R(uZ)p("*l) dz.
Br(0)

By the definition of G%, for fixed ¢ € (p, p%), there exists C' > 0 such that
0 < Gh(x,7) <O+ C77 Y for (z,7) € Br(0) x [0, 00).
The above estimates and (3.9) provide

|u;R(u2)‘771

p —
Ol 5 ) CJP/B (0)(Ui,R)q(UZ)p(” Y dz.(3.10)
R
Since

(ud ) ()P = (uf g) P (uf R (uf) 7P,

) ) )
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we can use (3.10) and Holder’s inequality to deduce that

ux g ()" g < CoPluy glimlul g(ur)" os ks
where
0;= P (pp))
* pt—(¢—p) e

Since {uy r} is bounded, we conclude that

|U;R(UJLF)U*1 fi RS Co? |UA R(UJLF)F1

a¥ R’
Note that, if uy p € L7 (Bg(0)), using the fact that u; < u/\ > then

uy m(ug)”™

Z;,R < CJP|U:\F,R|5C(;;,R < 00,
which together with Faton’s lemma implies

|UA R|Up RS CJP|UA R|aa R
as L — oo. Now, taking o = p%/a > 0, we have

‘“A R Gp RS Cgp‘u,\ R‘p R?

and replacing o by o/, j € N, in the above inequality, we obtain that

i . ,
|U;\r,R Z?p;;,R < C(Uj)pWI,R PR

Then, by an argument of induction, we may verify that

sttt (pc)g stoptet oy - (3.11)

for every j € N. Note that

oo

1 1 i o

—_— = d —_— = 5 -
Ligi o1 ™ Zaﬁ (0 —1)2
Jj=1 Jj=1

Sinceo > 1,passingtothelimitasj — ooin(3.11), wemay inferthatu € L°°(Bg(0))
and

- 2. 1
|Uj\r,R|oo,R < o@D (pC)7-T |“j\r,R pi.R
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Using |u;R pr,r < M, fixing any sequences A, — +o0 and R,, — +00, it is easy

to see there exists a constant X; > 0 such that

|u§\rmRn|OO < K; forallneN.
A similar argument can be used to prove that
[uy, g, loo < Ko forallneN
for a suitable constant K5. The proof is complete. O

Lemma3.8 Let {uy r} be afamily of nodal solutions of (3.1) such that {Z r(ux r)}
is bounded in R for any A > 0 and R > 0 large enough. Then, there exist \' > 0
and R’ > 0 such that

[ux Rl Bro)\Q. < a0 forall\ > NandR > R'.

In particular, uy g solves the original problem (3.2) for A > X and R > R'.

Proof Choose Ry > 0 large such that Qf. C Bg, (0). Since 0. is a compact set, we
fix a neighborhood of B of 9. such that

B C Bg,(0)\ Qr.

The Moser iteration technique implies that there exists C' > 0, which is independent
of A, such that

AR uy for all R > Ry.

*

it
LPs (B)

‘ +

‘Loo(an/r) -

Fixing two sequences )\, — +oo and R,, — 400, by Lemma 3.6 we have that
for some subsequence uy, g, — 0 in W*P (Bg, (0) \ Qr), then uy, g, — 0 in
W#P (Bpg,(0)\Qr), and so,

—0 asn— oo.

+
‘“An,Rn

L3 (B)

Hence, there is ng € N such that

+

’u/\mRn <ag forall n> ng.

L= (o)

Now, for n > ng, we set ﬂj\rmR" : Br,, (0)\Q — R given by

+
y,n, (%) = (“L,Rn - C‘O) ().
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Then, @y € W5" (Bg, (0)\Qp). Our goal is to show that @ . () =0 in
Br, (0)\§2f, because this will ensure that

J’_
’“An,Rn

< ag.
00,BRr,, (0)\QF

Indeed, extending ﬂj{ r, (¥) = 0in Qr and taking @} ; as a test function, we have

[ux, r, (€) = ux, r, ()P~ (ur, R, (2) = ux, r, (W)@ g (2) =0 g ()
— Niap dz dy
Br,, (0)\Q, lz -yl
+ / AV (@) +1) [un,,m, [P~ 2un, R, TS, g, do
Br, (0)\Q '
< / Fy(ux,.r,)if p da.
Br, (0)\Qf

Since
/ [ux, ., (€) = ux, &, ()P~ (ur, &, (€) = ur, r, W)@ g (@) =@ g (1)) dedy

B, (0\, |z — y[Ntsp

liy, g, (@) =@, g, )
= Ntsp dx dy,
Br,, (0)\Q}. |z — yl

we have
/ AV (@) + 1) |ux, g, [P"ux, R, 0 5 dz
Br,, (0\Qr

V(@) + 1) (3, g, + a0l () 5, +a0) 3, 5, do,

/(BRn O\2}),

and

/ Fz/ (ux,,R,) ﬂirn,Rn dz
Br, (0)\Qf

£ (un, k)

/(BRH(O)\Q'F)+ [Ur, R, [P~ 2, R,

o 2 (~+ .
[aX, k., +aol® (“An,Rn + ao) Ux,,r, 47;

where
(Br,(0)\ Qr), = {z € B, (0)\ Qr : ux,,r,(¥) > ao}.

From the above equalities, we have
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@ g () =4 o (y)P
N+s dz dy
Br,, (0\2} |z — y|NFep

F/
+ / ((xnm) 1) - 2 (1) )
(Brn O\2}), [Ux,, R, [P 2Ur,, R,

~+ p—2 ( ~+ ~+ —
>< (|UATL)R”L + a0| (UA’N.yR’IL + aO)) uk?L)R"L dx - O.

By the definition of F}, we obtain

Fj (ux, r,)

AMVi(z)+1)—
AnV(@) +1) lux, R, [P~2ux, R,

>1—-£>0 in (Bg,(0)\Qp), .

Thus, ij\:”Rn =0 in (Bg, (0)\Qp), and ﬂi_n,Rn =0 in Bg, (0)\Q}. From the
above argument we conclude that there are \’ > 0 and R’ > 0 such that

’uj\rR‘ <ag foralA> X and R>R'.
’ oo,BR(O)\Q{ﬂ

A similar argument can be used to prove that

}u;R‘ <ap forall A\> X and R > R/,
B o, Br(0)\Q

if necessary, A’ and R’ can be increased. Thus,
[UxBloe Bropgy < a0 forall A= N and R > R'.

This finished the proof. i

4 A Special Minimax Level

In the section, for any A > 0 and j € T, let us denote by Z; : W;?(Q,) — R and
Zy,j : W#P(Q}) — R the functionals given by

1 1
Zi(w) = [ulf, + / lrdo / P log [ul? da,
J J

1 1
In; = ~luley +/ (AV(z) +1) |uf? dz — 5/ |ul”log [ul” dz,
Q. Q'

where
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7// u(y)[? dir dy
uly YxY \x—y|N+6p ’

which are the energy functionals associated with the following logarithmic systems:

(- ) u=|uP2ulog|ulP in Q;,
{ u=0 on 0§, @1

and

{ (—A) u+ AV (2)|ulP~2u = [ulP2ulog |ulP  in Qr, @2)

S
u :IE) on 0%,
an 77
respectively. It is obvious that Z; and 7, ; satisfy the Mountain Pass geometry, since
Q; and Q) are bounded, and Z; and 7, ; satisfy the (PS) condition. Using the same
arguments as in Sect. 3, there exist two nontrivial functions w; € W*P(£2;) and
wy,j € WP(Q)) satisfying

Zi(wj) = ¢j, Injlwaj) =cxny and Ti(wy) =T} j(wx;) =0,

where
¢j = min 7, (), ex;= S Zy5(u),
and
= {u e W5P(Q) : v # 0 and T} (uF)u™ = 0},

NA] ={ue WP(Q)) :u* #0 ade,\J(ui)ui =0}.
In what follows, without loss of any generality, we consider I' = {1,2,...,1} with
[ <k, er= 22:1 c¢j and T' > 0 is a constant large enough, which does not depend
on R > 0 large enough, such that

1 T (w* )
0<IZ; (iji) . I (iji) <= (2 J ) for all j €T. (4.3)

We define
! !
Yo (S1,- 351, T1,---,7) (T) = Zngw;'(x) + ZTij]-_(J))

forall (¢1,...,5,71,...,7) € [1/T2,1}2l
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Ixr= {'y eC ([I/TZ,I}QZ 7EA,R) s

o #0forall jeT,v=n Ona([l/TQ’l]Ql)}’

and
b/\,R,F = inf max I,\,R(W(Q 7?)),
Y€ R (5,7)€[1/T2,1]2
where (S, 7) = (s1,...,5,71,...,7). Note that 7o € I'y g, so 'y g # 0 and by g ¢

is well defined.

Lemma 4.1 For eachy € I'x g, there exists (<, 7.) € [1/T%, 1] ! such that

4, (75 (&, 7) (v (7)) =0 forallj € {1,...,1}.

Proof Given~y € I'y g, we consider the map H : [1/T2, 1]21 _y R2! defined as
AER) = (T () (7)o T (7)) T () - (7)o T () - (7)) s
where

oy (’Yi) : ('Vi) =1\, (’Yi(f', 7)) - (Vi(f', 7)) foralljeT.

For (¢, 7) € 0 ([I/TQ, 1]2l>, since

where
Ho(S7) = (T () - (00) B (%) - () Ta (00) - (00) 5+ B () < ()
and by the properties of F3, deg (HO, (1/12, 1)21 7O) = 1. Therefore, using topo-

logical degree properties, we derive that deg (I;T , (1 /T2, 1)2l , 0) = 1. This shows

that there is (G, 7) € [1/72, 1]21 such that H (&, 7)) = (0,...,0), which proves
the lemma. ]

Lemma 4.2 The following assertions hold:

(a) Forany A\ > 0and R > 0 large enough, Zé’:l cxj <barr <cr;
(b) ba,r,r — cr, when A\ — +oo uniformly for R > 0 large.

Proof (a) Since v € I'y g, we have
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byrr < max Ty g (7(S) 7))
(§™elt/T2,1)*
= max ZI ngw max ZI TJTU)
(Cl ,,,,, CL)G[TQ 1 (7‘1,...,’”)6 T2 1

From the definition of w;, we have

max 7T (ijw ) =1, (wji) for all j € T,

o] (4.4)

and thus

!
barr < ¢ =cr.

=1
: - - 2 21 . . .
Taking (7, 7%) € [1/7%,1]" as given in Lemma 4.1, this shows that
In; (v (S, 7)) >cr,; forall jel.

On the other hand, it is easy to verify that I, p(0)\q; (u) >0 for all
u € W*P (Bgr(0)\Qr). Thus, we obtain that

l
I)\R §*77—* Z §*,’7'* )

Then
l

max 7 S, 7)) > 1 v (S, 7))
(¢, 7)e[1/T2,1)2 AR (VS 7)) A Z

From the definition of by g r, we can obtain
1
bx,r > Zcxm
j=1

which completes the proof of (a).
(b) Let \,, be anarbitrary sequence with \,, — +ooandassumewy,, ; € W*? (©})
to be least energy nodal solutions of problem (4.2), with A = A, that is

Z/\n,j (w)\mj) = Ch,,j and I;\mj (w)\mj) =0 for allj erl.
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Using the same arguments as in the proof of Lemma 3.5, for each j € I' and for a
subsequence {wy,, ;}, there exists wo,; such that

. o $0 ()
Wx,,,j —wo; nW (QJ) as ny — 00.

Moreover, wy ; € WP () is a nodal solution of problem (4.1). Thus,

lim I)\n Jj (U‘))\nk,j> :Ij (wo,j) > Cj.

k— oo

Since ¢y ; < cj,we conclude that ¢y ; — ¢; as A — oo, from where it follows that

!
ZC)\J' —cr as A — 00.
Jj=1

The last limit together with (a) implies that (b) holds. O

5 Uniform Estimates

In the following, let us denote

F\(Qp) := {u e WP(Qp) : V(x)|ulP dz < oo} ,

Qr

endowed with the norm

p
ull g = / /S = |N+s),, dxdy—i—/gl V() + 1) Jul? da.

Moreover, F ; and Fy . denote the cone of nonnegative and nonpositive functions
belonging to F\ (£2}), respectively, that is

FY ={ue F\(Qr) :u(z) > 0ae. inQ)},
Fy ={ue F\(Qp):u(z) <0ae inQ)}.

From the definition of 7, there are positive constants v and A* > 0 such that
disty ; ('yo(c_’,%'),FAij) >y, forall (7)€ [1/T2, 1]2l jeTand A> A%,

where disty ; (K, F') denotes the distance between sets of Fy (Q;) Taking the num-
ber v obtained in the last inequality, we define
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T ={ue Bypidisty (ulg  F;) 2 vforall jeT}.
P

Moreover, for any constants d, 1 > 0 and 0 < k < v/2, we consider the sets

I;TR = {u € E)\,R :I)\,R(u) < CF},

'A;)J,.R = {u € Yo, :I/\’BR“))\Q%(U) >0, Hu”i,Bn(U)\QF < iy | Ty j(u) — ba | < pfor all j e F} ,

where T, for » > 0 denotes the set
T, ={u€ Eyp:dist(u,Y) <r}.

Notice that for each p >0, there exists A*=A*(u) >0 such that
w= 22:1 w;j € Aﬁ,R for all A>A*. Because we Y, Z) r(w)=cr and

bx,rr — cr, when A — +oo uniformly for R large. Thus, AZ\L,R # () for \ suffi-
ciently large.

In what follows, for M > 0, let us consider

Byut1 ={u€ Expr:||ul]xr < M+1},

where M is a constant large enough independent of A and R satisfying
oo M oo 21
7S ar < > for all (¢, 7) € [1/T27 1] ,

and

- M
dowi| < >
=1 I\ r
Now let us set u* as
Ti(wh) + M
M*:min{WJer}' (5.1)

Next, we will establish uniform estimates of |[|Z} z(u)[| in the set
(ASM,R\Aﬁ,R) N Bu+1 NI .

Lemma 5.1 For each u € (0,u*), there are \* > 0, R* > 0 large enough and
o9 > 0 independent of A and R > 0 large enough such that
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HIf\R(u)H >o09 forA> N, R> Randu € (A;‘M,R \ AQR) N By ﬂI;fR.

Proof Arguing by contradiction, assume that there are \,, R, — oo and
€ ( é\; Rn\A;);"Rn) N Brrv1 ﬂI/ifﬁR” such that

||I£\H,Rn (un)H — 0.

Since u,, € Ag‘; R » we have that {||un|\/\ R } N and {7, r, (un)},cy are both
) n ns n ne

bounded. Then, up to a subsequence if necessary, assume that {Zy, r, (un)},cy 18
a convergent sequence. Hence, by Lemma 3.6, there exists u € W*P(Qr) such that
u is a solution for (4.1) and

Uy = u  in WP(RY), HunH’/{mBR” onar 0 and Iy, g, (un) = Ir(u) € (-0, cr].

Note that {uy, },,cy C Tox, we derive that [|uif ||, o, - 0forall j € I, from where
notly

it follows that ||ui||Qj =0 for all j € I'. Thus u is a nodal solution of (4.1) for all

j € I'and

l !
§ E U|sz ) < cr,
j=1 j=1

which shows that Z;(ulg ) = ¢; for all j € I. Hence Iy, g, (un) = Zr(u) as

n — +00. On the other hand, since by g — cr, when A — 400 uniformly for R
large, we derive that A;A;Rn n If\i g, for large n, which is a contradiction. ]

Lemma 5.2 Assume p € (0,u*), A\* > 0 and R* > 0 sufficiently large as given
in Lemma 5.1. Then, the functional I r has a critical point uy r satisfying
u,\EA RﬁI . N\ Bary 1 for each A > X* and R > R*.

Proof Assume by contradiction that there are p € (0, u*) and a sequence A, — co
such that the functional Z, g, (u) has no critical points in AA” n If\r B, N Bt

Since 7, g, satisfies the (PS) condition, there exists a constant dx, .r, > 0 such
that

IZ4, &, (W) = dx, ., forallue A NIT 5 N B

By Lemma 5.1, we have that

175, r, (W) > o0 for all u e (AQ/_L Rn \AiTLRJ NI g, N B,
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where g > 0 is independent of A\, and R,, for n large enough. Now, we define a
continuous functional ®,, : F\, g, — R such that

D, (u)=1 foruE.ASu/zR N7Y,. N B,
®,(u)=0 forugé.Az#R N Yo N Baraa,
0<®,(u) <1, forueE\, Rr,,

and H,, : I3 — E\, (Br,(0)) is a function given by

_ Y (w) N
Halu) = On(uw) ety € Agp g, N Barta,
0, ué “42# r, N By,

where Y, is a pseudo-gradient vector field for Z,,r, on
Ky, = {u € By, R, : If\n R, (u) # 0}. It is obvious that H,, is well defined, since

7y, g, (u) #0forue An "' g, NI g, - Hereafter, we denote by m{ the real num-
ber given by

my = {Tam, () 2w € o ([1/T% 1P\ A 0B )}

which verifies lim sup,,_, ., mg < cr. Moreover, let us define K,, > 0 satisfying

|Zx,, i (w) — Iy, ;(v) < |lu— 'UH)\”,Q; for all u,v € Bps41 and j € T.

Note that
[Ho(u)| <1 forallne€NandueIyl o,
S0
d
T Dot (1 (7,0)) < =0 (1 (7,0) |24, g, (0 (7)) || < 0
|2 | = i <1,
and

Np(T,u) =u forall7>0 and UifA;Z,anBMHa

where the deformation flow 7,, : [0,00) x Z3" 1 — I{" s defined by

dnn

dr Ho(nn) and n,(0,u) =u € Ifxl;,Rn'

Claim: There exists T, = T (A, R,) > 0 and €* > 0 independent of n such that
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lim sup max Ix, Ry, M (T, 0(S7))) | < er —e™. (5.2)
n—oo | (&7)€[1/T2,1]%

Indeed, assume u = (S, T), 3,\7”3" =min{dy, r,, 00}, Tn = O'O,U,/QE)\",RW and
T (1) = (7, 0). If u ¢ A/’X‘Rn N By N Ty, by the definition of my, we have
Ix, R, (Mn(T,0) < Iz, R, (u) <mg forallr > 0.

On the other hand, if u € A;);?Rn N By N Tk, we need to consider two cases:
Case 1: 71 (T) € A3 5 p N Bar N, forall 7 € [0,T,].

This case shows that there is €* > 0 independent of » such that
I\, ,Rn (M (T)) < ep — €.

Case 2: 7, (10) ¢ Agﬁﬂ r, N B NY, for some 79 € [0,T].

Related to this case, we have the following situations:
(i) There exists 72 € [0, T;,] such that 7,, (72) ¢ T, and thus for 7; = 0, it holds

7 (T2) — 1 (T1)||>‘n7Rn >0 > u,

since 7, (1) =u € T.
(ii) There exists 72 € [0, T}, such that 77,, (72) ¢ By, so that for 71 = 0, we have

M
2

Hﬁn (72) = T (Tl) An,Ron > > i,

since 7, (71) = u € Byga.

(i) (1) ¢ T N Bys, and  there exist 0<7 <72 <7, such that
() € A3y g \ANR, forall T € [r1, 7] with

3

Zan s G (7)) = bamrl = and [Tk, (i (72)) = barr| = S

According to the definition of K,,, we have

~ - 1 ~ -
1770 (72) = 1 (T1)llx & 2 37~ 1Dan 0 (i (72)) = T, (7 (1))
1
>
> &
1
26, 1

(1Zx,.. R, (0 (12)) = bA R = |Zx, R, (T (T1)) = bA RT|)

2

The estimates in (i)—(iii) show that 7o — 7 > ﬁu. From the mean value theorem,
it follows that
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Ty
To, ry (T (T) = To e, () + / A r (0 A

Ty
<To () - /0 (7 () | o m, ()] A
<er— / ¥ oy de

1
=Cr — 0o (Tz —7'1)
Ol
2K,,’

<cr—

which proves (5.2) and shows the Claim.
Now, we prove that (S, 7) — wn(Th, 70(S, 7)) belongsto 'y, g, for n large. First,

. o . o 21
it is easy to prove that 7, (70(<, 7)) is a continuous function in [1/72,1]™. Hence,
we have to show that

o (Ts 0(S 7)) = 70(&,7) for all (€,7) €9 ([1/1%,1)")
and
(0 (T 90(6: 7)) € WP () \ {0},
forall j € I" and for all (<, 7) € [1/72, 1]2l.
From p € (0, u*), (4.3), (4.4) and (5.1) we obtain

|Zx,, r, (70($,7)) —cr| >2p* forall (§,7) €0 ([1/T2, 1] 2l) and n € N.

Hence, using again the fact that by r v — cr, when A — +o0 uniformly for R large,
there is ng > 0 such that

|Zx, r, (0($, 7)) — xR, r| >2u forall (7)€ ([1/T2, 1]21) and n > ng,

which shows that (<} 7) ¢ A7 for all (7) € 0 ([1/T27 1]2l) and n > ng.

From this,

M (Tn, 70(S, 7)) = 10(S,7)  for all (S,7) € 0 ([1/T2, 1]21) and n > ny.

On the other hand, since 0, (T},,70(<, 7)) € Yo, for all n, we have

disty,, ; (nn (T 70(S, 7)) ,F/\imj> >v—2k>0.
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Then, (n (Th,70(S,7)))F o #0 for all jeI, and we can get
J

M (T, 70(S, 7)) € T, g, for n large enough. Combining the definition of by g r
with the Claim and the fact that n,, (T}, v0($, 7)) € T'a,, g, for n large enough, we
have the following inequality

limSupb)\n’Rmr < cr — 5*,
n— o0

which is a contradiction. Thus, the lemma holds. O
From the last lemma, we have the following corollary.

Corollary 5.3 For each i € (0, p*), there exist \* > 0 and R* > 0 large enough as
given in the previous lemma. Then, problem (3.2) has a nodal solution uy r € .Af;’ R
forall \ > X" and R > R*.

Proof From Lemma 5.2, there exists a nodal solution uy g € AZ‘) rN Zf\fR N Bar1

to problem (3.1). Then, by Remark 3.1 and Lemma 3.8, the solution uy g is also a
nodal solution of problem (3.2). O

6 The Proof of Theorem 1.1

By Corollary 5.3, for any u € (0, u*), there exist A* > 0 and R* > 0, such that
we can find a nodal solution ux r € A;’), rN I;fR N Bps41 of problem (3.2) for all

A> A" and R > R*.

Fixing A > A\* and taking a sequence R, — +o0o, there exists a solution
Ux,n = U\, R, for the problem (3.2) with

Urm € A) g NI, NByyr foralln €N
Since {uy , } is bounded in W*P(R™ ), we can assume that for some uy € WP (RY),
I\ R, (uxn) = c<er,
Urny = uy  in WP(RV),

Unp — Uy In LfOC(RN) for any g € [1,p}),
urn(7) = un(r) ae. xRN

Recalling Lemma 3.8, we obtain
lurn(z)| < ap for all z € RV \ Qp,

then,
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lux(z)| < ag for all x € RN \ Qp.

The next two lemmas play a fundamental role in the proof of Theorem 1.1. Their
proofs follow from similar arguments as in the proof of Lemma 3.6, so we omit them.

Lemma 6.1 For any fixed ¢ > 0, there is an R > 0 satisfying

. |U)\ n(f) —Uux n(y)|p
hmsup/ (/ : — dy + (AV(x) + 1) lurn|? ) dz < .
RV\Br(0) \JrN |z —y[NteP WV (z) + 1) fural

n—oo

Lemma6.2 uy , — uy in W5P(RYN). In addition,
Fi(uxn) — Fi(uy) and  Fi(uxn)ux, — Fy(uy)uy inL'(RY).

As a consequence, we consider the energy functional Z,, which is defined in (2.1).
It is easy to see that u) is a critical point of 7y satisfying

uy € AX = {u € (Yoo)ay : Tngay (1) 2 0, [[ullBa g < p1 [ Ta i (w) = ba ] < o, for all j € r} ,
where
Yo = {u € By : disty (uFAij) > V) e r} ,

(Tx), = {u € Ey: ir%rf |lu—v|ra <7Vj€ I‘} .
VEY o J

Here, by a critical point we understand that u satisfies the inequality

// [ur(@) = ur ()"~ (ua(2) — ur () (v(@) = ur(2)) = (v(y) = wr®))) | dy
R2N

|z — y[ N
+/ ()\V(x)+1)\u,\\p_2u>\(v—u,\)dac+/ Fl(v)dz—/ Fi(uy)dz
RN RN RN
2/ Fi(uy)(v —uy)de
]RN

for all v € E\. Hence, u) satisfies the equality

[ﬁw|uxx>fuxww—%umx»—umevu>fv@»dx@r%Agkvﬁmuﬁwawwdw

o — y[¥

= / lux [P~ 2upvlog |uy [P dz,
RN

for all v € C§°(RY)
Now, we are ready to conclude the proof of Theorem 1.1.
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Proof of Theorem 1.1 Letting A, — 400 and u,, € (0, u*) with p,, — 0, we can find
a solution u,, € A;\L; of problem (1.1) with A = X,,. Hence, {uy, },y is bounded in
WP (RN) such that

(@) [|Z5 (un,)|| =0foralln € N;
®) [lux, Iy, zvyor — 0

(©) Ix, (un) = c<ecr,
where
IZ} (u)|| = sup {(Z4 (), 2) : z € WSP(RY) and ||z]x <1} .

Arguing asin Lemma 3.6, thereisau € W*?(RY) satistying uy, — uin W*P(RY),
and v = 0 in RN\QF and u is a nontrivial solution of

(—=A) u = |u[P~2ulog|ulP in Qr,
{ U= Op on IQr, (6.1)

and so,

IF (u) > Cr.

Moreover, since {uy, } verifies
dist » ; (uAn,F/\ij) >v—2k>0 forall jeTl,

we derive that Hu;—L — 0 for all j € T'. Hence, from the definition of GY, it

o
. J
follows that there exists v, > 0 such that

|l
’

J

q+1

dx > v, foralln € Nand for all j €.

Therefore
/ ’ui‘q—ﬂ dx > v, forall jeTl.
Q/
Thus, u changes its sign on €2; for all j € I', and
Zj(u) > ¢; forall jeT.

Note that

Iy, (ur,) = Ir(u),
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which shows that

Ir(u)=c and c> cr.

Due to ¢ < cr, it follows that Zr(u) = cr, which implies that | Q is a least energy

nodal solution of problem (6.1). This concludes the proof of the theorem. (]
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