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 A B S T R A C T

By using the mountain pass theorem, this article deals with the existence of positive ground 
state solutions to a class of (𝑝, 𝑛)-Laplace Schrödinger equations with Stein-Weiss reaction under 
critical exponential growth in the sense of the Moser–Trudinger inequality in the whole R𝑛.

1. Introduction and main result

Nowadays, there is a great interest in the study of nonlinear PDEs involving the (𝑝, 𝑞)-Laplace operator, see [1–3], due to 
several relevant physical applications in the field of applied sciences such as physics, plasma physics, chemical reaction design, 
electromagnetism, electrostatics and electrodynamics, see [4–6]. Such problems are both fascinating and difficult to deal with. 
From an analytical point of view, there are several technical difficulties, such as the inhomogeneous nature of the (𝑝, 𝑞)-Laplacian 
and the lack of compactness of Palais–Smale sequences due to the unboundedness of the domain. Concerning problems driven by 
the (𝑝, 𝑛)-Laplacian, we refer to the papers [7–10], see also the references therein. Moreover, we also mention [11–13] for the study 
of existence and multiplicity of solutions of Choquard equations with critical exponential growth in the whole Euclidean space.

Motivated by the above mentioned works, we study the following (𝑝, 𝑛)-Laplace Schrödinger-Choquard type equation 

𝑝,𝑉 (𝑢) + 𝑛,𝑉 (𝑢) =

(

∫R𝑛
𝐹 (𝑦, 𝑢)

|𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦

)

𝑓 (𝑥, 𝑢)
|𝑥|𝛽

in R𝑛, ()

where 1 < 𝑝 < 𝑛 with 𝑛 ≥ 2, 𝛽 > 0, 0 < 𝜇 < 𝑛, 0 < 2𝛽 + 𝜇 < 𝑛, 𝑚,𝑉 (𝑢) = −𝛥𝑚𝑢 + 𝑉 (𝑥)|𝑢|𝑚−2𝑢 and 𝛥𝑚𝑢 = div(|∇𝑢|𝑚−2∇𝑢) denotes the 
usual 𝑚-Laplacian for 𝑚 ∈ {𝑝, 𝑛}. The nonlinearity 𝑓 ∶R𝑛 ×R → R has critical exponential growth at infinity, that is, it behaves like 
exp(𝛼|𝑠|

𝑛
𝑛−1 ) when |𝑠| → +∞ for some 𝛼 > 0, which means that there exists 𝛼0 > 0 such that

(𝑓0) lim
|𝑠|→+∞ |𝑓 (𝑥, 𝑠)| exp(−𝛼|𝑠|

𝑛
𝑛−1 ) =

{

0 if 𝛼 > 𝛼0,
+∞ if 𝛼 < 𝛼0,

uniformly with respect to 𝑥 ∈ R𝑛.
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For the scalar potential 𝑉 ∶R𝑛 → R, we suppose that the following hypotheses are satisfied:

(𝑣1) 𝑉 ∈ 𝐶(R𝑛,R) and there exists a constant 𝑉0 > 0 such that inf𝑥∈R𝑛 𝑉 (𝑥) ≥ 𝑉0;
(𝑣2) 𝑉 (𝑥) → +∞ as |𝑥| → +∞, or more generally, for any 𝑀 > 0, 𝜇({𝑥 ∈ R𝑛 ∶ 𝑉 (𝑥) ≤ 𝑀}) < +∞, where for any 𝐴 ⊂ R𝑛, 𝜇(𝐴)

denotes the Lebesgue measure of 𝐴 in R𝑛.

Next, we assume the following hypotheses on the nonlinearity 𝑓 ∶R𝑛 × R → R:

(𝑓1) 𝑓 ∶R𝑛 × R → R is a Carathéodory function such that 𝑓 (⋅, 𝑠) = 0 for all 𝑠 ≤ 0 and 𝑓 (⋅, 𝑠) > 0 for all 𝑠 > 0; further, there holds 
𝑓 (𝑥, 𝑠) = 𝑜(|𝑠|𝑛−1) as 𝑠 → 0+ for a.a. 𝑥 ∈ R𝑛;

(𝑓2) there exists 𝜃 > 𝑛 such that 0 < 𝜃𝐹 (𝑥, 𝑠) = 𝜃 ∫ 𝑠0 𝑓 (𝑥, 𝑡) d𝑡 ≤ 2𝑠𝑓 (𝑥, 𝑠) for a.a. 𝑥 ∈ R𝑛 and for all 𝑠 > 0;
(𝑓3) there exists 𝜉 > 𝑛 and 𝜂 > 0 such that 𝐹 (𝑥, 𝑠) ≥ 𝜂𝑠𝜉 for a.a. 𝑥 ∈ R𝑛 and 𝑠 > 0;
(𝑓4) the maps 𝑠 ↦ 𝑓 (𝑥,𝑠)

𝑠
𝑛
2 −1

 and 𝑠↦ 𝐹 (𝑥,𝑠)

𝑠
𝑛
2

 are strictly increasing for a.a. 𝑥 ∈ R𝑛 and for all 𝑠 > 0.

Due to (𝑓0) and (𝑓1), for any 𝑞 ≥ 𝑛 and 𝛼 > 𝛼0, there exist 𝜀 > 0 and a constant 𝐷𝜀 = 𝐷𝜀(𝜀, 𝛼, 𝑞) > 0 depending on 𝜀, 𝛼 and 𝑞 such 
that 

|𝑓 (𝑥, 𝑠)| ≤ 𝜀|𝑠|𝑛−1 +𝐷𝜀|𝑠|
𝑞−1𝛷(𝛼|𝑠|𝑛

′
) for a.a. 𝑥 ∈ R𝑛 and for all 𝑠 ∈ R, (1.1)

where 𝛷(𝑡) = exp(𝑡) −
∑𝑛−2
𝑗=0

𝑡𝑗

𝑗!  and 𝑛′ =
𝑛
𝑛−1 . Thus, one has 

max{|𝑠𝑓 (𝑥, 𝑠)|, |𝐹 (𝑥, 𝑠)|} ≤ 𝜀|𝑠|𝑛 +𝐷𝜀|𝑠|
𝑞𝛷(𝛼|𝑠|𝑛

′
) for a.a. 𝑥 ∈ R𝑛 and for all 𝑠 ∈ R. (1.2)

Note that the function 𝐹 (𝑥, 𝑠) = 𝜂(𝑠+)𝜉 exp (𝛼0(𝑠+)𝑛
′ ) for a.a. 𝑥 ∈ R𝑛 and for all 𝑠 ∈ R, where 𝑛 ≥ 2, 𝜂 > 0, 𝜉 > 𝑛, 0 < 𝛼0 < 𝛼, 𝑠+ =

max{𝑠, 0} and 𝑓 (𝑥, 𝑠) = 𝜕𝐹 (𝑥,𝑠)
𝜕𝑠  for a.a. 𝑥 ∈ R𝑛 and for all 𝑠 ∈ R satisfies hypotheses (𝑓0) − (𝑓4).

Next, we define the function space 𝑋 = 𝑊 1,𝑝
𝑉 (R𝑛) ∩𝑊 1,𝑛

𝑉 (R𝑛) equipped with the norm ‖ ⋅ ‖ = ‖ ⋅ ‖𝑊 1,𝑝
𝑉

+ ‖ ⋅ ‖𝑊 1,𝑛
𝑉
. From [10], it is 

known that (𝑋, ‖ ⋅ ‖) is a reflexive and separable Banach space, where by means of (𝑣1) and 𝑚 ∈ {𝑝, 𝑛}, the weighted Sobolev space
𝑊 1,𝑚
𝑉 (R𝑛) =

{

𝑢 ∈ 𝑊 1,𝑚(R𝑛) ∶ 𝑉 (𝑥)|𝑢|𝑚 ∈ 𝐿1(R𝑛)
}

,

is endowed with the norm ‖ ⋅ ‖𝑚
𝑊 1,𝑚
𝑉

= ‖∇ ⋅ ‖𝑚𝑚 + ‖ ⋅ ‖𝑚𝑚,𝑉 . As usual, 𝑊 1,𝑚(R𝑛) stands for Sobolev space equipped with the norm 
‖ ⋅ ‖𝑚

𝑊 1,𝑚 = ‖∇ ⋅ ‖𝑚𝑚 + ‖ ⋅ ‖𝑚𝑚, while ‖ ⋅ ‖𝑚 is the usual norm of 𝐿𝑚(R𝑛) and ‖ ⋅ ‖𝑚,𝑉  is the norm of the weighted Lebesgue space 𝐿𝑚𝑉 (R𝑛), 
see [10] for its definition.

We say that 𝑢 ∈ 𝑋 is a weak solution of problem (), if there holds
⟨

𝑢, 𝜓
⟩

𝑝,𝑉 +
⟨

𝑢, 𝜓
⟩

𝑛,𝑉 = ∫R𝑛

(

∫R𝑛
𝐹 (𝑦, 𝑢)

|𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦

)

𝑓 (𝑥, 𝑢)𝜓
|𝑥|𝛽

d𝑥 for all 𝜓 ∈ 𝑋,

where ⟨⋅, ⋅⟩𝑚,𝑉  for 𝑚 ∈ {𝑝, 𝑛} is defined by
⟨

𝑢, 𝜓
⟩

𝑚,𝑉 = ∫R𝑛
|∇𝑢|𝑚−2∇𝑢 ⋅ ∇𝜓 d𝑥 + ∫R𝑛

𝑉 (𝑥)|𝑢|𝑚−2𝑢𝜓 d𝑥  for 𝑢, 𝜓 ∈ 𝑋.

In addition, we say that a solution 𝑢0 ∈ 𝑋 is a ground state solution of problem (), if there holds
𝐽 (𝑢0) = inf{𝐽 (𝑢)∶ 𝑢 ∈ 𝑋 ⧵ {0} and 𝐽 ′(𝑢) = 0},

where 𝐽 ∈ 𝐶1(𝑋,R) is the associated functional to problem ().
Our main result is given by the next theorem.

Theorem 1.1. Let hypotheses (𝑣1)–(𝑣2) and (𝑓0)–(𝑓4) be satisfied and suppose there exists 𝜂0 > 0 large enough such that (𝑓3) holds for all 
𝜂 ≥ 𝜂0. Then problem () has a positive ground state solution.

The paper is organized as follows. In Section 2, we provide some preliminary results, while Section 3 is devoted to the proof of 
Theorem  1.1.

2. Preliminary results

In this section, we introduce some elementary results which will be useful in the sequel.

Lemma 2.1 ([10, Corollary 2.6]). Let (𝑣1) and (𝑣2) be satisfied. Then the embedding 𝑋 ↪ 𝐿𝜏 (R𝑛) is compact for any 𝜏 ∈ [𝑝, 𝑝∗) ∪ [𝑛,+∞), 
where 𝑝∗ = 𝑛𝑝

𝑛−𝑝  is the critical Sobolev exponent.

Now, we recall the celebrated Moser–Trudinger inequality, which was initially established in [14, Lemma 1], see also [15–17] 
and the references therein.
2 
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Theorem 2.2 (Moser–Trudinger Inequality).  For all 𝑛 ≥ 2, 𝛼 > 0 and 𝑢 ∈ 𝑊 1,𝑛(R𝑛), there holds

∫R𝑛

(

exp(𝛼|𝑢|𝑛
′
) −

𝑛−2
∑

𝑗=0

𝛼𝑗

𝑗!
|𝑢|𝑛

′𝑗
)

d𝑥 < +∞.

Moreover, if ‖∇𝑢‖𝑛𝑛 ≤ 1, ‖𝑢‖𝑛 ≤ 𝑀 < +∞ and 𝛼 < 𝛼𝑛 = 𝑛𝜔
1
𝑛−1
𝑛−1 , where 𝜔𝑛−1 is the measure of the unit sphere in R𝑛, then there exists a 

constant 𝐶 = 𝐶(𝑛,𝑀, 𝛼) > 0 which depends only on 𝑛,𝑀 and 𝛼 such that

∫R𝑛

(

exp(𝛼|𝑢|𝑛
′
) −

𝑛−2
∑

𝑗=0

𝛼𝑗

𝑗!
|𝑢|𝑛

′𝑗
)

d𝑥 ≤ 𝐶(𝑛,𝑀, 𝛼).

Lemma 2.3 ([18, Lemma 2.1 and Lemma 2.2]). For any 𝑛 ≥ 2, the map 𝑠 ↦ exp(𝑠) −
∑𝑛−2
𝑗=0

𝑠𝑗

𝑗!  is increasing and convex on [0,+∞). 
Moreover, for all 𝑝 ≥ 1 and 𝑠 ≥ 0, there holds

(

exp(𝑠) −
𝑛−2
∑

𝑗=0

𝑠𝑗

𝑗!

)𝑝
≤ exp(𝑝𝑠) −

𝑛−2
∑

𝑗=0

(𝑝𝑠)𝑗

𝑗!
.

The following doubly weighted Hardy–Littlewood–Sobolev inequality can be found in [19].

Theorem 2.4 (Doubly Weighted Hardy–Littlewood–Sobolev Inequality). Let 1 < 𝑟, 𝑠 < +∞, 0 < 𝜇 < 𝑛, 𝛼+𝛽 ≥ 0 and 0 < 𝛼+𝛽+𝜇 ≤ 𝑛 such 
that 1𝑟 +

1
𝑠 +

𝛼+𝛽+𝜇
𝑛 = 2 and 1 − 1

𝑟 −
𝜇
𝑛 <

𝛼
𝑛 < 1 − 1

𝑟 , then there exists a sharp constant 𝐶 = 𝐶(𝑟, 𝑠, 𝑛, 𝛼, 𝛽, 𝜇) > 0 independent of 𝑔 ∈ 𝐿𝑟(R𝑛)
and ℎ ∈ 𝐿𝑠(R𝑛) such that

|

|

|

|

|

∫R𝑛 ∫R𝑛
𝑔(𝑥)ℎ(𝑦)

|𝑥|𝛼|𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑥 d𝑦

|

|

|

|

|

≤ 𝐶(𝑟, 𝑠, 𝑛, 𝛼, 𝛽, 𝜇)‖𝑔‖𝑟‖ℎ‖𝑠.

Further, let

𝑇 (ℎ(𝑥)) = ∫R𝑛
ℎ(𝑦)

|𝑥|𝛼|𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦.

Then there exists a constant 𝐶̃ = 𝐶̃(𝑡, 𝑠, 𝑛, 𝛼, 𝛽, 𝜇) > 0 independent of ℎ ∈ 𝐿𝑠(R𝑛) with 1 + 1
𝑡 = 1

𝑠 + 𝛼+𝛽+𝜇
𝑛  and 𝛼𝑛 <

1
𝑡 <

𝛼+𝜇
𝑛  such that 

‖𝑇 (ℎ)‖𝑡 ≤ 𝐶̃(𝑡, 𝑠, 𝑛, 𝛼, 𝛽, 𝜇)‖ℎ‖𝑠.

Next, we define the energy functional 𝐽 ∶𝑋 → R associated with problem () by

𝐽 (𝑢) = 1
𝑝
‖𝑢‖𝑝

𝑊 1,𝑝
𝑉

+ 1
𝑛
‖𝑢‖𝑛

𝑊 1,𝑛
𝑉

− 1
2 ∫R𝑛

(

∫R𝑛
𝐹 (𝑦, 𝑢)

|𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦

)

𝐹 (𝑥, 𝑢)
|𝑥|𝛽

d𝑥 for all 𝑢 ∈ 𝑋.

In virtue of (1.2), Lemma  2.1, Theorem  2.2, Lemma  2.3 and Hölder’s inequality, we have 𝐹 (𝑥, 𝑢) ∈ 𝐿𝜁 (R𝑛) for all 𝑢 ∈ 𝑋 and 𝜁 ≥ 1. 
Thus, by employing Theorem  2.4 with 𝑟 = 𝑠 = 2𝑛

2𝑛−2𝛽−𝜇  and 𝛼 = 𝛽, one has 

|𝐼(𝑢)| ≤ 𝐶(𝛽, 𝑛, 𝜇)‖𝐹 (⋅, 𝑢)‖2𝑟 , where 𝐼(𝑢) = ∫R𝑛

(

∫R𝑛
𝐹 (𝑦, 𝑢)

|𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦

)

𝐹 (𝑥, 𝑢)
|𝑥|𝛽

d𝑥. (2.1)

By using the above inequality, it is easy to see that 𝐽 is well defined and of class 𝐶1(𝑋,R) with 

⟨𝐽 ′(𝑢), 𝜓⟩ =
⟨

𝑢, 𝜓
⟩

𝑝,𝑉 +
⟨

𝑢, 𝜓
⟩

𝑛,𝑉 − ∫R𝑛

(

∫R𝑛
𝐹 (𝑦, 𝑢)

|𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦

)

𝑓 (𝑥, 𝑢)𝜓
|𝑥|𝛽

d𝑥 for all 𝑢, 𝜓 ∈ 𝑋, (2.2)

where ⟨⋅, ⋅⟩ is the duality pair between the dual 𝑋∗ and 𝑋. It is standard to see that the critical points of 𝐽 are exactly the weak 
solutions to problem ().

3. Existence of ground state solutions: Proof of Theorem  1.1

This section is devoted to the proof of Theorem  1.1. First, we need to check that 𝐽 satisfies the geometrical hypotheses of the 
mountain pass theorem.

Lemma 3.1. Let hypotheses (𝑣1)–(𝑣2) and (𝑓0)–(𝑓2) be satisfied. Then the following hold:
(a) Any nontrivial critical point of 𝐽 is nonnegative;
(b) There exist 𝛿, 𝜌 > 0 such that 𝐽 (𝑢) ≥ 𝛿 for all 𝑢 ∈ 𝑋 and ‖𝑢‖ = 𝜌;
(c) There exists 𝑒 ∈ 𝑋 with ‖𝑒‖ > 𝜌 such that 𝐽 (𝑒) < 0.

Proof. Let 𝑢 ∈ 𝑋 ⧵ {0} be a critical point of 𝐽 . Denote 𝑢 = 𝑢+ − 𝑢−, where 𝑢± = max{±𝑢, 0}. Now, testing (2.2) by 𝑢− ∈ 𝑋, we obtain 
from ⟨𝐽 ′(𝑢), 𝑢−⟩ = 0 and (𝑓1) that

‖∇𝑢−‖𝑝 1,𝑝 + ‖∇𝑢−‖𝑛 1,𝑛 = 0, that is, ‖∇𝑢−‖ 1,𝑝 = ‖∇𝑢−‖𝑊 1,𝑛 = 0.

𝑊𝑉 𝑊𝑉

𝑊𝑉 𝑉

3 
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It follows that ‖𝑢−‖ = 0. Thus, we have 𝑢− = 0 a.e. in R𝑛 and 𝑢 = 𝑢+ ≥ 0 a.e. in R𝑛. This completes the proof of (𝑎).
Let 𝜗 > 0 be such that 2𝛼𝑟𝜗𝑛′ < 𝛼𝑛 for all 𝑢 ∈ 𝑋 satisfying ‖𝑢‖ ∈ (0, 𝜗]. By direct calculations, one has 

𝑢
‖𝑢‖

∈ 𝑊 1,𝑛(R𝑛),
‖

‖

‖

‖

‖

∇
(

𝑢
‖𝑢‖

)

‖

‖

‖

‖

‖

𝑛

𝑛
≤ 1 and

‖

‖

‖

‖

‖

𝑢
‖𝑢‖

‖

‖

‖

‖

‖𝑛
≤ 1

𝑛
√

𝑉0
< +∞. (3.1)

It follows from (1.2), (2.1), (3.1), Lemma  2.1, Theorem  2.2, Lemma  2.3 and Hölder’s inequality that

|𝐼(𝑢)| ≤ 𝐶
(

𝜀2‖𝑢‖2𝑛𝑛𝑟 +𝐷
2
𝜀‖𝑢‖

2𝑞
2𝑞𝑟

(

∫R𝑛
𝛷(2𝛼𝑟|𝑢|𝑛

′
) d𝑥

)
1
𝑟
)

≤ 𝐶
(

𝜀2‖𝑢‖2𝑛 +𝐷2
𝜀‖𝑢‖

2𝑞
(

∫R𝑛
𝛷(2𝛼𝑟‖𝑢‖𝑛

′
|(𝑢∕‖𝑢‖)|𝑛

′
) d𝑥

)
1
𝑟
)

≤ 𝐶(𝜀2‖𝑢‖2𝑛 +𝐷2
𝜀‖𝑢‖

2𝑞),

where 𝐶 > 0 is a suitable constant varies from step to step. Define 𝜌 = min{1, 𝜗}. Then, by taking ‖𝑢‖ = 𝜌 for all 𝑢 ∈ 𝑋, we have 
𝐽 (𝑢) ≥ ‖𝑢‖𝑛

( 1
2𝑛−1𝑛 −𝐶

(

𝜀2‖𝑢‖𝑛 +𝐷2
𝜀‖𝑢‖

2𝑞−𝑛)). Choosing 0 < 𝜀 < (

√

2𝑛−1𝑛𝐶
)−1 and using 𝑞 ≥ 𝑛, we are able to find 𝜌 > 0 small enough 

such that 1
2𝑛−1𝑛 − 𝐶

(

𝜀2𝜌𝑛 +𝐷2
𝜀𝜌

2𝑞−𝑛) > 0. Thus, we have 𝐽 (𝑢) ≥ 𝜌𝑛
( 1
2𝑛−1𝑛 − 𝐶

(

𝜀2𝜌𝑛 +𝐷2
𝜀𝜌

2𝑞−𝑛)) ∶= 𝛿 > 0 for ‖𝑢‖ = 𝜌. This shows (𝑏).
Next, fix 𝑢0 ∈ 𝑋⧵{0} with 𝑢0 ≥ 0 and define 𝛱 ∶ (0,+∞) → R by 𝛱(𝑡) = 1

2 𝐼
( 𝑡𝑢0
‖𝑢0‖

) for all 𝑡 > 0. By using (𝑓2), one has 𝛱 ′(𝑡) ≥ 𝜃
𝑡𝛱(𝑡)

for all 𝑡 > 0. Integrating it on [1, 𝑠0‖𝑢0‖] with 𝑠 > 1
‖𝑢0‖

, we deduce that 𝐼(𝑠𝑢0) ≥ 𝑠𝜃‖𝑢0‖𝜃𝐼
( 𝑢0
‖𝑢0‖

) and

𝐽 (𝑠𝑢0) ≤
𝑠𝑝

𝑝
‖𝑢0‖

𝑝

𝑊 1,𝑝
𝑉

+ 𝑠𝑛

𝑛
‖𝑢0‖

𝑛
𝑊 1,𝑛
𝑉

− 1
2
𝑠𝜃‖𝑢0‖

𝜃𝐼
( 𝑢0
‖𝑢0‖

)

→ −∞ as 𝑠 → ∞,

where we have used that 𝑝 < 𝑛 < 𝜃. Taking 𝑠 > 1
‖𝑢0‖

 large enough and 𝑒 = 𝑠𝑢0, we get 𝐽 (𝑒) < 0 and ‖𝑒‖ > 𝜌. This completes the proof 
of (𝑐) and consequently of Lemma  3.1. □

By employing Lemma  3.1 and the mountain pass theorem [20] without the Palais–Smale condition, one can see that there exists 
a (PS)𝑐 -sequence {𝑢𝑘}𝑘∈N ⊂ 𝑋, that is, 𝐽 (𝑢𝑘) → 𝑐 in R and 𝐽 ′(𝑢𝑘) → 0 in 𝑋∗ as 𝑘→ ∞, where 𝑐 is the mountain pass level given by

𝑐 ∶= inf
𝛾∈𝛤

max
𝑡∈[0,1]

𝐽 (𝛾(𝑡)) ≥ 𝛿 > 0 with 𝛤 ∶= {𝛾 ∈ 𝐶([0, 1], 𝑋)∶ 𝛾(0) = 0, 𝐽 (𝛾(1)) < 0}.

Next, we compute the following key estimate for the mountain pass minimax level 𝑐. 

Lemma 3.2. There exists 𝜂0 > 0 large enough such that if (𝑓3) is satisfied for all 𝜂 ≥ 𝜂0, then there holds 

0 < 𝑐 < 𝑐0 ∶= min

{

1
2𝑛

(

𝜃 − 𝑛
𝑛𝜃

)
𝑛
𝑝
(

𝛼𝑛
𝛼0

)
𝑛
𝑛′
, 1
2𝑝

(

𝜃 − 𝑛
𝑛𝜃

)(

𝛼𝑛
𝛼0

)
𝑝
𝑛′
}

. (3.2)

Proof. Let 𝜓 ∈ 𝐶∞
0 (R𝑛, [0, 1]) be a cut-off function such that 𝜓(𝑥) ≡ 1 if |𝑥| ≤ 1, 𝜓(𝑥) ≡ 0 if |𝑥| ≥ 2 and |∇𝜓(𝑥)| ≤ 1 for all 𝑥 ∈ R𝑛. By 

direct computations, we obtain

(i) 1
𝑚 ∫𝐵2(0)

(|∇(𝑠𝜓)|𝑚 + 𝑉 (𝑥)|𝑠𝜓|𝑚) d𝑥 ≤
2𝑛𝜔𝑛−1(1 + ‖𝑉 ‖∞)

𝑛𝑚
𝑠𝑚 for 𝑚 ∈ {𝑝, 𝑛},

(ii) ∫𝐵1(0)
∫𝐵1(0)

d𝑥d𝑦
|𝑥|𝛽 |𝑥 − 𝑦|𝜇|𝑦|𝛽

≥
𝜔2
𝑛−1𝛽(𝑛, 𝑛 − 𝜇 + 1)

𝑛 − 𝜇
, where 𝛽(𝑧1, 𝑧2) = ∫

1

0
𝑡𝑧1−1(1 − 𝑡)𝑧2−1 d𝑡

for all 𝑧1, 𝑧2 ∈ C with Re(𝑧1) > 0 and Re(𝑧2) > 0 is called the Euler integral of the first kind. Thus, for all 𝑠 ∈ [0, 1], we obtain from 
(𝑓3) that

𝐽 (𝑠𝜓) ≤ 𝐶1𝑠
𝑝 − 𝐶2𝜂

2𝑠2𝜉 with 𝐶1 =
2𝑛+1𝜔𝑛−1(1 + ‖𝑉 ‖∞)

𝑛𝑝
and 𝐶2 =

𝜔2
𝑛−1𝛽(𝑛, 𝑛 − 𝜇 + 1)

2(𝑛 − 𝜇)
.

Define the map 𝑔∶ [0, 1] → 𝑋 by 𝑔(𝑠) = 𝑠𝜓 for all 𝑠 ∈ [0, 1] and choose 𝜂1 > 0 such that 𝐽 (𝜓) ≤ 𝐶1 −𝐶2𝜂21 < 0 for all 𝜂 > 𝜂1. It follows 
that 𝑔 ∈ 𝛤 . Hence, one has

𝑐 ≤ max
𝑠∈[0,1]

𝐽 (𝑔(𝑠)) ≤ max
𝑠≥0

𝐽 (𝑠𝜓) ≤ max
𝑠≥0

[

𝐶1𝑠
𝑝 − 𝐶2𝜂

2𝑠2𝜉
]

=
(2𝜉 − 𝑝)𝐶1

2𝜉

(

𝑝𝐶1

2𝜉𝜂2𝐶2

)
𝑝

2𝜉−𝑝
→ 0 as 𝜂 → ∞.

Therefore, we can find 𝜂0 > 𝜂1 large enough such that 𝑐 < 𝑐0 for all 𝜂 ≥ 𝜂0, where 𝑐0 is defined in (3.2). □

Lemma 3.3. Every (PS)𝑐 -sequence {𝑢𝑘}𝑘∈N ⊂ 𝑋 for 𝐽 is bounded in 𝑋, where 𝑐 ∈ (0, 𝑐0) and 𝑐0 is given in Lemma  3.2. Moreover, there 
holds 

lim sup
𝑘→∞

‖𝑢𝑘‖
𝑛′ <

𝛼𝑛
𝛼0
. (3.3)

Proof. Let 𝑐 ∈ (0, 𝑐0) and {𝑢𝑘}𝑘∈N ⊂ 𝑋 be a (PS)𝑐 -sequence for 𝐽 . Applying (𝑓2) leads to 

𝑐 + 𝑜𝑘(1) + 𝑜𝑘(1)‖𝑢𝑘‖ ≥
(

1 − 1
)

(

‖𝑢𝑘‖
𝑝

1,𝑝 + ‖𝑢𝑘‖
𝑛

1,𝑛

)

as 𝑘 → ∞. (3.4)

𝑛 𝜃 𝑊𝑉 𝑊𝑉
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Suppose now that {𝑢𝑘}𝑘∈N is unbounded in 𝑋. We consider three cases. Case 1: Assume that ‖𝑢𝑘‖𝑊 1,𝑝
𝑉

→ ∞ and ‖𝑢𝑘‖𝑊 1,𝑛
𝑉

→ ∞ as 
𝑘→ ∞. By using 1 < 𝑝 < 𝑛, one has ‖𝑢𝑘‖𝑛𝑊 1,𝑛

𝑉

≥ ‖𝑢𝑘‖
𝑝
𝑊 1,𝑛
𝑉

> 1 for large 𝑘. It follows from (3.4) that

𝑐 + 𝑜𝑘(1) + 𝑜𝑘(1)‖𝑢𝑘‖ ≥ 21−𝑝
(

1
𝑛
− 1
𝜃

)

‖𝑢𝑘‖
𝑝 as 𝑘→ ∞.

Dividing ‖𝑢𝑘‖𝑝 on both sides and letting 𝑘 → ∞, we have 0 ≥ 21−𝑝
( 1
𝑛 − 1

𝜃

)

> 0, which is a contradiction. Case 2: Suppose that 
‖𝑢𝑘‖𝑊 1,𝑝

𝑉
→ ∞ as 𝑘 → ∞ and ‖𝑢𝑘‖𝑊 1,𝑛

𝑉
 is bounded. Thus, we deduce from (3.4) that

𝑐 + 𝑜𝑘(1) + 𝑜𝑘(1)‖𝑢𝑘‖ ≥
(

1
𝑛
− 1
𝜃

)

‖𝑢𝑘‖
𝑝

𝑊 1,𝑝
𝑉

as 𝑘 → ∞.

Dividing ‖𝑢𝑘‖𝑝𝑊 1,𝑝
𝑉

 on both sides and sending 𝑘 → ∞, we have 0 ≥
( 1
𝑛 − 1

𝜃

)

> 0, which is again a contradiction. Case 3: Suppose 
that ‖𝑢𝑘‖𝑊 1,𝑛

𝑉
→ ∞ as 𝑘 → ∞ and ‖𝑢𝑘‖𝑊 1,𝑝

𝑉
 is bounded, then by arguing as in Case 2, we can easily arrive at a contradiction. Thus, 

{𝑢𝑘}𝑘∈N is a bounded sequence in 𝑋. Further, by using (3.4), we get 

lim sup
𝑘→∞

‖𝑢𝑘‖
𝑛
𝑊 1,𝑛
𝑉

≤
(

𝑛𝜃
𝜃 − 𝑛

)

𝑐 and lim sup
𝑘→∞

‖𝑢𝑘‖
𝑛
𝑊 1,𝑝
𝑉

≤
[(

𝑛𝜃
𝜃 − 𝑛

)

𝑐
]
𝑛
𝑝
. (3.5)

It follows from (3.5) and the inequality (𝑎 + 𝑏)𝜎 ≤ 2𝜎−1(𝑎𝜎 + 𝑏𝜎 ) for all 𝑎, 𝑏 ≥ 0 and 𝜎 ∈ [1,+∞) that

lim sup
𝑘→∞

‖𝑢𝑘‖
𝑛′ ≤ 2

1
𝑛−1

([

(

𝑛𝜃
𝜃 − 𝑛

)

𝑐

]
1
𝑛−1

+

[

(

𝑛𝜃
𝜃 − 𝑛

)

𝑐

]
𝑛

(𝑛−1)𝑝
)

.

By using the fact that 𝑛𝜃
𝜃−𝑛 > 1 and 1

𝑛−1 <
𝑛

(𝑛−1)𝑝 , we obtain from the previous inequality that 

lim sup
𝑘→∞

‖𝑢𝑘‖
𝑛′ ≤

[

2
(

𝑛𝜃
𝜃 − 𝑛

)
𝑛
𝑝
]

1
𝑛−1 (

𝑐
1
𝑛−1 + 𝑐

𝑛
(𝑛−1)𝑝

)

≤

⎧

⎪

⎪

⎨

⎪

⎪

⎩

[

2𝑛
(

𝑛𝜃
𝜃−𝑛

)
𝑛
𝑝 𝑐
]

1
𝑛−1

if 𝑐 ≤ 1,
[

2𝑛
(

𝑛𝜃𝑐
𝜃−𝑛

)
𝑛
𝑝
]

1
𝑛−1

if 𝑐 ≥ 1.

(3.6)

Due to (3.2) and (3.6), one can easily obtain (3.3). This finishes the proof of the lemma. □

Lemma 3.4. Let hypotheses (𝑣1)–(𝑣2) and (𝑓0)–(𝑓3) be satisfied. Then 𝐽 satisfies the (PS)𝑐 compactness condition for all 𝑐 ∈ (0, 𝑐0), where 
𝑐0 is defined in Lemma  3.2.

Proof. Let {𝑢𝑘}𝑘∈N ⊂ 𝑋 be a (PS)𝑐 -sequence for 𝐽 . Then, by employing Lemma  3.3, one sees that {𝑢𝑘}𝑘∈N is bounded in 𝑋 and (3.3) 
is satisfied. Hence, up to a subsequence not relabeled, there exists 𝑢 ∈ 𝑋 such that 𝑢𝑘 ⇀ 𝑢 in 𝑋. Thus, from Lemma  2.1, we obtain 
𝑢𝑘 → 𝑢 in 𝐿𝜏 (R𝑛) for all 𝜏 ∈ [𝑝, 𝑝∗) ∪ [𝑛,+∞) and 𝑢𝑘 → 𝑢 a.e. in R𝑛. In addition, as a consequence of (1.2), (3.3), Lemma  2.1, Theorem 
2.2, Lemma  2.3 and Hölder’s inequality, one can deduce that {𝐹 (⋅, 𝑢𝑘)}𝑘∈N is bounded in 𝐿𝑟(R𝑛). Using the continuity of the map 
𝑠 ↦ 𝐹 (⋅, 𝑠), we obtain 𝐹 (𝑥, 𝑢𝑘) → 𝐹 (𝑥, 𝑢) a.e. in R𝑛 as 𝑘 → ∞. It immediately follows that 𝐹 (𝑥, 𝑢𝑘) ⇀ 𝐹 (𝑥, 𝑢) in 𝐿𝑟(R𝑛) as 𝑘 → ∞. Set 
𝑡 = 2𝑛

2𝛽+𝜇 , then by Theorem  2.4, the map

𝐿𝑟(R𝑛) ∋ ℎ(𝑥) ↦ ∫R𝑛
ℎ(𝑦)

|𝑥|𝛽 |𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦 ∈ 𝐿𝑡(R𝑛)

is a linear and bounded operator. As a result, we obtain

∫R𝑛
𝐹 (𝑦, 𝑢𝑘)

|𝑥|𝛽 |𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦⇀ ∫R𝑛

𝐹 (𝑦, 𝑢)
|𝑥|𝛽 |𝑥 − 𝑦|𝜇|𝑦|𝛽

d𝑦 in 𝐿𝑡(R𝑛) as 𝑘 → ∞.

Therefore, the sequence 
{

∫R𝑛
𝐹 (𝑦,𝑢𝑘)

|𝑥|𝛽 |𝑥−𝑦|𝜇 |𝑦|𝛽
d𝑦
}

𝑘∈N
 is bounded in 𝐿𝑡(R𝑛). Note that (3.1) holds replacing 𝑢 by 𝑢𝑘. Since (3.3) holds 

and passing to a subsequence if necessary (not relabeled), we can assume that sup𝑘∈N ‖𝑢𝑘‖𝑛
′ < 𝛼𝑛

𝛼0
. Let us fix 𝑚̄ ∈ (‖𝑢𝑘‖𝑛

′ , 𝛼𝑛𝛼0
) and 

𝛼 > 𝛼0 close to 𝛼0 in such a way that 2𝛼𝑞𝑟𝑚̄ < 𝛼𝑛. Now, by using (1.1), Lemma  2.1, Theorem  2.2, Lemma  2.3, Hölder’s inequality 
and the boundedness of {𝑢𝑘}𝑘∈N in 𝑋, we have

|⟨𝐼 ′(𝑢𝑘), 𝑢𝑘 − 𝑢⟩| ≤ 𝐶
[(

∫R𝑛
|𝑢𝑘|

(𝑛−1)𝑟
|𝑢𝑘 − 𝑢|

𝑟 d𝑥
)

1
𝑟
+
(

∫R𝑛
|𝑢𝑘|

(𝑞−1)𝑟
|𝑢𝑘 − 𝑢|

𝑟𝛷(𝛼𝑟|𝑢𝑘|
𝑛′ ) d𝑥

)
1
𝑟
]

≤ 𝐶
[

‖𝑢𝑘‖
𝑛−1
𝑛𝑟 ‖𝑢𝑘 − 𝑢‖𝑛𝑟 + ‖𝑢𝑘‖

𝑞−1
𝑞𝑟 ‖𝑢𝑘 − 𝑢‖2𝑞𝑟

(

∫R𝑛
𝛷(2𝛼𝑞𝑟‖𝑢𝑘‖𝑛

′
|(𝑢𝑘∕‖𝑢𝑘‖)|

𝑛′ ) d𝑥
)

1
2𝑞𝑟

]

= 𝑜𝑘(1)

as 𝑘 → ∞, where 𝐶 > 0 is a suitable positive constant. It follows that

lim
𝑘→∞∫

(

∫
𝐹 (𝑦, 𝑢𝑘)

𝜇 𝛽 d𝑦

)

𝑓 (𝑥, 𝑢𝑘)(𝑢𝑘 − 𝑢)
𝛽 d𝑥 = 0, (3.7)
R𝑛 R𝑛 |𝑥 − 𝑦| |𝑦| |𝑥|
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lim
𝑘→∞∫R𝑛

(

∫R𝑛
𝐹 (𝑦, 𝑢)

|𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦

)

𝑓 (𝑥, 𝑢)(𝑢𝑘 − 𝑢)
|𝑥|𝛽

d𝑥 = 0. (3.8)

Recall that ⟨𝐽 ′(𝑢𝑘) − 𝐽 ′(𝑢), 𝑢𝑘 − 𝑢⟩ = 𝑜𝑘(1) as 𝑘 → ∞. Hence, for 𝑚 ∈ {𝑝, 𝑛}, we obtain by using (3.7), (3.8), the convexity of the map 
𝑡↦ 1

𝑚 |𝑡|
𝑚 and (𝑣1) that

lim
𝑘→∞∫R𝑛

(

|∇𝑢𝑘|
𝑚−2∇𝑢𝑘 − |∇𝑢|𝑚−2∇𝑢

)

⋅ (∇𝑢𝑘 − ∇𝑢) d𝑥 = 0, (3.9)

lim
𝑘→∞∫R𝑛

𝑉 (𝑥)
(

|𝑢𝑘|
𝑚−2𝑢𝑘 − |𝑢|𝑚−2𝑢

)

(𝑢𝑘 − 𝑢) d𝑥 = 0. (3.10)

From [21], for all 𝑤, 𝑧 ∈ R𝑑 with 𝑑 ≥ 1, there exist two positive constants 𝐶𝜎 and 𝑐𝜎 depending only on 𝜎 such that 

|𝑤 − 𝑧|𝜎 ≤
⎧

⎪

⎨

⎪

⎩

𝐶𝜎
[(

|𝑤|𝜎−2𝑤 − |𝑧|𝜎−2𝑧
)

(𝑤 − 𝑧)
]
𝜎
2
[

|𝑤|𝜎 + |𝑧|𝜎
]
2−𝜎
2 if 1 < 𝜎 < 2,

𝑐𝜎
(

|𝑤|𝜎−2𝑤 − |𝑧|𝜎−2𝑧
)

(𝑤 − 𝑧) if 𝜎 ≥ 2.
(3.11)

Due to (3.9), (3.10), (3.11) and the boundedness of {𝑢𝑘}𝑘∈N in 𝑋, we obtain for 𝑚 ≥ 2 that

‖∇𝑢𝑘 − ∇𝑢‖𝑚𝑚 ≤ 𝑐𝑚 ∫R𝑛
(

|∇𝑢𝑘|
𝑚−2∇𝑢𝑘 − |∇𝑢|𝑚−2∇𝑢

)

⋅ (∇𝑢𝑘 − ∇𝑢) d𝑥 = 𝑜𝑘(1) as 𝑘 → ∞,

‖𝑢𝑘 − 𝑢‖𝑚𝑚,𝑉 ≤ 𝑐𝑚 ∫R𝑛
𝑉 (𝑥)

(

|𝑢𝑘|
𝑚−2𝑢𝑘 − |𝑢|𝑚−2𝑢

)

(𝑢𝑘 − 𝑢) d𝑥 = 𝑜𝑘(1) as 𝑘→ ∞.

Because of (3.9), (3.10), (3.11), Hölder’s inequality and the boundedness of {𝑢𝑘}𝑘∈N in 𝑋, we get for 1 < 𝑚 < 2 that

‖∇𝑢𝑘 − ∇𝑢‖𝑚𝑚 ≤ 𝐶𝑚 ∫R𝑛
[(

|∇𝑢𝑘|
𝑚−2∇𝑢𝑘 − |∇𝑢|𝑚−2∇𝑢

)

.(∇𝑢𝑘 − ∇𝑢)
]
𝑚
2
[

|∇𝑢𝑘|
𝑚 + |∇𝑢|𝑚

]
2−𝑚
2 d𝑥

≤ 𝐶𝑚 ∫R𝑛
[(

|∇𝑢𝑘|
𝑚−2∇𝑢𝑘 − |∇𝑢|𝑚−2∇𝑢

)

.(∇𝑢𝑘 − ∇𝑢)
]
𝑚
2
[

|∇𝑢𝑘|
(2−𝑚)𝑚

2 + |∇𝑢|
(2−𝑚)𝑚

2
]

d𝑥

≤ 𝐶𝑚

(

∫R𝑛
(

|∇𝑢𝑘|
𝑚−2∇𝑢𝑘 − |∇𝑢|𝑚−2∇𝑢

)

.(∇𝑢𝑘 − ∇𝑢) d𝑥
)

𝑚
2 [

‖∇𝑢𝑘‖
(2−𝑚)𝑚

2
𝑚 + ‖∇𝑢‖

(2−𝑚)𝑚
2

𝑚

]

= 𝑜𝑘(1)

as 𝑘 → ∞ and
‖𝑢𝑘 − 𝑢‖𝑚𝑚,𝑉 ≤ 𝐶𝑚 ∫R𝑛

𝑉 (𝑥)
[(

|𝑢𝑘|
𝑚−2𝑢𝑘 − |𝑢|𝑚−2𝑢

)

(𝑢𝑘 − 𝑢)
]
𝑚
2
[

|𝑢𝑘|
𝑚 + |𝑢|𝑚

]
2−𝑚
2 d𝑥

≤ 𝐶𝑚 ∫R𝑛
𝑉 (𝑥)

[(

|𝑢𝑘|
𝑚−2𝑢𝑘 − |𝑢|𝑚−2𝑢

)

(𝑢𝑘 − 𝑢)
]
𝑚
2
[

|𝑢𝑘|
(2−𝑚)𝑚

2 + |𝑢|
(2−𝑚)𝑚

2
]

d𝑥

≤ 𝐶𝑚

(

∫R𝑛
𝑉 (𝑥)

(

|𝑢𝑘|
𝑚−2𝑢𝑘 − |𝑢|𝑚−2𝑢

)

(𝑢𝑘 − 𝑢) d𝑥
)

𝑚
2 [

‖𝑢𝑘‖
(2−𝑚)𝑚

2
𝑚,𝑉 + ‖𝑢‖

(2−𝑚)𝑚
2

𝑚,𝑉

]

= 𝑜𝑘(1) as 𝑘 → ∞.

Hence, we deduce from the above convergences that ∇𝑢𝑘 → ∇𝑢 in 𝐿𝑚(R𝑛) as 𝑘 → ∞ and 𝑢𝑘 → 𝑢 in 𝐿𝑚𝑉 (R𝑛) as 𝑘 → ∞ for 𝑚 ∈ {𝑝, 𝑛}. 
It follows that 𝑢𝑘 → 𝑢 in 𝑋 as 𝑘 → ∞. This finishes the proof. □

 Proof of Theorem  1.1. By using Lemma  3.4 and 𝐽 ∈ 𝐶1(𝑋,R), one has 𝐽 (𝑢) = 𝑐 > 0 and 𝐽 ′(𝑢) = 0. Thus, we obtain from 
Lemma  3.1 that 𝑢 is a positive solution of (). Next, we claim that 𝑢 is a ground state solution of (). It suffices to show 
𝑐 ≤ 𝛩 ∶= inf{𝐽 (𝑢)∶ 𝑢 ∈  }, where  ∶= {𝑢 ∈ 𝑋 ⧵ {0}∶ 𝐽 ′(𝑢) = 0}. Define the map 𝜋 ∶ (0,+∞) → R by 𝜋(𝑠) = 𝐽 (𝑠𝑢) for all 
𝑢 ∈   and 𝑠 > 0. Note that 𝜋′(𝑠) = 1

𝑠 ⟨𝐽
′(𝑠𝑢), 𝑠𝑢⟩ − 𝑠𝑛−1⟨𝐽 ′(𝑢), 𝑢⟩. Moreover, by direct calculations, we have

𝜋′(𝑠) = (𝑠𝑝−1 − 𝑠𝑛−1)‖𝑢‖𝑝
𝑊 1,𝑝
𝑉

+ 𝑠𝑛−1
[

∫R𝑛

{

∫R𝑛

(

𝐹 (𝑦, 𝑢)

𝑢
𝑛
2

−
𝐹 (𝑦, 𝑠𝑢)

(𝑠𝑢)
𝑛
2

)

𝑢
𝑛
2

|𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦

}

𝑓 (𝑥, 𝑢)

𝑢
𝑛
2−1

𝑢
𝑛
2

|𝑥|𝛽
d𝑥

+ ∫R𝑛

(

∫R𝑛
𝐹 (𝑦, 𝑠𝑢)

(𝑠𝑢)
𝑛
2

𝑢
𝑛
2

|𝑥 − 𝑦|𝜇|𝑦|𝛽
d𝑦

){

𝑓 (𝑥, 𝑢)

𝑢
𝑛
2−1

−
𝑓 (𝑥, 𝑠𝑢)

(𝑠𝑢)
𝑛
2−1

}

𝑢
𝑛
2

|𝑥|𝛽
d𝑥

]

.

Due to (𝑓4), one sees that 𝜋′(𝑠) > 0 for all 𝑠 ∈ (0, 1) and 𝜋′(𝑠) < 0 for all 𝑠 ∈ (1,+∞). It follows that 1 is the maximum point of 
𝜋 and thus 𝐽 (𝑢) = max𝑠≥0 𝐽 (𝑠𝑢). Further, let 𝑔∶ [0, 1] → 𝑋 be such that 𝑔(𝑠) = 𝑠𝑠0𝑢, where 𝑠0 fulfills 𝐽 (𝑠0𝑢) < 0. Hence, 𝑔 ∈ 𝛤  and 
𝑐 ≤ max𝑠∈[0,1] 𝐽 (𝑔(𝑠)) ≤ max𝑠≥0 𝐽 (𝑠𝑢) = 𝐽 (𝑢). Since 𝑢 ∈   is arbitrary, we have 𝑐 ≤ 𝛩. □
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