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A B S T R A C T

This paper investigates nonlinear differential problems involving the 𝑝-Laplace operator and
subject to Neumann boundary value conditions whereby the right-hand side consists of a
nonlinearity which is highly discontinuous. Using variational methods suitable for nonsmooth
functionals, we prove the existence of at least two nontrivial weak solutions of such problems.

1. Introduction

In this paper we study a class of elliptic problems driven by the 𝑝-Laplacian and with Neumann boundary conditions. Such
boundary conditions, which specify the derivative of the solution at the boundary of the domain, are important in scenarios
where the flow across the boundary is either controlled or prescribed. The main difficulty in our research is the presence
of a highly discontinuous nonlinear term on the right-hand side of the partial differential equation under consideration. Such
discontinuities often occur in models that exhibit significant changes, as observed in phase transitions, population dynamics, and
certain fluid mechanics problems. The introduction of such a discontinuous nonlinear term leads to an additional complexity of
the theoretical analysis. For a comprehensive overview of nonsmooth analysis, we refer the readers to the book by Motreanu and
Panagiotopoulos [1, Chapter 3] and the references therein. The theory for locally Lipschitz functionals discussed in the previous book
is developed from the framework established in the seminal work of Chang [2], which is based on the results in Nonsmooth Analysis
by Clarke [3]. This theory extends the study of variational inequalities explored by Szulkin [4]. In this context, it is also worth
mentioning the works of Marano and Motreanu [5,6], where the authors have established multiple critical points theorems, which
extend the results previously obtained by Ricceri [7,8] for differentiable functionals to nonsmooth functionals. In this direction, we
also mention the papers by Bonanno [9] and Bonanno and Candito [10].

In 2019, Bonanno, D’Aguì and Winkert [11] developed an abstract two critical points theorem for general nonsmooth functions
based on which they established the existence of at least two positive weak solutions for the following elliptic Dirichlet differential
problem

−𝛥𝑝𝑢 = 𝜆𝑓 (𝑥, 𝑢) in 𝛺 , 𝑢 = 0 on 𝜕 𝛺 ,
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where 𝛺 ⊆ R𝑁 , 𝑁 ≥ 3, is a bounded domain, 1 < 𝑝 < 𝑁 , 𝜆 is a real positive parameter and 𝑓 is a highly discontinuous function.
Using their abstract theorem, our aim is to establish the existence of two distinct nontrivial weak solutions for the following highly
iscontinuous elliptic PDE involving the 𝑝-Laplacian operator under Neumann boundary conditions:

− 𝛥𝑝𝑢 + 𝛿(𝑥)|𝑢|𝑝−2𝑢 = 𝜆𝑓 (𝑥, 𝑢) in 𝛺 , |∇𝑢|𝑝−2∇𝑢 ⋅ 𝜈 = 0 on 𝜕 𝛺 , (1.1)

where 𝛺 ⊆ R𝑁 , 𝑁 ≥ 3, is a bounded domain with a 𝐶1-boundary 𝜕 𝛺 and 𝜈(𝑥) is the outer unit normal of 𝛺 at 𝑥 ∈ 𝜕 𝛺. We deal
ith the case 𝑝 < 𝑁 and assume that 𝛿 ∈ 𝐿∞(𝛺) such that

ess inf
𝑥∈𝛺

𝛿(𝑥) > 0. (1.2)

Moreover, the nonlinear function 𝑓 ∶𝛺 × R → R is measurable with respect to the first variable and is locally essentially bounded
in the second variable. The function 𝑡 → 𝑓 (𝑥, 𝑡) may exhibit discontinuities for a.a. 𝑥 ∈ 𝛺. In addition, since 𝑡 → 𝑓 (𝑥, 𝑡) is locally
essentially bounded for a.a. 𝑥 ∈ 𝛺, the function 𝐹 (𝑥, 𝜉) = ∫ 𝜉

0 𝑓 (𝑥, 𝑡) d𝑡 is locally Lipschitz in the second variable. Thus, both its
eneralized directional derivative 𝐹 ◦(𝑥, ⋅) and its generalized gradient 𝜕 𝐹 (𝑥, ⋅) in the sense of Clarke are well-defined. More details
bout nonsmooth analysis can be found in Section 2.

Traditional differential equation methods often fail to deal with problems involving such discontinuities or complex nonlinear-
ties. Here, differential inclusions provide a broader framework for defining solutions in nonlinear and discontinuous problems.
his means that our problem can be written as an differential inclusion, which expresses the problem as an inclusion between the

differential operator and a nonlinear term, often using the subdifferential of a functional. Therefore, our problem can be reformulated
as:

−𝛥𝑝𝑢 ∈ 𝜆𝜕 𝐹 (𝑥, 𝑢) − 𝛿(𝑥)|𝑢|𝑝−2𝑢 in 𝑊 1,𝑝(𝛺)∗.

The structure of the paper is as follows: Section 2 is devoted to present the relevant mathematical background of the theory
of generalized differentiation for locally Lipschitz functions. Moreover, we discuss the variational framework and the associated
unctional setting. In Section 3 we present the main result, see Theorem 3.1, and a consequence under a particular behavior of the

nonlinearity near zero, see Corollary 3.2.

2. Preliminaries and variational framework

In order to define the variational framework needed for our problem, we recall some basic preliminaries on nonsmooth analysis
eveloped by Clarke [3]. To this end, let 𝑋 be a Banach space with norm ‖ ⋅ ‖𝑋 and denote by 𝑋∗ its topological dual and by

⟨⋅, ⋅⟩ the duality pairing between 𝑋∗ and 𝑋. A function 𝑓 ∶𝑋 → R is said to be locally Lipschitz if for every 𝑥 ∈ 𝑋 there exists a
eighborhood 𝑈𝑥 of 𝑥 and a constant 𝐿𝑥 > 0 such that

|𝑓 (𝑦) − 𝑓 (𝑧)| ≤ 𝐿𝑥‖𝑦 − 𝑧‖𝑋 for all 𝑦, 𝑧 ∈ 𝑈𝑥.

The constant 𝐿𝑥 in the previous inequality is called the Lipschitz constant of 𝑓 near 𝑥. Moreover, if 𝑓 ∶𝑋 → R is a locally Lipschitz
function on a Banach space 𝑋, the generalized directional derivative (in the sense of Clarke) of 𝑓 at the point 𝑥 ∈ 𝑋 in the direction
𝑦 ∈ 𝑋 is defined by

𝑓 ◦(𝑥; 𝑦) ∶= lim sup
𝑧→𝑥, 𝑡→0+

𝑓 (𝑧 + 𝑡𝑦) − 𝑓 (𝑧)
𝑡

.

It is worth noting that the generalized directional derivative extends the classical directional derivative and, in the case of a strictly
differentiable function, the conventional directional derivative and the generalized directional derivative are identical. The (Clarke)
ubdifferential or the generalized gradient in the sense of Clarke of a locally Lipschitz function 𝑓 ∶𝑋 → R at 𝑥 ∈ 𝑋 is the subset of
he dual space 𝑋∗ given by

𝜕 𝑓 (𝑥) = {𝑧 ∈ 𝑋∗ ∶ ⟨𝑧, 𝑦⟩ ≤ 𝑓 ◦(𝑥; 𝑦) ∀ 𝑦 ∈ 𝑋}.

Based on the Hahn–Banach theorem we easily verify that 𝜕 𝑓 (𝑥) is non-empty.
The following proposition outlines some of the properties of the generalized directional derivative and generalized gradient that

ill be useful for further consideration. For the proofs can be found in the book by Clarke [3].

Proposition 2.1. Let 𝑓 , 𝑔∶𝑋 → R be two locally Lipschitz functions. Then, for every 𝑥, 𝑦 ∈ 𝑋 the following conditions hold:
(p1) 𝑓 ◦(𝑥; 𝑐 𝑦) = 𝑐 𝑓 ◦(𝑥; 𝑦) with 𝑐 > 0;
(p2) 𝑓 ◦(𝑥; 𝑦1 + 𝑦2) ≤ 𝑓 ◦(𝑥; 𝑦1) + 𝑓 ◦(𝑥; 𝑦2) for all 𝑦1, 𝑦2 ∈ 𝑋;
(p3) (𝑓 + 𝑔)◦(𝑥; 𝑦) ≤ 𝑓 ◦(𝑥; 𝑦) + 𝑔◦(𝑥; 𝑦) or, equivalently, 𝜕(𝑓 + 𝑔)(𝑥) ⊆ 𝜕 𝑓 (𝑥) + 𝜕 𝑔(𝑥);
(p4) (−𝑓 )◦(𝑥; 𝑦) = 𝑓 ◦(𝑥; −𝑦);
(p5) the function (𝑥, 𝑦) ⟼ 𝑓 ◦(𝑥; 𝑦) is upper semicontinuous;
(p6) if 𝑋 is finite-dimensional, 𝜕 𝑓 is upper semicontinuous in 𝑋;
(p7) 𝑓 ◦(𝑥; 𝑦) = max{⟨𝜉 , 𝑦⟩, 𝜉 ∈ 𝜕 𝑓 (𝑥)}.
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Finally, we say that 𝑥 ∈ 𝑋 is a critical point of 𝑓 when 0 ∈ 𝜕 𝑓 (𝑥), namely 𝑓 ◦(𝑥; 𝑦) ≥ 0 for all 𝑦 ∈ 𝑋. We refer to the books by
otreanu and Panagiotopoulos [1] and Motreanu and Rădulescu [12] for more information on this topic.

Let 𝛷 , 𝛹 ∶𝑋 → 𝑅 be two locally Lipschitz continuous functions. We put 𝐼 = 𝛷−𝛹 . Next, we recall an appropriate version of the
Palais–Smale condition for a class of nonsmooth functionals.

Definition 2.2. We say that 𝐼 ∶𝑋 → R verifies the Palais–Smale condition ((PS)-condition for short) if any sequence {𝑢𝑛}𝑛∈N in 𝑋
such that

• 𝐼(𝑢𝑛) is bounded
• there exists a sequence {𝜀𝑛}𝑛∈N ⊂ R+ with 𝜀𝑛 → 0+ such that 𝐼◦(𝑢𝑛; 𝑣) ≥ −𝜀𝑛‖𝑣‖𝑋 for all 𝑣 ∈ 𝑋

has a strongly convergent subsequence in 𝑋.
The main tool for our investigation is the following abstract critical point theorem, useful to establish the existence of at least

wo weak solutions for problem (1.1), see Bonanno, D’Aguì and Winkert [11, Theorem 2.10].

Theorem 2.3. Let 𝑋 be a real Banach space and let 𝛷 , 𝛹 ∶𝑋 → R be two locally Lipschitz functions such that inf𝑋 𝛷 = 𝛷(0) = 𝛹 (0) = 0.
Suppose that there exist 𝑟 ∈ R and 𝑢̃ ∈ 𝑋, with 0 < 𝛷(𝑢̃) < 𝑟, such that

sup𝑢∈𝛷−1(]−∞,𝑟]) 𝛹 (𝑢)
𝑟

<
𝛹 (𝑢̃)
𝛷(𝑢̃)

(2.1)

and for all 𝜆 ∈ 𝛬𝑟, ̃𝑢, where 𝛬𝑟, ̃𝑢 is given by

𝛬𝑟, ̃𝑢 =
]

𝛷(𝑢̃)
𝛹 (𝑢̃)

, 𝑟
sup𝑢∈𝛷−1((−∞,𝑟)) 𝛹 (𝑢)

[

,

the functional 𝐼𝜆 = 𝛷 − 𝜆𝛹 satisfies (PS)-condition and it is unbounded from below. Then, for each 𝜆 ∈ 𝛬𝑟, ̃𝑢, the functional 𝛷 − 𝜆𝛹 admits
t least two nontrivial critical points 𝑢𝜆,1, 𝑢𝜆,2 such that 𝐼𝜆(𝑢𝜆,1) < 0 < 𝐼𝜆(𝑢𝜆,2).

The variational framework and notation to be used in this paper are now introduced. For any 1 ≤ 𝑝 ≤ +∞ we denote by 𝐿𝑝(𝛺)
he usual Lebesgue space endowed with the usual norm ‖ ⋅ ‖𝑝 and for any 1 ≤ 𝑝 < +∞ we denote by 𝑊 1,𝑝(𝛺) the corresponding
obolev space endowed with the usual norm ‖ ⋅ ‖1,𝑝. We note that, with the previous norms, 𝐿𝑝(𝛺) and 𝑊 1,𝑝(𝛺) are separable,
eflexive and uniformly convex Banach spaces. Due to hypothesis (1.2), we can equip 𝑊 1,𝑝(𝛺) with the equivalent norm

‖𝑢‖ =
(

∫𝛺
|∇𝑢|𝑝 d𝑥 + ∫𝛺

𝛿(𝑥)|𝑢|𝑝 d𝑥
)

1
𝑝
.

In the following proposition we mention the embedding of the space 𝑊 1,𝑝(𝛺) into suitable 𝐿𝑟(𝛺)-spaces, see, for example,
Papageorgiou and Winkert [13, Theorem 4.5.25 (a)].

Proposition 2.4. Let 𝑝 < 𝑁 and 𝑝∗ =
𝑁 𝑝

𝑁 − 𝑝
the critical Sobolev exponent of 𝑝 in 𝛺. Then, the following embedding holds:

𝑊 1,𝑝(𝛺) ↪ 𝐿𝑞(𝛺) for all 𝑞 ∈ [1, 𝑝∗[.
In the sequel, we denote by ℎ𝑞 the best constant for which we have ‖𝑢‖𝑞 ≤ ℎ𝑞‖𝑢‖ for all 1 ≤ 𝑞 < 𝑝∗. Now we define two functionals

𝛷 , 𝛹 ∶𝑊 1,𝑝(𝛺) → R given by

𝛷(𝑢) = ‖𝑢‖𝑝

𝑝
, 𝛹 (𝑢) = ∫𝛺

𝐹 (𝑥, 𝑢) d𝑥 for all 𝑢 ∈ 𝑊 1,𝑝(𝛺).

Standard arguments show that 𝛷 is a 𝐶1 functional on 𝑊 1,𝑝(𝛺) with derivative

⟨𝛷′(𝑢), 𝑣⟩ = ∫𝛺

(

|∇𝑢|𝑝−2∇𝑢 ⋅ ∇𝑣 + 𝛿(𝑥)|𝑢|𝑝−2𝑢𝑣
)

d𝑥.

In order to introduce additional hypotheses useful for the variational framework by specifying the type of discontinuity allowed on
the nonlinear term 𝑓 , we denote by  the family of highly discontinuous functions, that is the family of all functions 𝑓 ∶𝛺×R → R
such that

(h1) the function 𝑥 ↦ 𝑓 (𝑥, 𝑡) is measurable for all 𝑡 ∈ R;
(h2) there exists a set 𝛺0 ⊂ 𝛺 with 𝑚(𝛺0) = 0 such that the set

𝐷𝑓 ∶= ∪𝑥∈𝛺⧵𝛺0
{𝑡 ∈ R∶ 𝑓 (𝑥, ⋅) is discontinuous at t}

has measure zero, where 𝑚(𝐴) means the Lebesgue measure of a set 𝐴 ⊂ R𝑁 ;
(h3) the function 𝑡 ↦ 𝑓 (𝑥, 𝑡) is locally essentially bounded for a.a. 𝑥 ∈ 𝛺;
(h4) the functions

𝑓−(𝑥, 𝑡) ∶= lim
𝜉→0+

ess inf
|𝑡−𝑧|<𝜉

𝑓 (𝑥, 𝑧), 𝑓+(𝑥, 𝑡) ∶= lim
𝜉→0+

ess sup
|𝑡−𝑧|<𝜉

𝑓 (𝑥, 𝑧)

are superpositionally measurable, i.e., 𝑓−(𝑥, 𝑢(𝑥)) and 𝑓+(𝑥, 𝑢(𝑥)) are measurable for all measurable functions 𝑢∶𝛺 → R.
3 
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Now we are able to give the precise assumptions on the nonlinearity 𝑓 :

(H𝑓 ) Let 𝑓 ∶𝛺 × R → R be a function such that:

(f1) 𝑓 belongs to ;
(f2) there exist 𝑠 ∈ [1, 𝑝[ and 𝑞 ∈]𝑝, 𝑝∗[, such that

|𝑓 (𝑥, 𝑡)| ≤ 𝑎𝑠|𝑡|
𝑠−1 + 𝑎𝑞|𝑡|

𝑞−1

for a.a. 𝑥 ∈ 𝛺 and for all 𝑡 ∈ R, where 𝑎𝑠 and 𝑎𝑞 are two positive constants;
(f3) for each 𝜆 > 0, for a.a. 𝑥 ∈ 𝛺 and for all 𝑡 ∈ 𝐷𝑓

𝜆𝑓−(𝑥, 𝑡) ≤ 𝛿(𝑥)|𝑡|𝑝−2𝑡 ≤ 𝜆𝑓+(𝑥, 𝑡) implies 𝜆𝑓 (𝑥, 𝑡) = 𝛿(𝑥)|𝑡|𝑝−2𝑡;

(AR) there exist 𝜂 > 𝑝, 𝑚 > 0 such that

0 < 𝜂 𝐹 (𝑥, 𝑡) ≤ 𝑡𝑓 (𝑥, 𝑡)
for a.a. 𝑥 ∈ 𝛺 and for all |𝑡| ≥ 𝑚.

In accordance with these assumptions, in particular due to the growth condition (f2), it can be shown that the functional 𝛹 is
locally Lipschitz on 𝑊 1,𝑝(𝛺). Consequently, the energy functional associated with the problem (1.1), given by 𝐼𝜆 = 𝛷 − 𝜆𝛹 is also
locally Lipschitz. In this context, a weak solution of problem (1.1) is any 𝑢 ∈ 𝑊 1,𝑝(𝛺) such that

∫𝛺

(

|∇𝑢|𝑝−2∇𝑢 ⋅ ∇𝑣 + 𝛿(𝑥)|𝑢|𝑝−2𝑢𝑣
)

d𝑥 = 𝜆∫𝛺
𝑓 (𝑥, 𝑢)𝑣 d𝑥. (2.2)

is satisfied for all 𝑣 ∈ 𝑊 1,𝑝(𝛺).
The next lemma shows that any function 𝑢 satisfying (2.2) is a critical point of the energy functional 𝐼𝜆.

Lemma 2.5. Let 𝑓 be a function which satisfies hypotheses (f1), (f2) and (f3). Then, for each 𝜆 > 0, the critical points of the functional
𝐼𝜆 are weak solutions of problem (1.1).

Proof. Fix 𝜆 > 0 and let 𝑢0 ∈ 𝑊 1,𝑝(𝛺) be a critical point of the energy functional 𝐼𝜆, namely

(𝛷 − 𝜆𝛹 )◦(𝑢0; 𝑣) ≥ 0 for all 𝑣 ∈ 𝑊 1,𝑝(𝛺).

In particular, by using (p3) of Proposition 2.1, one has

0 ≤ 𝛷◦(𝑢0; 𝑣) + (−𝜆𝛹 )◦(𝑢0; 𝑣) = 𝛷′(𝑢0, 𝑣) + (−𝜆𝛹 )◦(𝑢0; 𝑣).

Replacing the derivative of 𝛷, we obtain

−∫𝛺

(

|∇𝑢|𝑝−2∇𝑢 ⋅ ∇𝑣 + 𝛿(𝑥)|𝑢|𝑝−2𝑢𝑣
)

d𝑥 ≤ (−𝜆𝛹 )◦(𝑢0; 𝑣),

that is,
𝛷′(𝑢0) ∈ 𝜕(𝜆𝛹 )(𝑢0). (2.3)

Since 𝑊 1,𝑝(𝛺) is embedded and dense in 𝐿𝑝(𝛺), taking Theorem 2.2 by Chang [2] into account, one has

𝜕(−𝜆𝛹 )(𝑢0) ⊆ 𝜕(−𝜆𝛹 )|𝐿𝑝(𝛺)(𝑢0).

Therefore, if we define

𝑇 ∗(𝑤) = −
[

∫𝛺
|∇𝑢0|

𝑝−2∇𝑢0 ⋅ ∇𝑤 d𝑥 + ∫𝛺
𝛿(𝑥)|𝑢0|

𝑝−2𝑢0𝑤 d𝑥
]

for all 𝑤 ∈ 𝑊 1,𝑝(𝛺), one has that 𝑇 ∗ is a linear and continuous operator on 𝑊 1,𝑝(𝛺) such that 𝑇 ∗ ∈ 𝜆𝜕(−𝛹 )(𝑢0) and, additionally, it
is a linear and continuous operator on 𝐿𝑝(𝛺). Moreover, since 𝑓 satisfies hypothesis (f2) and −𝜆𝑓 ∈ , we can apply Theorem 2.1
y Chang [2] and obtain

𝜕(𝜆𝛹 )(𝑢0)𝐿𝑝(𝛺) ⊆ 𝜆[𝑓−(𝑥, 𝑢0(𝑥)), 𝑓+(𝑥, 𝑢0(𝑥))]|𝐿𝑞 (𝛺)

where 𝑝 and 𝑞 are conjugated exponents, i.e. 1
𝑝 + 1

𝑞 = 1 and

[𝑓−(𝑥, 𝑢0(𝑥)), 𝑓+(𝑥, 𝑢0(𝑥))]|𝐿𝑞 (𝛺) = {𝑤 ∈ 𝐿𝑞(𝛺) ∶𝑤(𝑥) ∈ [𝑓−(𝑥, 𝑢0(𝑥)), 𝑓+(𝑥, 𝑢0(𝑥))]}.
From (2.3), one has

′ − +
𝛷 (𝑢0) ∈ 𝜆[𝑓 (𝑥, 𝑢0(𝑥)), 𝑓 (𝑥, 𝑢0(𝑥))]|𝐿𝑞 (𝛺),

4 
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then

−𝛥𝑝𝑢 ∈ [−𝛿(⋅)|𝑢0(⋅)|𝑝−2𝑢0(⋅) + 𝜆𝑓−(⋅, 𝑢0(⋅)),−𝛿(⋅)|𝑢0(⋅)|𝑝−2𝑢0(⋅) + 𝜆𝑓+(⋅, 𝑢0(⋅))]|𝐿𝑞 (𝛺).

Thus, there exists a unique

𝑤0 ∈ [−𝛿(⋅)|𝑢0(⋅)|𝑝−2𝑢0(⋅) + 𝜆𝑓−(⋅, 𝑢0(⋅)),−𝛿(⋅)|𝑢0(⋅)|𝑝−2𝑢0(⋅) + 𝜆𝑓+(⋅, 𝑢0(⋅))]|𝐿𝑞 (𝛺),

such that −𝛥𝑝𝑢0 = 𝑤0, that is

∫𝛺
|∇𝑢0|

𝑝−2∇𝑢0 ⋅ ∇𝑣 d𝑥 = ∫𝛺
𝑤0𝑣 d𝑥 (2.4)

for all 𝑣 ∈ 𝐿𝑝(𝛺). Now, we show that

𝑤0(𝑥) = −𝛿(𝑥)|𝑢0(𝑥)|𝑝−2𝑢0(𝑥) + 𝜆𝑓 (𝑥, 𝑢0(𝑥)) a.e. in 𝛺 . (2.5)

Let 𝛺1 ⊆ 𝛺 be a set such that 𝑚(𝛺1) = 0 and for all 𝑥 ∈ 𝛺 ⧵𝛺1, one has

𝑤0(𝑥) ∈ [−𝛿(𝑥)|𝑢0(𝑥)|𝑝−2𝑢0(𝑥) + 𝜆𝑓−(𝑥, 𝑢0(𝑥)),−𝛿(𝑥)|𝑢0(𝑥)|𝑝−2𝑢0(𝑥) + 𝜆𝑓+(𝑥, 𝑢0(𝑥))].
We denote by 𝛺𝑓 ∶= {𝑥 ∈ 𝛺∶ 𝑢0(𝑥) ∈ 𝐷𝑓 }. Clearly 𝛺𝑓 = 𝑢−10 (𝐷𝑓 ). Formula (2.4) ensures that 𝑢0 is a weak solution of the problem

−𝛥𝑝𝑢 = 𝑤0(𝑥) in 𝛺 , |∇𝑢|𝑝−2∇𝑢 ⋅ 𝜈 = 0 on 𝜕 𝛺 ,
Using Lemma 1 by De Giorgi, Buttazzo and Dal Maso [14, Lemma 1], one has −𝛥𝑝𝑢0(𝑥) = 0 for a.a. 𝑥 ∈ 𝛺𝑓 , so that 𝑤0 = 0 for a.a.
𝑥 ∈ 𝛺𝑓 .

Let 𝛺3 ⊆ 𝛺𝑓 be a set of measure zero such that 𝑤0 = 0 for all 𝑥 ∈ 𝛺𝑓 ⧵ 𝛺3. Taking into account assumption (f3), there exists
2 ⊆ 𝛺 with 𝑚(𝛺2) = 0 such that for all 𝑥 ∈ 𝛺 ⧵𝛺2 and for all 𝑡 ∈ 𝐷𝑓 one has

𝜆𝑓 (𝑥, 𝑡) = 𝛿(𝑥)|𝑡|𝑝−2𝑡. (2.6)

We put 𝛺∗ =
⋃3

𝑖=0 𝛺𝑖 and prove (2.5) for each 𝑥 ∈ 𝛺 ⧵𝛺∗. We observe that 𝑚(𝛺∗) = 0. Fix 𝑥 ∈ 𝛺 ⧵𝛺∗. There are two possible cases:
if 𝑢0(𝑥) ∉ 𝐷𝑓 , in particular 𝑥 ∈ 𝛺 ⧵𝛺0 and the definition of 𝐷𝑓 implies the continuity of the function 𝑓 (⋅, 𝑢0(⋅)) at the point 𝑥. Then

𝑤0(𝑥) = −𝛿(𝑥)|𝑢0(𝑥)|𝑝−2𝑢0(𝑥) + 𝜆𝑓 (𝑥, 𝑢0(𝑥)).
If, on the other hand 𝑢0(𝑥) ∈ 𝐷𝑓 , one has that 𝑥 ∈ (𝛺 ⧵𝛺1) ∩ (𝛺 ⧵𝛺3) and

0 = 𝑤0(𝑥) ∈ [−𝛿(𝑥)|𝑢0(𝑥)|𝑝−2𝑢0(𝑥) + 𝜆𝑓−(𝑥, 𝑢0(𝑥)),−𝛿(𝑥)|𝑢0(𝑥)|𝑝−2𝑢0(𝑥) + 𝜆𝑓+(𝑥, 𝑢0(𝑥))],
that is

𝜆𝑓−(𝑥, 𝑢0(𝑥)) ≤ 𝛿(𝑥)|𝑢0(𝑥)|
𝑝−2𝑢0(𝑥) < 𝑥 ≤ 𝜆𝑓+(𝑥, 𝑢0(𝑥)).

Note that 𝑥 ∈ 𝛺 ⧵𝛺2, from (2.6) one has

𝜆𝑓 (𝑥, 𝑢0(𝑥)) = 𝛿(𝑥)|𝑢0(𝑥)|
𝑝−2𝑢0(𝑥).

Therefore

𝑤0(𝑥) = 0 = −𝛿(𝑥)|𝑢0(𝑥)|𝑝−2𝑢0(𝑥) + 𝜆𝑓 (𝑥, 𝑢0(𝑥))
and this completes the proof. □

3. Main results

This section is devoted to apply Theorem 2.3 to our problem. The main result reads as follows.

Theorem 3.1. Let 𝑓 be a function satisfying assumptions (H𝑓 ). Suppose that there exist 𝑟, 𝑑 > 0 such that

(k1) 𝑑 <
(

𝑝𝑟
‖𝛿‖1

)
1
𝑝
,

(k2)
𝑎𝑠
𝑠
ℎ𝑠𝑠(𝑝𝑟)

𝑠
𝑝 +

𝑎𝑞
𝑞
ℎ𝑞𝑞(𝑝𝑟)

𝑞
𝑝 < ∫𝛺 𝐹 (𝑥, 𝑑) d𝑥,

then for each 𝜆 ∈ 𝛬, with

𝛬 ∶=

⎤

⎥

⎥

⎥

⎦

𝑑𝑝‖𝛿‖1

𝑝∫𝛺
𝐹 (𝑥, 𝑑) d𝑥

, 𝑟
𝑎𝑠
𝑠
ℎ𝑠𝑠(𝑝𝑟)

𝑠
𝑝 +

𝑎𝑞
𝑞
ℎ𝑞𝑞(𝑝𝑟)

𝑞
𝑝

⎡

⎢

⎢

⎢

⎣

,

problem (1.1) admits at least two nontrivial weak solutions with opposite energy sign.
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Proof. Our aim is to apply Theorem 2.3. Note that the Ambrosetti–Rabinowitz condition stated in (AR) implies that the functional
𝐼𝜆 is unbounded from below and satisfies the Palais–Smale condition. So, we only have to verify that condition (2.1) is satisfied.
ix 𝜆 ∈ 𝛬 and let 𝑢̃ ∈ 𝑊 1,𝑝(𝛺) be such that 𝑢̃(𝑥) = 𝑑 for all 𝑥 ∈ 𝛺. It easy to verify that 0 < 𝜙(𝑢̃) < 𝑟. Indeed

0 < 𝛷(𝑢̃) = 1
𝑝
‖𝑢̃‖𝑝 = 1

𝑝 ∫𝛺
𝛿(𝑥)𝑑𝑝 d𝑥 = 𝑑𝑝

𝑝
‖𝛿‖1 < 𝑟, (3.1)

from hypothesis (k1). Moreover,

𝛹 (𝑢̃) = ∫𝛺
𝐹 (𝑥, 𝑑) d𝑥. (3.2)

Then, we consider 𝑢 ∈ 𝑋 such that 𝛷(𝑢) < 𝑟. We observe that

𝛷−1(] − ∞, 𝑟]) =
{

𝑢 ∈ 𝑊 1,𝑝(𝛺) ∶ 1
𝑝
‖𝑢‖𝑝 < 𝑟

}

=
{

𝑢 ∈ 𝑊 1,𝑝(𝛺) ∶ ‖𝑢‖ < (𝑝𝑟)
1
𝑝

}

.

Therefore, exploiting the Sobolev embedding provided in Proposition 2.4 and the growth condition (f2), which implies that

𝐹 (𝑥, 𝑡) ≤ 𝑎𝑠
𝑠
|𝑡|𝑠 +

𝑎𝑞
𝑞
|𝑡|𝑞 for a.a. 𝑥 ∈ 𝛺 and for all 𝑡 ∈ R,

we obtain

sup
𝑢∈𝛷−1(]−∞,𝑟])

𝛹 (𝑢) = sup
𝑢∈𝛷−1(]−∞,𝑟])∫𝛺

𝐹 (𝑥, 𝑢(𝑥)) d𝑥 ≤ sup
𝑢∈𝛷−1(]−∞,𝑟])∫𝛺

(

𝑎𝑠
𝑠
|𝑢|𝑠 +

𝑎𝑞
𝑞
|𝑢|𝑞

)

d𝑥

= sup
𝑢∈𝛷−1(]−∞,𝑟])

(

𝑎𝑠
𝑠
‖𝑢‖𝑠𝑠 +

𝑎𝑞
𝑞
‖𝑢‖𝑞𝑞

)

≤ sup
𝑢∈𝛷−1(]−∞,𝑟])

(

𝑎𝑠
𝑠
ℎ𝑠𝑠‖𝑢‖

𝑠 +
𝑎𝑞
𝑞
ℎ𝑞𝑞‖𝑢‖

𝑞
)

≤
𝑎𝑠
𝑠
ℎ𝑠𝑠(𝑝𝑟)

𝑠
𝑝 +

𝑎𝑞
𝑞
ℎ𝑞𝑞(𝑝𝑟)

𝑞
𝑝 .

Hence, combining the previous inequality, (3.1), (3.2) and taking into account the choice of 𝜆 one has
sup𝑢∈𝛷−1(]−∞,𝑟]) 𝛹 (𝑢)

𝑟
< 1

𝜆
<

𝛹 (𝑢̃)
𝛷(𝑢̃)

.

Then, hypothesis (2.1) is verified and Theorem 2.3 ensures the existence of two nontrivial weak solutions 𝑢𝜆,1, 𝑢𝜆,2 such that
𝐼𝜆(𝑢𝜆,1) < 0 < 𝐼𝜆(𝑢𝜆,2). □

A direct consequence of Theorem 3.1 is the following corollary.

Corollary 3.2. Let hypothesis (H𝑓 ) be satisfied and suppose that
lim sup
𝑡→0+

𝐹 (𝑥, 𝑡)
𝑡𝑝

= +∞ uniformly for a.a. 𝑥 ∈ 𝛺 . (3.3)

Then, for each 𝜆 ∈]0, 𝜆∗[, where
𝜆∗ = sup

𝑟>0

𝑟
𝑎𝑠
𝑠
ℎ𝑠𝑠(𝑝𝑟)

𝑠
𝑝 +

𝑎𝑞
𝑞
ℎ𝑞𝑞(𝑝𝑟)

𝑞
𝑝

,

problem (1.1) admits at least two nontrivial weak solutions.

Proof. Fix 𝜆 ∈]0, 𝜆∗[. Then, there exists 𝑟 > 0 such that

𝜆 < 𝑟
𝑎𝑠
𝑠
ℎ𝑠𝑠(𝑝𝑟)

𝑠
𝑝 +

𝑎𝑞
𝑞
ℎ𝑞𝑞(𝑝𝑟)

𝑞
𝑝

. (3.4)

On the other hand, from (3.3), it follows that

lim sup
𝑑→0+

‖𝛿‖1
𝑝

𝑑𝑝

𝐹 (𝑥, 𝑑) = 0,

so there exist 𝑑 > 0 small enough such that
‖𝛿‖1
𝑝

𝑑𝑝

𝐹 (𝑥, 𝑑) < 𝜆,

which together with (3.4) implies (k2). Then, the assertion follows. □
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