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Abstract
In this paperwe study quasilinear elliptic equations driven by the double phase operator
and a right-hand side which has the combined effect of a singular and of a parametric
term. Based on the fiberingmethod by using theNehari manifold we are going to prove
the existence of at least two weak solutions for such problems when the parameter is
sufficiently small.
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1 Introduction

Zhikov [62] was the first who introduced and studied functionals whose integrands
change their ellipticity according to a point in order to provide models for strongly
anisotropic materials. As a prototype he considered the functional

ω �→
∫

�

(|∇ω|p + μ(x)|∇ω|q) dx, (1.1)

where 1 < p < q and with a nonnegative weight functionμ ∈ L∞(�). Therefore, the
integrand of (1.1) has unbalanced growth. The main feature of the functional defined
in (1.1) is the change of ellipticity on the set where the weight function is zero, that
is, on the set {x ∈ � : μ(x) = 0}. In other words, the energy density of (1.1) exhibits
ellipticity in the gradient of order q on the points x where μ(x) is positive and of
order p on the points x where μ(x) vanishes. We also refer to the book of Zhikov–
Kozlov–Oleı̆nik [63]. Functionals of type (1.1) have been intensively studied in the
past decade concerning regularity for isotropic and anisotropic settings. We mention
the papers of Baroni–Colombo–Mingione [4–6], Baroni–Kuusi–Mingione [7], Byun–
Oh [9, 10], Byun–Youn [11], Colombo–Mingione [14–16], De Filippis–Mingione
[18–20], De Filippis–Palatucci [21], Esposito–Leonetti–Mingione [23], Esposito–
Leonetti–Petricca [24],Marcellini [37–39], Ok [44, 45], Ragusa-Tachikawa [54], Riey
[55] and the references therein.

The energy functional (1.1) is related to the so-called double phase operator which
is defined by

div
(|∇u|p−2∇u + μ(x)|∇u|q−2∇u

)
for u ∈ W 1,H

0 (�) (1.2)

with an appropriate Musielak–Orlicz Sobolev space W 1,H
0 (�), see its definition in

Sect. 2. It is easy to see that (1.2) reduces to the p-Laplacian if μ ≡ 0 or to the
weighted (q, p)-Laplacian if inf� μ ≥ μ0 > 0, respectively.

Given a bounded domain � ⊂ R
N , N ≥ 2, with Lipschitz boundary ∂�, we study

the following singular double phase problem

− div
(|∇u|p−2∇u + μ(x)|∇u|q−2∇u

) = a(x)u−γ + λur−1 in �,

u = 0 on ∂�,
(1.3)

where we suppose the subsequent assumptions:

(H): (i) 1 < p < N , p < q < p∗ = Np
N−p and 0 ≤ μ(·) ∈ L∞(�);

(ii) 0 < γ < 1 and q < r < p∗;
(iii) a ∈ L∞(�) and a(x) > 0 for a. a. x ∈ �.
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A function u ∈ W 1,H
0 (�) is said to be a weak solution if a(·)u−γ h ∈ L1(�), u > 0

for a. a. x ∈ � and

∫
�

(|∇u|p−2∇u + μ(x)|∇u|q−2∇u
) · ∇h dx

=
∫

�

a(x)u−γ h dx + λ

∫
�

ur−1h dx
(1.4)

is satisfied for all h ∈ W 1,H
0 (�). Due to (H)(ii) we see that

∫
�
ur−1h dx is finite

since r < p∗. So, the definition of a weak solution in (1.4) is well-defined. The
corresponding energy functional ϕλ : W 1,H

0 (�) → R for problem (1.3) is given by

ϕλ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq,μ − 1

1 − γ

∫
�

a(x)|u|1−γ dx − λ

r
‖u‖rr .

The main result in this paper is the following theorem.

Theorem 1.1 Let hypotheses (H) be satisfied. Then there exists λ̂∗
0 > 0 such that for

all λ ∈ (0, λ̂∗
0] problem (1.3) has at least two weak solutions u∗, v∗ ∈ W 1,H

0 (�) such
that ϕλ(u∗) < 0 < ϕλ(v

∗).

The main characteristic in our treatment is the usage of the so-called Nehari man-
ifold which turned into a very powerful tool in order to find solutions for differential
equations via critical point theory. This method was first introduced by Nehari [42,
43] and the idea behind is the following: For a real reflexive Banach space X and a
functional � ∈ C1(X ,R), we see that a critical point u 
= 0 of � belongs to the set

N =
{
u ∈ X\{0} : 〈� ′(u), u〉 = 0

}
,

where 〈·, ·〉 is the duality paring between X and its dual space X∗. Therefore, N is
a natural constraint for finding nontrivial critical points of �. We mention the book
chapter of Szulkin–Weth [57] in order to have a very good description of the method.

Because of the appearance of the singular term in (1.3), it is clear that the corre-
sponding energy functional for problem (1.3) is notC1 and so we need to make several
modifications in order to use theNeharimanifoldmethod.With ourworkwe extend the
recent papers of Papageorgiou–Repovš–Vetro [49] for the weighted (p, q)-Laplacian
and Papageorgiou-Winkert [51] for the p-Laplacian. In contrast to these works we are
working in Musielak–Orlicz Sobolev spaces and not in usual Sobolev spaces.

To the best of our knowledge, there are only two works dealing with singular
double phase problems. Chen–Ge–Wen–Cao [12] considered problems of type (1.3)
and proved the existence of a weak solution with negative energy. Very recently,
Farkas–Winkert [25] studied singular Finsler double phase problems of the form

− div
(
F p−1(∇u)∇F(∇u) + μ(x)Fq−1(∇u)∇F(∇u)

)
= u p

∗−1 + λ
(
uγ−1 + g(u)

)
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in � and u = 0 on ∂�, where (RN , F) is a Minkowski space. Based on variational
tools, the existence of oneweak solution is shown. Both works show only the existence
of one weak solution (in contrast to our work) and the treatments are completely
different from ours.

Finally, existence results for double phase problems with homogeneous Dirich-
let or nonlinear Neumann boundary conditions without singular term can be found
in the papers of Colasuonno–Squassina [13], El Manouni–Marino–Winkert [22],
Gasiński–Papageorgiou [26], Gasiński–Winkert [28–30], Liu–Dai [34–36], Marino–
Winkert [40], Papageorgiou–Rădulescu–Repovš [47], Papageorgiou–Vetro–Vetro
[50], Perera–Squassina [52], Zeng–Bai–Gasiński–Winkert [60, 61] and the references
therein. For relatedworks dealingwith certain types of double phase problemswe refer
to the works of Alves–Santos–Silva [1], Bahrouni–Rădulescu–Winkert [2], Barletta–
Tornatore [3], Biagi–Esposito–Vecchi [8], Lei [33], Papageorgiou–Rădulescu–Repovš
[46], Rădulescu [53], Sun–Wu–Long [56], Wang–Zhao–Zhao [58] and Zeng–Bai–
Gasiński–Winkert [59].

2 Preliminaries

In this section we recall the main properties on the theory of Musielak–Orlicz
spaces LH(�) and W 1,H

0 (�), respectively. We refer to Colasuonno–Squassina [13],
Harjulehto–Hästö [31] and Musielak [41] for the main results in this direction.

We denote by Lr (�) and Lr (�;RN ) the usual Lebesgue spaces equipped with the
norm ‖·‖r for every 1 ≤ r < ∞. For 1 < r < ∞,W 1,r (�) andW 1,r

0 (�) stand for the
Sobolev spaces endowed with the norms ‖ · ‖1,r and ‖ · ‖1,r ,0 = ‖∇ · ‖r , respectively.

Let H : � × [0,∞) → [0,∞) be the function defined by

H(x, t) = t p + μ(x)tq .

Then, the Musielak–Orlicz space LH(�) is defined by

LH(�) =
{
u

∣∣∣ u : � → R is measurable and ρH(u) < +∞
}

equipped with the Luxemburg norm

‖u‖H = inf
{
τ > 0 : ρH

(u
τ

)
≤ 1

}
,

where the modular function ρH : LH(�) → R is given by

ρH(u) :=
∫

�

H(x, |u|) dx =
∫

�

(|u|p + μ(x)|u|q) dx . (2.1)
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FromColasuonno–Squassina [13, Proposition 2.14] we know that the space LH(�)

is a reflexive Banach space. Moreover, we define the seminormed space

Lq
μ(�) =

{
u

∣∣∣ u : � → R is measurable and
∫

�

μ(x)|u|q dx < +∞
}

,

which is endowed with the seminorm

‖u‖q,μ =
(∫

�

μ(x)|u|q dx
) 1

q

.

In the same way we define Lq
μ(�;RN ).

The Musielak–Orlicz Sobolev space W 1,H(�) is defined by

W 1,H(�) =
{
u ∈ LH(�) : |∇u| ∈ LH(�)

}

equipped with the norm

‖u‖1,H = ‖∇u‖H + ‖u‖H,

where ‖∇u‖H = ‖ |∇u| ‖H. The completion of C∞
0 (�) in W 1,H(�) is denoted by

W 1,H
0 (�) and from (H)(i) we have an equivalent norm on W 1,H

0 (�) given by

‖u‖1,H,0 = ‖∇u‖H,

see Proposition 2.18(ii) of Crespo–Blanco–Gasiński–Harjulehto–Winkert [17]. We
know that W 1,H(�) and W 1,H

0 (�) are reflexive Banach spaces.

We have the following embedding results for the spaces LH(�) and W 1,H
0 (�).

Proposition 2.1 Let (H)(i) be satisfied. Then the following embeddings hold:

(i) LH(�) ↪→ Lr (�) andW 1,H
0 (�) ↪→ W 1,r

0 (�) are continuous for all r ∈ [1, p];
(ii) W 1,H

0 (�) ↪→ Lr (�) is continuous for all r ∈ [1, p∗];
(iii) W 1,H

0 (�) ↪→ Lr (�) is compact for all r ∈ [1, p∗);
(iv) LH(�) ↪→ Lq

μ(�) is continuous;
(v) Lq(�) ↪→ LH(�) is continuous.

The norm ‖ · ‖H and the modular function ρH are related as follows, see Liu–Dai
[34, Proposition 2.1].

Proposition 2.2 Let (H)(i) be satisfied, let y ∈ LH(�) and let ρH be defined by (2.1).
Then the following hold:

(i) If y 
= 0, then ‖y‖H = λ if and only if ρH(
y
λ
) = 1;

(ii) ‖y‖H < 1 (resp.> 1, = 1) if and only if ρH(y) < 1 (resp.> 1, = 1);
(iii) If ‖y‖H < 1, then ‖y‖qH ≤ ρH(y) ≤ ‖y‖p

H;



   75 Page 6 of 25 W. Liu et al.

(iv) If ‖y‖H > 1, then ‖y‖p
H ≤ ρH(y) ≤ ‖y‖qH;

(v) ‖y‖H → 0 if and only if ρH(y) → 0;
(vi) ‖y‖H → +∞ if and only if ρH(y) → +∞.

Let A : W 1,H
0 (�) → W 1,H

0 (�)∗ be the nonlinear map defined by

〈A(u), ϕ〉H :=
∫

�

(|∇u|p−2∇u + μ(x)|∇u|q−2∇u
) · ∇ϕ dx (2.2)

for all u, ϕ ∈ W 1,H
0 (�), where 〈 · , · 〉H is the duality pairing between W 1,H

0 (�) and

its dual spaceW 1,H
0 (�)∗. The operator A : W 1,H

0 (�) → W 1,H
0 (�)∗ has the following

properties, see Liu–Dai [34].

Proposition 2.3 The operator A defined by (2.2) is bounded (that is, it maps bounded
sets into bounded sets), continuous, strictly monotone (hence maximal monotone) and
it is of type (S+).

3 Proof of themain result

In this section we are going to prove our main result stated as Theorem 1.1 in Sect. 1.
To this end, recall that ϕλ : W 1,H

0 (�) → R is the corresponding energy function
for problem (1.3) given by

ϕλ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq,μ − 1

1 − γ

∫
�

a(x)|u|1−γ dx − λ

r
‖u‖rr .

Due to the presence of the singular term a(x)|u|1−γ we know that ϕλ is not C1.
In order to overcome this, we will make use of the fibering method along with the
Nehari manifoldmentioned in the Introduction. Nowwe consider the fibering function
ωu : [0,+∞) → R for u ∈ W 1,H

0 (�), u 
= 0, defined by

ωu(t) = ϕλ(tu) for all t ≥ 0.

The Nehari manifold corresponding to the functional ϕλ is defined by

Nλ =
{
u ∈ W 1,H

0 (�)\{0} : ‖∇u‖p
p + ‖∇u‖qq,μ =

∫
�

a(x)|u|1−γ dx + λ‖u‖rr
}

=
{
u ∈ W 1,H

0 (�)\{0} : ω′
u(1) = 0

}
.

It is easy to see that Nλ is smaller than W 1,H
0 (�) and it contains the weak solutions

of problem (1.3). We will see that the functional ϕλ has nice properties restricted to
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Nλ which fail globally. For our further considerations we need to decompose the set
Nλ in the following way:

N+
λ =

{
u ∈ Nλ : (p + γ − 1)‖∇u‖pp + (q + γ − 1)‖∇u‖qq,μ − λ(r + γ − 1)‖u‖rr > 0

}

= {
u ∈ Nλ : ω′′

u(1) > 0
}
,

N 0
λ =

{
u ∈ Nλ : (p + γ − 1)‖∇u‖pp + (q + γ − 1)‖∇u‖qq,μ = λ(r + γ − 1)‖u‖rr

}

= {
u ∈ Nλ : ω′′

u(1) = 0
}
,

N−
λ =

{
u ∈ Nλ : (p + γ − 1)‖∇u‖pp + (q + γ − 1)‖∇u‖qq,μ − λ(r + γ − 1)‖u‖rr < 0

}

= {
u ∈ Nλ : ω′′

u(1) < 0
}
.

We start with the following proposition about the coercivity of the energy functional
ϕλ restricted to Nλ.

Proposition 3.1 Let hypotheses (H) be satisfied. Then ϕλ

∣∣Nλ
is coercive.

Proof Let u ∈ Nλ with ‖u‖1,H,0 > 1. From the definition of the Nehari manifoldNλ

we have

−λ

r
‖u‖rr = −1

r
‖∇u‖p

p − 1

r
‖∇u‖qq,μ + 1

r

∫
�

a(x)|u|1−γ dx . (3.1)

Combining (3.1) with ϕλ and applying Proposition 2.2(iv) along with Theorem 13.17
of Hewitt-Stromberg [32, p. 196] gives

ϕλ(u) =
[
1

p
− 1

r

]
‖∇u‖p

p +
[
1

q
− 1

r

]
‖∇u‖qq,μ +

[
1

r
− 1

1 − γ

] ∫
�

a(x)|u|1−γ dx

≥
[
1

q
− 1

r

]
ρH(∇u) +

[
1

r
− 1

1 − γ

] ∫
�

a(x)|u|1−γ dx

≥ c1‖u‖p
1,H,0 − c2‖u‖1−γ

1,H,0

for some c1, c2 > 0 because of p < q < r . Hence, due to 1 − γ < 1 < p, the
assertion of the proposition follows. ��

Let m+
λ = infN+

λ
ϕλ.

Proposition 3.2 Let hypotheses (H) be satisfied and suppose that N+
λ 
= ∅. Then

m+
λ < 0.

Proof Let u ∈ N+
λ . First note that N+

λ ⊆ Nλ which implies that

− 1

1 − γ

∫
�

a(x)|u|1−γ dx = − 1

1 − γ

(‖∇u‖p
p + ‖∇u‖qq,μ

) + λ

1 − γ
‖u‖rr . (3.2)
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On the other hand, by definition of N+
λ , we have

λ‖u‖rr <
p + γ − 1

r + γ − 1
‖∇u‖p

p + q + γ − 1

r + γ − 1
‖∇u‖qq,μ. (3.3)

From (3.3) and (3.2) it follows that

ϕλ(u) = 1

p
‖∇u‖p

p + 1

q
‖∇u‖qq,μ − 1

1 − γ

∫
�

a(x)|u|1−γ dx − λ

r
‖u‖rr

=
[
1

p
− 1

1 − γ

]
‖∇u‖p

p +
[
1

q
− 1

1 − γ

]
‖∇u‖qq,μ + λ

[
1

1 − γ
− 1

r

]
‖u‖rr

≤
[−(p + γ − 1)

p(1 − γ )
+ p + γ − 1

r + γ − 1
· r + γ − 1

r(1 − γ )

]
‖∇u‖p

p

+
[−(q + γ − 1)

q(1 − γ )
+ q + γ − 1

r + γ − 1
· r + γ − 1

r(1 − γ )

]
‖∇u‖qq,μ

= p + γ − 1

1 − γ

[
1

r
− 1

p

]
‖∇u‖p

p + q + γ − 1

1 − γ

[
1

r
− 1

q

]
‖∇u‖qq,μ

< 0,

since p < q < r . Hence, ϕλ

∣∣N+
λ

< 0 and so m+
λ < 0. ��

Proposition 3.3 Let hypotheses (H) be satisfied. Then there exists λ∗ > 0 such that
N 0

λ = ∅ for all λ ∈ (0, λ∗).

Proof Arguing indirectly, suppose that for every λ∗ > 0 there exists λ ∈ (0, λ∗) such
that N 0

λ 
= ∅. Hence, for any given λ > 0, we can find u ∈ N 0
λ such that

(p + γ − 1)‖∇u‖p
p + (q + γ − 1)‖∇u‖qq,μ = λ(r + γ − 1)‖u‖rr . (3.4)

Since u ∈ Nλ, one also has

(r + γ − 1)‖∇u‖p
p + (r + γ − 1)‖∇u‖qq,μ

= (r + γ − 1)
∫

�

a(x)|u|1−γ dx + λ(r + γ − 1)‖u‖rr .
(3.5)

Subtracting (3.4) from (3.5) yields

(r − p)‖∇u‖p
p + (r − q)‖∇u‖qq,μ = (r + γ − 1)

∫
�

a(x)|u|1−γ dx . (3.6)

Applying Proposition 2.2(iii), (iv), Theorem 13.17 of Hewitt-Stromberg [32, p. 196]
and Proposition 2.1(ii) we get from (3.6) that

min
{
‖u‖p

1,H,0, ‖u‖q1,H,0

}
≤ c3‖u‖1−γ

1,H,0
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for some c3 > 0 since 1 − γ < 1 < p < q < r . Hence

‖u‖1,H,0 ≤ c4 (3.7)

for some c4 > 0.
On the other hand, from (3.4), Proposition 2.2(iii), (iv) and Proposition 2.1(ii) we

have

min
{
‖u‖p

1,H,0, ‖u‖q1,H,0

}
≤ λc5‖u‖r1,H,0

for some c5 > 0. Consequently,

‖u‖1,H,0 ≥
(

1

λc5

) 1
r−p

or ‖u‖1,H,0 ≥
(

1

λc5

) 1
r−q

.

If λ → 0+, due to p < q < r , then ‖u‖1,H,0 → +∞, which contradicts (3.7). ��

Proposition 3.4 Let hypotheses (H) be satisfied. Then there exists λ̂∗ ∈ (0, λ∗] such
thatN±

λ 
= ∅ for all λ ∈ (0, λ̂∗). In addition, for any λ ∈ (0, λ̂∗), there exists u∗ ∈ N+
λ

such that ϕλ(u∗) = m+
λ < 0 and u∗(x) ≥ 0 for a.a. x ∈ �.

Proof Let u ∈ W 1,H
0 (�)\{0} and consider the function ψ̂u : (0,+∞) → R defined

by

ψ̂u(t) = t p−r‖∇u‖p
p − t−r−γ+1

∫
�

a(x)|u|1−γ dx .

Since r − p < r + γ − 1 we can find t̂0 > 0 such that

ψ̂u
(
t̂0

) = max
t>0

ψ̂u(t).

Thus, ψ̂ ′
u(t̂0) = 0, that is,

(p − r)t̂ p−r−1
0 ‖∇u‖p

p + (r + γ − 1)t̂−r−γ
0

∫
�

a(x)|u|1−γ dx = 0.

Hence

t̂0 =
[

(r + γ − 1)
∫
�
a(x)|u|1−γ dx

(r − p)‖∇u‖p
p

] 1
p+γ−1

.
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Moreover, we have

ψ̂u
(
t̂0

) =
[
(r − p)‖∇u‖p

p

] r−p
p+γ−1

[
(r + γ − 1)

∫
�
a(x)|u|1−γ dx

] r−p
p+γ−1

‖∇u‖p
p

−
[
(r − p)‖∇u‖p

p

] r+γ−1
p+γ−1

[
(r + γ − 1)

∫
�
a(x)|u|1−γ dx

] r+γ−1
p+γ−1

∫
�

a(x)|u|1−γ dx

= (r − p)
r−p

p+γ−1 ‖∇u‖
p(r+γ−1)
p+γ−1

p

(r + γ − 1)
r−p

p+γ−1

[ ∫
�
a(x)|u|1−γ dx

] r−p
p+γ−1

− (r − p)
r+γ−1
p+γ−1 ‖∇u‖

p(r+γ−1)
p+γ−1

p

(r + γ − 1)
r+γ−1
p+γ−1

[ ∫
�
a(x)|u|1−γ dx

] r−p
p+γ−1

= p + γ − 1

r − p

[
r − p

r + γ − 1

] r+γ−1
p+γ−1 ‖∇u‖

p(r+γ−1)
p+γ−1

p[ ∫
�
a(x)|u|1−γ dx

] r−p
p+γ−1

. (3.8)

Let S be the best constant of the Sobolev embedding W 1,p
0 (�) → L p∗

(�), that is,

S‖u‖p
p∗ ≤ ‖∇u‖p

p. (3.9)

Moreover, we have

∫
�

a(x)|u|1−γ dx ≤ c6‖u‖1−γ
p∗ (3.10)

for some c6 > 0. Combining (3.8), (3.9) and (3.10) gives

ψ̂u
(
t̂0

) − λ‖u‖rr

= p + γ − 1

r − p

[
r − p

r + γ − 1

] r+γ−1
p+γ−1 ‖∇u‖

p(r+γ−1)
p+γ−1

p[ ∫
�
a(x)|u|1−γ dx

] r−p
p+γ−1

− λ‖u‖rr

≥ p + γ − 1

r − p

[
r − p

r + γ − 1

] r+γ−1
p+γ−1 S

r+γ−1
p+γ−1

(
‖u‖p

p∗
) r+γ−1

p+γ−1

(
c6‖u‖1−γ

p∗
) r−p

p+γ−1

− λc7‖u‖rp∗

=
[
c8 − λc7

]
‖u‖rp∗
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for some c7, c8 > 0. Therefore, there exists λ̂∗ ∈ (0, λ∗] independent of u such that

ψ̂u
(
t̂0

) − λ‖u‖rr > 0 for all λ ∈
(
0, λ̂∗) . (3.11)

Now consider the function ψu : (0,+∞) → R defined by

ψu(t) = t p−r‖∇u‖p
p + tq−r‖∇u‖qq,μ − t−r−γ+1

∫
�

a(x)|u|1−γ dx .

Since r − q < r − p < r + γ − 1 we can find t0 > 0 such that

ψu(t0) = max
t>0

ψu(t).

Because of ψu ≥ ψ̂u and due to (3.11) (note that there the choice of λ̂∗ is independent
of u) we can find λ̂∗ ∈ (0, λ∗] independent of u such that

ψu (t0) − λ‖u‖rr > 0 for all λ ∈
(
0, λ̂∗) .

Thus there exist t1 < t0 < t2 such that

ψu(t1) = λ‖u‖rr = ψu(t2) and ψ ′
u(t2) < 0 < ψ ′

u(t1), (3.12)

where

ψ ′
u(t) = (p − r)t p−r−1‖∇u‖p

p + (q − r)tq−r−1‖∇u‖qq,μ

− (−r − γ + 1)t−r−γ

∫
�

a(x)|u|1−γ dx .
(3.13)

Note that t1, t2 are the only numbers which fulfill the equality in (3.12).
Recall that the fibering function ωu : [0,+∞) → R is given by

ωu(t) = ϕλ(tu) for all t ≥ 0.

Clearly, ωu ∈ C∞((0,∞)). We have

ω′
u(t1) = t p−1

1 ‖∇u‖p
p + tq−1

1 ‖∇u‖qq,μ − t−γ
1

∫
�

a(x)|u|1−γ dx − λtr−1
1 ‖u‖rr

and

ω′′
u(t1) = (p − 1)t p−2

1 ‖∇u‖p
p + (q − 1)tq−2

1 ‖∇u‖qq,μ

+ γ t−γ−1
1

∫
�

a(x)|u|1−γ dx − λ(r − 1)tr−2
1 ‖u‖rr .

(3.14)
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From (3.12) we obtain

t p−r
1 ‖∇u‖p

p + tq−r
1 ‖∇u‖qq,μ − t−r−γ+1

1

∫
�

a(x)|u|1−γ dx = λ‖u‖rr ,

which implies by multiplying with γ tr−2
1 and −(r − 1)tr−2

1 , respectively, that

γ t p−2
1 ‖∇u‖p

p + γ tq−2
1 ‖∇u‖qq,μ − γ λtr−2

1 ‖u‖rr = γ t−γ−1
1

∫
�

a(x)|u|1−γ dx

(3.15)

and

− (r − 1)t p−2
1 ‖∇u‖p

p − (r − 1)tq−2
1 ‖∇u‖qq,μ

+ (r − 1)t−γ−1
1

∫
�

a(x)|u|1−γ dx

= −λ(r − 1)tr−2
1 ‖u‖rr .

(3.16)

Applying (3.15) in (3.14) gives

ω′′
u(t1) = (p + γ − 1)t p−2

1 ‖∇u‖p
p + (q + γ − 1)tq−2

1 ‖∇u‖qq,μ

− λ(r + γ − 1)tr−2
1 ‖u‖rr

= t−2
1

[
(p + γ − 1)t p1 ‖∇u‖p

p + (q + γ − 1)tq1 ‖∇u‖qq,μ

− λ(r + γ − 1)tr1‖u‖rr
]
.

(3.17)

On the other hand, applying (3.16) in (3.14) and using the representation in (3.13)
leads to

ω′′
u(t1) = (p − r)t p−2

1 ‖∇u‖p
p + (q − r)tq−2

1 ‖∇u‖qq,μ

+ (r + γ − 1)t−γ−1
1

∫
�

a(x)|u|1−γ dx

= t1−r
1 ψ ′

u(t1) > 0.

(3.18)

From (3.17) and (3.18) it follows that

(p + γ − 1)t p1 ‖∇u‖p
p + (q + γ − 1)tq1 ‖∇u‖qq,μ − λ(r + γ − 1)tr1‖u‖rr > 0,

which implies

t1u ∈ N+
λ for all λ ∈

(
0, λ̂∗] .

Hence, N+
λ 
= ∅.
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Using similar arguments for the point t2 (see (3.12)), we can show that N−
λ 
= ∅.

This shows the first assertion of the proposition. Let us now prove the second one.
To this end, let {un}n∈N ⊂ N+

λ be a minimizing sequence, that is,

ϕλ(un) ↘ m+
λ < 0 as n → ∞. (3.19)

Recall that N+
λ ⊂ Nλ and so we conclude from Proposition 3.1 that {un}n∈N ⊂

W 1,H
0 (�) is bounded. Therefore, we may assume that

un⇀u∗ in W 1,H
0 (�) and un → u∗ in Lr (�). (3.20)

From (3.19) and (3.20) we know that

ϕλ(u
∗) ≤ lim inf

n→+∞ ϕλ(un) < 0 = ϕλ(0).

Hence, u∗ 
= 0.

Claim lim infn→+∞ ρH(un) = ρH(u∗)

Suppose, by contradiction, that

lim inf
n→+∞ ρH(un) > ρH(u∗).

Then, by using (3.12), we have

lim inf
n→+∞ ω′

un (t1)

= lim inf
n→+∞

[
t p−1
1 ‖∇un‖pp + tq−1

1 ‖∇un‖qq,μ − t−γ
1

∫
�
a(x)|un |1−γ dx − λtr−1

1 ‖un‖rr
]

> t p−1
1 ‖∇u∗‖pp + tq−1

1 ‖∇u∗‖qq,μ − t−γ
1

∫
�
a(x)|u∗|1−γ dx − λtr−1

1 ‖u∗‖rr
= ω′

u∗(t1) = tr−1
1

[
ψu∗(t1) − λ‖u∗‖rr

] = 0,

which implies the existence of n0 ∈ N such thatω′
un (t1) > 0 for all n > n0. Recall that

un ∈ N+
λ ⊂ Nλ and ω′

un (t) = tr−1
[
ψun (t) − λ‖un‖rr

]
. Thus we have ω′

un (t) < 0 for
all t ∈ (0, 1) and ω′

un (1) = 0. Therefore, t1 > 1.
Since ωu∗ is decreasing on (0, t1], we have

ϕλ

(
t1u

∗) ≤ ϕλ

(
u∗) < m+

λ .

Recall that t1u∗ ∈ N+
λ . So we obtain that

m+
λ ≤ ϕλ

(
t1u

∗) < m+
λ ,

a contradiction. So the Claim is proved.
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From the Claim we know that we can find a subsequence (still denoted by un) such
that ρH (un) → ρH (u∗). It follows fromProposition 2.2(v) that un → u inW 1,H

0 (�).
This implies ϕλ(un) → ϕλ(u∗), and consequently, ϕλ(u∗) = m+

λ . Since un ∈ N+
λ for

all n ∈ N, we have

(p + γ − 1)‖∇un‖p
p + (q + γ − 1)‖∇un‖qq,μ − λ(r + γ − 1)‖un‖rr > 0.

Letting n → +∞ gives

(p + γ − 1)‖∇u∗‖p
p + (q + γ − 1)‖∇u∗‖qq,μ − λ(r + γ − 1)‖u∗‖rr ≥ 0.

(3.21)

Recall that λ ∈ (0, λ̂∗) and λ̂∗ ≤ λ∗. Then, from Proposition 3.3 we know that equality
in (3.21) cannot occur. Therefore, we conclude that u∗ ∈ N+

λ . Since we can use |u∗|
instead of u∗, we may assume that u∗(x) ≥ 0 for a. a. x ∈ � with u∗ 
= 0. The proof
is finished. ��

In what follows, for ε > 0, we denote

Bε(0) =
{
u ∈ W 1,H

0 (�) : ‖u‖1,H,0 < ε
}

.

The next lemma is motivated by Lemma 3 of Sun–Wu–Long [56]. This lemma is
helpful in order to show that u∗ is a local minimizer of ϕλ (see Proposition 3.6) and
from this we conclude that u∗ is a weak solution of (1.3) (see Proposition 3.7).

Lemma 3.5 Let hypotheses (H) be satisfied and let u ∈ N±
λ . Then there exist ε > 0

and a continuous function ϑ : B�(0) → (0,∞) such that

ϑ(0) = 1 and ϑ(y)(u + y) ∈ N±
λ for all y ∈ Bε(0).

Proof We show the proof only for N+
λ , the proof for N−

λ works in a similar way. To

this end, let ζ : W 1,H
0 (�) × (0,∞) → R be defined by

ζ(y, t) = t p+γ−1‖∇(u + y)‖p
p + tq+γ−1‖∇(u + y)‖qq,μ −

∫
�

a(x)|u + y|1−γ dx

− λtr+γ−1‖u + y‖rr for all y ∈ W 1,H
0 (�).

Since u ∈ N+
λ ⊂ Nλ, one has ζ(0, 1) = 0. Because of u ∈ N+

λ , it follows that

ζ ′
t (0, 1) = (p + γ − 1)‖∇u‖p

p + (q + γ − 1)‖∇u‖qq,μ − λ(r + γ − 1)‖u‖rr > 0.

Then, by the implicit function theorem, see, for example, Gasiński–Papageorgiou
[27, p. 481], there exist ε > 0 and a continuous function ϑ : Bε(0) → (0,∞) such
that
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ϑ(0) = 1 and ϑ(y)(u + y) ∈ Nλ for all y ∈ Bε(0).

Choosing ε > 0 small enough, we also have

ϑ(0) = 1 and ϑ(y)(u + y) ∈ N+
λ for all y ∈ Bε(0).

��

Proposition 3.6 Let hypotheses (H) be satisfied, let h ∈ W 1,H
0 (�) and let λ ∈ (0, λ̂∗].

Then there exists b > 0 such that ϕλ(u∗) ≤ ϕλ(u∗ + th) for all t ∈ [0, b].

Proof We introduce the function ηh : [0,+∞) → R defined by

ηh(t) = (p − 1)
∥∥∇u∗ + t∇h

∥∥p
p + (q − 1)‖∇u∗ + t∇h‖qq,μ

+ γ

∫
�

a(x)
∣∣u∗ + th

∣∣1−γ dx − λ(r − 1)
∥∥u∗ + th

∥∥r
r .

(3.22)

Recall that u∗ ∈ N+
λ ⊆ Nλ, see Proposition 3.4. This implies

γ

∫
�

a(x)
∣∣u∗∣∣1−γ dx = γ

∥∥∇u∗∥∥p
p + γ

∥∥∇u∗∥∥q
q,μ

− λγ
∥∥u∗∥∥r

r (3.23)

and

(p + γ − 1)
∥∥∇u∗∥∥p

p + (q + γ − 1)
∥∥∇u∗∥∥q

q,μ
− λ(r + γ − 1)

∥∥u∗∥∥r
r > 0. (3.24)

Combining (3.22), (3.23) and (3.24) we see that ηh(0) > 0. Since ηh : [0,+∞) → R

is continuous we can find b0 > 0 such that

ηh(t) > 0 for all t ∈ [0, b0].

Lemma 3.5 implies that for every t ∈ [0, b0] we can find ϑ(t) > 0 such that

ϑ(t)
(
u∗ + th

) ∈ N+
λ and ϑ(t) → 1 as t → 0+. (3.25)

From Proposition 3.4 we know that

m+
λ = ϕλ

(
u∗) ≤ ϕλ

(
ϑ(t)

(
u∗ + th

))
for all t ∈ [0, b0]. (3.26)

From ω′′
u∗(1) > 0 and the continuity in t , we have ω′′

u∗+th(1) > 0 for t ∈ [0, b]
with b ∈ (0, b0]. Combining this with (3.26) gives
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m+
λ = ϕλ

(
u∗) ≤ ϕλ

(
ϑ(t)

(
u∗ + th

)) = ωu∗+th(ϑ(t)) ≤ ωu∗+th(1) = ϕλ

(
u∗ + th

)

for all t ∈ [0, b]. ��

The next proposition shows thatN+
λ is a natural constraint for the energy functional

ϕλ, see Papageorgiou–Rădulescu–Repovš [48, p. 425].

Proposition 3.7 Let hypotheses (H) be satisfied and let λ ∈ (0, λ̂∗]. Then u∗ is a weak
solution of problem (1.3) such that ϕλ(u∗) < 0.

Proof From Proposition 3.4 we know that u∗ ≥ 0 for a. a. x ∈ � and ϕλ(u∗) < 0.
Let us prove that u∗ > 0 for a. a. x ∈ �. We argue indirectly and suppose there is a

set Dwith positivemeasure such that u∗(x) = 0 for a. a. x ∈ D. Now let h ∈ W 1,H
0 (�)

with h > 0 and let t ∈ (0, b), where b is from Proposition 3.6. Then we have
(u∗ + th)1−γ > (u∗)1−γ for a. a. x ∈ D. Applying this fact along with Proposition
3.6 results in

0 ≤ ϕλ(u∗ + th) − ϕλ(u∗)
t

= 1

p

‖∇(u∗ + th)‖p
p − ‖∇u∗‖p

p

t
+ 1

q

‖∇(u∗ + th)‖qq,μ − ‖∇u∗‖qq,μ

t

− 1

(1 − γ )tγ

∫
D
a(x)h1−γ dx − 1

1 − γ

∫
�\D

a(x)
(u∗ + th)1−γ − (u∗)1−γ

t
dx

− λ

r

‖u∗ + th‖rr − ‖u∗‖rr
t

<
1

p

‖∇(u∗ + th)‖p
p − ‖∇u∗‖p

p

t
+ 1

q

‖∇(u∗ + th)‖qq,μ − ‖∇u∗‖qq,μ

t

− 1

(1 − γ )tγ

∫
D
a(x)h1−γ dx − λ

r

‖u∗ + th‖rr − ‖u∗‖rr
t

.

Since a > 0, see hypothesis (H)(iii), we conclude from the estimate above that

0 ≤ ϕλ(u∗ + th) − ϕλ(u∗)
t

→ −∞ as t → 0+.

This is a contradiction and so we have that u∗(x) > 0 for a. a. x ∈ �.
Next we prove that

a(·)(u∗)−γ h ∈ L1(�) for all h ∈ W 1,H
0 (�) (3.27)

and
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∫
�

(
|∇u∗|p−2∇u∗ + μ(x)|∇u∗|q−2∇u∗) · ∇h dx

≥
∫

�

a(x)(u∗)−γ h dx + λ

∫
�

(u∗)r−1h dx
(3.28)

for all h ∈ W 1,H
0 (�) with h ≥ 0.

To this end, let h ∈ W 1,H
0 (�) with h ≥ 0 and let {tn}n∈N ⊆ (0, 1] be a decreasing

sequence such that limn→∞ tn = 0. First note that the functions

κn(x) = a(x)
(u∗(x) + tnh(x))1−γ − u∗(x)1−γ

tn
, n ∈ N

are nonnegative and measurable. Furthermore, we have

lim
n→∞ κn(x) = (1 − γ )a(x)u∗(x)−γ h(x) for a. a. x ∈ �

and by Fatou’s lemma we get

∫
�

a(x)
(
u∗)−γ

h dx ≤ 1

1 − γ
lim inf
n→∞

∫
�

κn dx . (3.29)

Again from Proposition 3.6 we get for n ∈ N sufficiently large that

0 ≤ ϕλ(u∗ + tnh) − ϕλ(u∗)
tn

= 1

p

‖∇(u∗ + tnh)‖p
p − ‖∇u∗‖p

p

tn
+ 1

q

‖∇(u∗ + tnh)‖qq,μ − ‖∇u∗‖qq,μ

tn

− 1

1 − γ

∫
�

κn dx − λ

r

‖u∗ + tnh‖rr − ‖u∗‖rr
tn

.

If we pass to the limit as n → ∞, taking (3.29) into account, we obtain

∫
�

a(x)(u∗)−γ h dx

≤
∫

�

(
|∇u∗|p−2∇u∗ + μ(x)|∇u∗|q−2∇u∗) · ∇h dx − λ

∫
�

(u∗)r−1h dx .

This shows (3.27) and (3.28). We point out that it is sufficient to prove the integrability
in (3.27) for nonnegative test functions h ∈ W 1,H

0 (�).

In the next step we prove that u∗ is a weak solution of (1.3). Let v ∈ W 1,H
0 (�) and

let ε > 0. We take h = (u∗ + εv)+ as test function in (3.28) and use u∗ ∈ N+
λ ⊂ Nλ
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with u∗ ≥ 0. One has

0 ≤
∫

�

(∣∣∇u∗∣∣p−2 ∇u∗ + μ(x)
∣∣∇u∗∣∣q−2 ∇u∗) · ∇(u∗ + εv)+ dx

−
∫

�

(
a(x)

(
u∗)−γ + λ

(
u∗)r−1

)
(u∗ + εv)+ dx

=
∫

{u∗+εv≥0}

(∣∣∇u∗∣∣p−2 ∇u∗ + μ(x)
∣∣∇u∗∣∣q−2 ∇u∗) · ∇(u∗ + εv) dx

−
∫

{u∗+εv≥0}

(
a(x)

(
u∗)−γ + λ

(
u∗)r−1

)
(u∗ + εv) dx

=
∫

�

(∣∣∇u∗∣∣p−2 ∇u∗ + μ(x)
∣∣∇u∗∣∣q−2 ∇u∗) · ∇ (

u∗ + εv
)
dx

−
∫

{u∗+εv<0}

(∣∣∇u∗∣∣p−2 ∇u∗ + μ(x)
∣∣∇u∗∣∣q−2 ∇u∗) · ∇ (

u∗ + εv
)
dx

−
∫

�

(
a(x)

(
u∗)−γ + λ

(
u∗)r−1

) (
u∗ + εv

)
dx

+
∫

{u∗+εv<0}

(
a(x)

(
u∗)−γ + λ

(
u∗)r−1

) (
u∗ + εv

)
dx

= ‖∇u∗‖p
p + ‖∇u∗‖qq,μ −

∫
�

a(x)|u∗|1−γ dx − λ‖u∗‖rr

+ ε

∫
�

(∣∣∇u∗∣∣p−2 ∇u∗ + μ(x)
∣∣∇u∗∣∣q−2 ∇u∗) · ∇v dx

− ε

∫
�

(
a(x)

(
u∗)−γ + λ

(
u∗)r−1

)
v dx

−
∫

{u∗+εv<0}

(∣∣∇u∗∣∣p−2 ∇u∗ + μ(x)
∣∣∇u∗∣∣q−2 ∇u∗) · ∇ (

u∗ + εv
)
dx

+
∫

{u∗+εv<0}

(
a(x)

(
u∗)−γ + λ

(
u∗)r−1

) (
u∗ + εv

)
dx

≤ ε

∫
�

(∣∣∇u∗∣∣p−2 ∇u∗ + μ(x)
∣∣∇u∗∣∣q−2 ∇u∗) · ∇v dx

− ε

∫
�

(
a(x)

(
u∗)−γ + λ

(
u∗)r−1

)
v dx

− ε

∫
{u∗+εv<0}

(∣∣∇u∗∣∣p−2 ∇u∗ + μ(x)
∣∣∇u∗∣∣q−2 ∇u∗) · ∇v dx .

Dividing the last inequality with ε > 0 and letting ε → 0, by taking

∫
{u∗+εv<0}

(∣∣∇u∗∣∣p−2 ∇u∗ + μ(x)
∣∣∇u∗∣∣q−2 ∇u∗) · ∇v dx → 0 as ε → 0
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into account, we obtain

∫
�

(
|∇u∗|p−2∇u∗ + μ(x)|∇u∗|q−2∇u∗) · ∇v dx

≥
∫

�

a(x)(u∗)−γ v dx + λ

∫
�

(u∗)ν−1v dx .

Since v ∈ W 1,H
0 (�) is arbitrary chosen, equality must hold. It follows that u∗ is a

weak solution of problem (1.3) such that ϕλ(u∗) < 0, see Propositions 3.2 and 3.4. ��
Now we start looking for a second weak solution when the parameter λ > 0 is

sufficiently small. To this end, we will use the manifold N−
λ .

Proposition 3.8 Let hypotheses (H) be satisfied. Then there exists λ̂∗
0 ∈ (0, λ̂∗] such

that ϕλ

∣∣N−
λ

> 0 for all λ ∈ (0, λ̂∗
0].

Proof From Proposition 3.4 we know that N−
λ 
= ∅. Let u ∈ N−

λ . By the definition

of N−
λ and the embedding W 1,p

0 (�) → Lr (�) we have

λ(r + γ − 1)‖u‖rr > (p + γ − 1)‖∇u‖p
p + (q + γ − 1)‖∇u‖qq,μ

≥ (p + γ − 1)‖∇u‖p
p

≥ (p + γ − 1)cp9 ‖u‖p
r

for some c9 > 0. Therefore

‖u‖r ≥
[
cp9 (p + γ − 1)

λ(r + γ − 1)

] 1
r−p

. (3.30)

Arguing by contradiction and suppose that the assertion of the proposition is not
true. Then we can find u ∈ N−

λ such that ϕλ(u) ≤ 0, that is,

1

p
‖∇u‖p

p + 1

q
‖∇u‖qq,μ − 1

1 − γ

∫
�

a(x)|u|1−γ dx − λ

r
‖u‖rr ≤ 0. (3.31)

Since N−
λ ⊆ Nλ we know that

1

q
‖∇u‖qq,μ = 1

q

∫
�

a(x)|u|1−γ dx + λ

q
‖u‖rr − 1

q
‖∇u‖p

p. (3.32)

Using (3.32) in (3.31) gives

(
1

p
− 1

q

)
‖∇u‖p

p +
(
1

q
− 1

1 − γ

)∫
�

a(x)|u|1−γ dx + λ

(
1

q
− 1

r

)
‖u‖rr ≤ 0.
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This yields

λ
r − q

qr
‖u‖rr ≤ q + γ − 1

q(1 − γ )

∫
�

a(x)|u|1−γ dx ≤ q + γ − 1

q(1 − γ )
c10‖u‖1−γ

r

for some c10 > 0. Therefore,

‖u‖r ≤ c11

(
1

λ

) 1
r+γ−1

(3.33)

for some c11 > 0. Now we use (3.33) in (3.30) in order to obtain

c12

(
1

λ

) 1
r−p ≤ c11

(
1

λ

) 1
r+γ−1

with c12 =
[
cp9 (p + γ − 1)

r + γ − 1

] 1
r−p

> 0.

Consequently

0 <
c12
c11

≤ λ
1

r−p − 1
r+γ−1 = λ

p+γ−1
(r−p)(r+γ−1) → 0 as λ → 0+,

since 1 < p < r and γ ∈ (0, 1), a contradiction. Thus, we can find λ̂∗
0 ∈ (0, λ̂∗] such

that ϕλ

∣∣N−
λ

> 0 for all λ ∈ (0, λ̂∗
0]. ��

Now we minimize ϕλ on the manifold N−
λ .

Proposition 3.9 Let hypotheses (H) be satisfied and let λ ∈ (0, λ̂∗
0]. Then there exists

v∗ ∈ N−
λ with v∗ ≥ 0 such that

m−
λ = inf

N−
λ

ϕλ = ϕλ

(
v∗) > 0.

Proof Let {vn}n∈N ⊂ N−
λ ⊂ Nλ be a minimizing sequence. Since N−

λ ⊂ Nλ, we

know that {vn}n∈N ⊂ W 1,H
0 (�) is bounded, see Proposition 3.1. We may assume that

vn⇀v∗ in W 1,H
0 (�) and vn → v∗ in Lr (�).

Note that v∗ 
= 0 by (3.30). Now we will use the point t2 > 0 (see (3.12)) for which
we have

ψv∗ (t2) = λ
∥∥v∗∥∥r

r and ψ ′
v∗ (t2) < 0.

In the proof of Proposition 3.4 we showed that t2v∗ ∈ N−
λ .
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Next we want to show that ρH(vn) → ρH(v∗) as n → ∞ for a subsequence (still
denoted by vn). Let us suppose this is not the case, then we have as in the proof of
Proposition 3.4 that

ϕλ(t2v
∗) < lim

n→∞ ϕλ(t2vn).

We know that ϕλ(t2vn) ≤ ϕλ(vn) since it is the global maximum because of ω′′
vn

(1) <

0. Using this and t2v∗ ∈ N−
λ , we get

m−
λ ≤ ϕλ(t2v

∗) < m−
λ ,

which is a contradiction. Hence we have limn→+∞ ρH(vn) = ρH(v∗) for a subse-
quence and so Proposition 2.2(v) implies vn → v∗ in W 1,H

0 (�). The continuity of ϕλ

then gives ϕλ(vn) → ϕλ(v
∗), thus, ϕλ(v

∗) = m−
λ .

Since vn ∈ N−
λ for all n ∈ N, we have

(p + γ − 1)‖∇vn‖p
p + (q + γ − 1)‖∇vn‖qq,μ − λ(r + γ − 1)‖vn‖rr < 0.

If we pass to the limit as n → +∞ we obtain

(p + γ − 1)‖∇v∗‖p
p + (q + γ − 1)‖∇v∗‖qq,μ − λ(r + γ − 1)‖v∗‖rr ≤ 0.

(3.34)

Recall that λ ∈ (0, λ̂∗) and λ̂∗ ≤ λ∗. Applying Proposition 3.3 we see that equality in
(3.34) cannot happen. Hence, v∗ ∈ N−

λ . Since the treatment alsoworks for |v∗| instead
of v∗, we may assume that v∗(x) ≥ 0 for a. a. x ∈ � such that v∗ 
= 0. Proposition
3.8 finally shows that m−

λ > 0. ��
Now we have a second weak solution of problem (1.3).

Proposition 3.10 Let hypotheses (H) be satisfied and let λ ∈ (0, λ̂∗
0]. Then v∗ is a

weak solution of problem (1.3) such that ϕλ(v
∗) > 0.

Proof Following the proof of Proposition 3.6 replacing u∗ by v∗ in the definition of
ηh by using Lemma 3.5 we are able to show that for every t ∈ [0, b0] there exists
ϑ(t) > 0 such that

ϑ(t)
(
v∗ + th

) ∈ N−
λ and ϑ(t) → 1 as t → 0+,

see also (3.25). Taking Proposition 3.9 into account we have that

m−
λ = ϕλ

(
v∗) ≤ ϕλ

(
ϑ(t)

(
v∗ + th

))
for all t ∈ [0, b0]. (3.35)

Let us now show that v∗(x) > 0 for a. a. x ∈ �. As for u∗, let us suppose there
exists a set E with positive measure such that v∗ = 0 in E . Taking h ∈ W 1,H

0 (�)with
h > 0 and t ∈ (0, b0), we know that (ϑ(t)(v∗ + th))1−γ > (ϑ(t)v∗)1−γ a. e. in �\E .
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Note that ωv∗(1) is the global maximum which implies ωv∗(1) ≥ ωv∗(ϑ(t)). Using
this and (3.35) it follows that

0 ≤ ϕλ(ϑ(t)(v∗ + th)) − ϕλ(v
∗)

t

≤ ϕλ(ϑ(t)(v∗ + th)) − ϕλ(ϑ(t)v∗)
t

= 1

p

‖∇(ϑ(t)(v∗ + th))‖p
p − ‖∇(ϑ(t)v∗)‖p

p

t

+ 1

q

‖∇(ϑ(t)(v∗ + th))‖qq,μ − ‖∇(ϑ(t)v∗)‖qq,μ

t
− ϑ(t)1−γ

(1 − γ )tγ

∫
E
a(x)h1−γ dx

− 1

1 − γ

∫
�\E

a(x)
(ϑ(t)(v∗ + th))1−γ − (ϑ(t)v∗)1−γ

t
dx

− λ

r

‖ϑ(t)(v∗ + th)‖rr − ‖ϑ(t)v∗‖rr
t

<
1

p

‖∇(ϑ(t)(v∗ + th))‖p
p − ‖∇(ϑ(t)v∗)‖p

p

t

+ 1

q

‖∇(ϑ(t)(v∗ + th))‖qq,μ − ‖∇(ϑ(t)v∗)‖qq,μ

t
− ϑ(t)1−γ

(1 − γ )tγ

∫
E
a(x)h1−γ dx

− λ

r

‖ϑ(t)(v∗ + th)‖rr − ‖ϑ(t)v∗‖rr
t

.

Therefore, similar to the proof of Proposition 3.7, we see from the inequality above
that

0 ≤ ϕλ(ϑ(t)(v∗ + th)) − ϕλ(ϑ(t)v∗)
t

→ −∞ as t → 0+,

which is again a contradiction. We conclude that v∗(x) > 0 for a. a. x ∈ �.
The rest of the proof can be done similarly as the proof of Proposition 3.7. Pre-

cisely, (3.27) and (3.28) can be proven in the same way by applying again (3.35) and
the inequality ωv∗(1) ≥ ωv∗(ϑ(t)) together with v∗ > 0. Finally, the last part of
Proposition 3.7 is the same replacing u∗ by v∗. From Proposition 3.9 we know that
ϕλ(v

∗) > 0. This finishes the proof. ��
The proof of Theorem 1.1 follows now from Propositions 3.7 and 3.10.
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